Zur Kurzanzeige

dc.contributor.authorWirtgen, Christian
dc.contributor.authorKowald, Matthias
dc.contributor.authorLuderschmidt, Johannes
dc.contributor.authorHünemohr, Holger
dc.contributor.otherFachbereich Architektur und Bauingenieurwesen
dc.contributor.otherFachbereich Design Informatik Medien
dc.contributor.otherFachgruppe Mobilitätsmanagement
dc.date.accessioned2023-04-05T09:51:45Z
dc.date.available2023-04-05T09:51:45Z
dc.date.issued2022-12-12
dc.identifier.urihttps://hlbrm.pur.hebis.de/xmlui/handle/123456789/107
dc.identifier.urihttp://dx.doi.org/10.25716/pur-85
dc.description.abstractMany German cities, municipalities and transport associations are expanding their bikesharing systems (BSS) to offer citizens a cost-effective and climate-friendly means of transport and an alternative to private motorized transport (PMT). However, operators face the challenge of generating high-quality predictive analyses and time series forecasts. In particular, the prediction of demand is a key component to foster data-driven decisions. To address this problem, an Unobserved Component Model (UCM) has been developed to predict the monthly rentals of a BSS, whereby the station-based BSS VRNnextbike, including over 2000 bikes, 297 stations and 21 municipalities, is employed as an example. The model decomposes the time series into trend, seasonal, cyclical, auto-regressive and irregular components for statistical modeling. Additionally, the model includes exogenous factors such as weather, user behavior (e.g., traveled distance), school holidays and COVID-19 relevant covariates as independent effects to calculate scenario based forecasts. It can be shown that the UCM calculates reasonably accurate forecasts and outperforms classical time series models such as ARIMA(X) or SARIMA(X). Improvements were observed in model quality in terms of AIC/BIC (2.5% to 22%) and a reduction in error metrics from 15% to 45% depending on the considered model.
dc.description.sponsorshipGefördert durch den Publikationsfonds der Hochschule RheinMain
dc.format.extent16 S.
dc.language.isoen
dc.publisherMDPI; Basel
dc.relation.ispartofElectronics
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectsmart mobility
dc.subjecttime series analysis
dc.subjectunobserved component model
dc.subjectdemand forecasting
dc.subjectvisualization
dc.subjectdashboard
dc.subject.ddc300 Sozialwissenschaften::380 Handel, Kommunikation, Verkehr::388 Verkehr
dc.titleMultivariate Demand Forecasting for Rental Bike Systems Based on an Unobserved Component Model
dc.typeAufsatz
dcterms.accessRightsopen access
pur.source.volume11
dc.description.versionPublished Version
dc.identifier.eissn2079-9292
pur.source.articlenumber4146
pur.source.date2022
dc.identifier.doihttps://doi.org/10.3390/electronics11244146
dc.identifier.urlhttps://doi.org/10.3390/electronics11244146
pur.fundingProject/ BMDV / 16DKV30150
pur.fundingProject/ BMDV / 16DKV42038


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben:
Namensnennung 4.0 International