
Visual Analytics Indicators for Mobility and Transportation
Konferenzveröffentlichung

Zusammenfassung
Visual Analytics enables a deep analysis of complex and multivariate data by applying machine learning methods and interactive visualization. These complex analyses lead to gain insights and knowledge for a variety of analytics tasks to enable the decision-making process. The enablement of decision-making processes is essential for managing and planning mobility and transportation. These are influenced by a variety of indicators such as new technological developments, ecological and economic changes, political decisions and in particular humans’ mobility behavior. New technologies will lead to a different mobility behavior with new constraints. These changes in mobility behavior and logistics require analytical systems to forecast the required information and probably appearing changes. These systems have to consider different perspectives and employ multiple indicators. Visual Analytics enable such analytical tasks. We introduce in this paper the main indicators for Visual Analytics for mobility and transportation that are e exemplary explained through two case studies to illustrate the advantages of such systems. The examples are aimed to demonstrate the benefits of Visual Analytics in mobility.
Schlagworte
Visual Analytics
Mobility Behavior
Mobility Analytics
Mobility Indicators for Visual Analyics
Mobility Behavior
Mobility Analytics
Mobility Indicators for Visual Analyics
DDC-Klassifikation
388 Verkehr
Erschienen in
2020 61st International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS) Proceedings. Grabis, Janis; Romanovs, Andrejs; Kulesova, Galina (Hrsg.). IEEE (2020). 5 Seiten. 978-1-7281-9105-8
Veranstaltung
2020 61st International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS), October 15-16, 2020, Riga, Latvia
Einrichtung
Fachbereich Architektur und Bauingenieurwesen
Fachgruppe Mobilitätsmanagement
Fachgruppe Mobilitätsmanagement
Link zur Veröffentlichung
Sammlungen
- Publikationen [130]
BibTeX
@inproceedings{Nazemi2020,
author={Nazemi, Kawa and Kowald, Matthias and Dannewald, Till and Burkhardt, Dirk and Ginters, Egils},
title={Visual Analytics Indicators for Mobility and Transportation},
pages={5 Seiten},
year={2020},
editor={Grabis, Janis},
publisher={IEEE},
school={Hochschule RheinMain, Wiesbaden},
url={https://hlbrm.pur.hebis.de/xmlui/handle/123456789/121},
doi={10.25716/pur-99}
}