Zur Kurzanzeige

dc.contributor.authorStaab, Sergio
dc.contributor.authorBröning, Lukas
dc.contributor.authorLuderschmidt, Johannes
dc.contributor.authorLudger, Martin
dc.contributor.editorAhram, Tareq
dc.contributor.editorKarwowski, Waldemar
dc.contributor.editorDi Buccianico, Pepetto
dc.contributor.editorCasarotta, Luca
dc.contributor.editorCosta, Pietro
dc.contributor.editorTaiar, Redha
dc.contributor.otherFachbereich Design Informatik Medien
dc.contributor.otherFachbereich Sozialwesen
dc.date.accessioned2025-03-17T09:44:22Z
dc.date.available2025-03-17T09:44:22Z
dc.date.issued2023
dc.identifier.isbn978-1-958651-45-2
dc.identifier.urihttps://hlbrm.pur.hebis.de/xmlui/handle/123456789/260
dc.identifier.urihttp://dx.doi.org/10.25716/pur-152
dc.description.abstractBy monitoring movements and activities, the progression of neurological diseases can bedetected. The documentation required for this is associated with a high level of effort, which is hardly possible in view of the increasing shortage of nursing staff. In ordertograduallyrelievethenursingstaff, wearedevelopinganapproachtoautomate documentation in cooperation with two dementiaresidential communities. The aim of this work is to facilitate everyday life of caregivers. Previous research results from this working group show that everyday activities of dementia patients can be recognized well by combining smartwatch sensor technology and machine learning. However, the state of research has gaps when it comes to recognize activities consisting of a variety of movement patterns. In this paper, we present an approach to classify the activity of cooking. We divide this activity into several sub-activities each consisting of a distinct motion pattern that a recurrent network recognizes. This is followed by a model for calculating the probability that cooking actually occurred based on the different sub-activities recognized. We show the advantages of different smartwatch sensor combinations and compare the different approaches of our model with the prediction accuracy of the classification. This model can later be integrated into the care documentation of the residential communities in addition to the activities that are easier to recognize.
dc.format.extentS. 399 - 407
dc.language.isoen
dc.publisherAHFE Open Access; New York, USA
dc.relation.ispartofIntelligent Human Systems Integration
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectDemenz
dc.subjectMaschinelles Lernen
dc.subjectMenschliche Bewegungsanalyse
dc.subjectGesundheitsdokumentation
dc.subject.ddc000 Informatik, Informationswissenschaft und allgemeine Werke::000 Informatik, Wissen, Systeme::006 Spezielle Computerverfahren
dc.subject.ddc600 Technik::610 Medizin und Gesundheit
dc.titleRecognition Model for Activity Classification in Everyday Movements in the Context of Dementia Diagnostics - Cooking
dc.typeKonferenzveröffentlichung
dcterms.accessRightsopen access
pur.source.volume69
dc.description.versionPublished Version
pur.event6th International Conference on Intelligent Human Systems Integration
pur.event.date22.02.2023 - 24.02.2023
pur.event.placeVenedig, Italien
pur.source.date2023
dc.identifier.doi10.54941/ahfe1002814
dc.identifier.urlhttps://doi.org/10.54941/ahfe1002859
pur.peerReviewtrue
pur.typeDCMIText


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben:
Namensnennung 4.0 International