00

5525 Promotionszentrum
§§§8 Angewandte Informatik
10

oo

Self—Supervised Learning on Source
Code to Assist Software Developers

DEM PROMOTIONSZENTRUM
ANGEWANDTE INFORMATIK DES LANDES HESSEN
ZUR ERLANGUNG DES AKADEMISCHEN GRADES
DOKTOR DER NATURWISSENSCHAFTEN (DR. RER. NAT.)
EINGEREICHTE DISSERTATION
VON

JOHANNES ViLLMOW, M.Sc.

BETREUER
PrROF. DR. ULRICH SCHWANECKE HOCHSCHULE RHEINMAIN

Pror. DR. ADRIAN ULGES HocHSCHULE RHEINMAIN

GUTACHTER
Pror. DR. BERNHARD HUMM HOCHSCHULE DARMSTADT

Pror. DR. DaAMIAN BORTH UNIVERSITY OF ST.GALLEN, SWITZERLAND

PARTNERHOCHSCHULEN
HocHSCHULE RHEINMAIN
HoCHSCHULE DARMSTADT

HocHscHULE FuLDpA
FRANKFURT UNIVERSITY OF APPLIED SCIENCES

EINREICHUNGSTERMIN: 23.10.2024
PRUFUNGSTERMIN: 02.04.2025

WIESBADEN 2025

©2025 — JOHANNES VILLMOW
ALL RIGHTS RESERVED.

Johannes Villmow October 23, 2024

Self-Supervised Learning on Source
Code to Assist Software Developers

ABSTRACT

THIS DISSERTATION addresses two challenges inherent in software development: code
reuse and quality. It explores the use of Machine Learning (ML), specifically transformer
models, to address these challenges. The transformer architecture has recently become the
de facto standard in Natural Language Processing (NLP). While code could be treated
similar to natural language text, it offers unique opportunities and challenges: it follows
a rigid syntax, combines structural with natural language elements, has operational se-
mantics (i.e., code executes), and hence requires a different “understanding” than natural
language. To this end, this thesis develops strategies to incorporate the structural prop-
erties of source code into transformer models, and improves tasks that require semantic
code understanding of ML models, such as code summarization, code retrieval, and qual-
ity assessment of code identifiers. The first task, code summarization, generates natural
language descriptions for code snippets, which assists developers at the tedious task of
writing documentation. The second task investigates a strategy for code retrieval, called
Contextualized Code Search (CCS), that aims at an opportunistic code reuse, by allowing
the developer to retrieve relevant code snippets from a codebase based on a developer’s
current coding context and cursor position alone. The third task explores assessing the
quality of identifiers in source code based on established coding guidelines and ML models,

which are essential for code readability and maintainability.

The dissertation is organized into two parts: Part I Models and Techniques, and Part 11
Abpplications. The first part introduces novel approaches to integrate structural information
from Abstract Syntax Trees (ASTs) into transformer models. Chapter 3 extends relative
positional embeddings to encode structural relationships between nodes in the AST and
proposes a new structure-aware loss function based on predicting the Lowest Common
Ancestor (LCA) of nodes in trees. Chapter 4 follows a different strategy to integrate
structural information, namely through a structure-aware pretraining. It presents a novel
self-supervised structural pretraining task called tree-based span selection, which selects
spans for masking based on the AST, and suggests improvements to the structural task
identifier deobfuscation. The main result is a multi-task encoder-decoder Language Model

(LM), called SYNTAXPT, that achieved state-of-the-art code understanding performance

iii

Johannes Villmow October 23,2024

at the time of development. Finally, Chapter 5 studies the application of SYNTAXPT
to code retrieval, specifically Contextualized Code Search (CCS). The chapter devel-
ops a self-supervised training strategy and model for CCS, SyNTAXPT-CcCs, and in-
troduces the Cocos (COntextualized COde Search Dataset) dataset, the first dataset of
its kind allowing to directly evaluate CCS performance. The chapter demonstrates that
SYNTAXPT-ccs outperforms traditional keyword-based retrieval methods.

The second part of this thesis applies the SYNTAXPT and SYNTAXPT-ccs models to two
highly relevant tasks in software development, code reuse and identifier quality assessment,
and investigates the aforementioned models’ utility from a practical perspective. Chapter 6
introduces CODEBUDDY, a prototype application for CCS, and introduces enhancements
to the pretraining strategy to improve retrieval robustness when interacting with end-users.
The chapter validates the effectiveness through two user studies: a controlled experiment
with 41 computer science students and a three-month case study with four professional
software developers. The final Chapter 7 explores the application of the SYNTAXPT
model to assess the quality of identifiers in source code. To do so, it introduces novel
self-supervised scoring functions based on the likelihood estimated by the LM to detect
violations of established identifier naming guidelines. The chapter introduces the first
dataset for assessing identifier quality based on coding guidelines and demonstrates that

the SYNTAXPT model outperforms other state-of-the-art language models on this task.

iv

Johannes Villmow 23. Oktober 2024

Self-Supervised Learning on Source
Code to Assist Software Developers

ZUSAMMENFASSUNG

DiESE DISSERTATION befasst sich mit zwei wesentlichen Bestandteilen der Software-
entwicklung: Code-Reuse und Code-Qualitit. Dafiir untersucht diese Arbeit den Einsatz
von maschinellem Lernen (ML), insbesondere von Transformermodellen. Die Transformer-
Architekeur ist in letzter Zeit zum de facto Standard im Bereich der Verarbeitung natiirli-
cher Sprache (NLP) geworden. Obwohl Code ihnlich wie natiirlichsprachlicher Text
behandelt werden konnte, bietet er doch einzigartige Méglichkeiten und Herausforde-
rungen. Er besteht aus einer klar definierten Syntax, kombiniert syntaktische mit natiirlich-
sprachlichen Elementen, hat eine operative Semantik (d.h. Code kann ausgefiihrt werden)
und erfordert daher eine andere Art von “Verstindnis” als natiirliche Sprache. Daher
werden in dieser Arbeit Strategien entwickelt, um die syntaktischen Eigenschaften von
Programm-Code in Transformermodellen nutzbar zu machen. Dabei wird versucht die
Performance in Anwendungsgebieten zu verbessern, die ein semantisches Codeverstandnis
von ML-Modellen erfordern, wie beispielsweise automatische Dokumentierung von Code,
Code-Suche und Qualititsschitzung von Bezeichnern im Code. Im ersten Anwendungsge-
biet, der Erzeugung von Dokumentationen, werden natiirlichsprachliche Beschreibungen
fir Code-Passagen generiert. Im zweiten Anwendungsgebiet wird eine neuartige Strategie
fiir die Code-Suche untersucht: die kontextualisierte Codesuche (CCS). CCS findet allein
basierend auf dem Code im Editor und einer Cursorposition hilfreiche Code-Passagen
in einer Codebasis. So erméglicht CCS eine opportunistische Wiederverwendung von
Code und einen niederschwelligen Austausch zwischen Entwicklern. In einem dritten
Anwendungsgebiet wird die Nutzung von ML-Modellen zur Schitzung der Qualitit von
Bezeichnern im Code untersucht, basierend auf etablierten Guidelines. Bezeichner sind
ein wesentlicher Faktor fiir die Lesbarkeit und Wartbarkeit des Codes und daher von

grof8er Bedeutung fiir die Softwarequalitit.

Die Dissertation gliedert sich in zwei Hauptteile: Teil I Modelle und Techniken, und Teil IT
Anwendungen. Der erste Teil untersucht neuartige Ansitze, um die syntaktischen Infor-
mationen aus Syntaxbiumen (ASTs) in Transformermodellen nutzbar zu machen. Dafiir
erweitert Kapitel 3 die Transformerarchitektur um relative Positionsembeddings, die es
erméglichen die strukturellen Beziehungen zwischen Knoten im AST zu kodieren und

schligt eine neue Lossfunktion vor, die den kleinsten gemeinsamen Vorfahren (Lowest

Johannes Villmow 23. Oktober 2024

Common Ancestor - LCA) zweier Knoten vorhersagt. Kapitel 4 verfolgt durch ein syn-
taxbasiertes Pretraining eine andere Strategie, um die syntaktischen Informationen nutzen
zu konnen. Es wird ein neuer selbstiiberwachter struktureller Pretrainingtask vorgestellt,
bei dem Teilelemente basierend auf dem Syntaxbaum maskiert werden. Zudem wird ein
weiterer struktureller Pretrainingtask verbessert, bei dem Bezeichner maskiert werden. Der
Hauptbeitrag ist ein Encoder-Decoder-Sprachmodell (LM), genannt SYNTAXPT, das
mit verschiedenen strukturellen und reguldren Pretrainingtasks trainiert wird und zum
Zeitpunkt der Entwicklung herausragende Ergebnisse auf Codeverstandnis Benchmarks
erzielte. In Kapitel 5 wird schliefflich die Anwendung von SYNTAXPT fiir Code-Suche
untersucht, insbesondere fiir kontextualisierte Codesuche (CCS). Hauptbeitrag des Ka-
pitels ist eine selbstiiberwachte Pretrainingsstrategic und ein Modell fiir CCS, genannt
SYNTAXPT-ccs. Auflerdem wird ein Benchmark-Datensatz namens Cocos vorgestellt.
Cocos ist der erste verfiigbare Datensatz fiir CCS, der eine direkte Evaluation von CCS-
Modellen erméglicht. Es wird gezeigt, dass das selbstiiberwachte SYNTAXPT-ccs Modell

traditionelle schlagwortbasierte Suchmethoden tbertrifft.

Der zweite Teil dieser Arbeit wendet die Modelle SYNTAXPT und SyNTAXPT-CCS auf
den zuvor genannten Themengebieten in der Softwareentwicklung an und untersucht den
Nutzen der genannten Modelle aus praktischer Sicht: (1) Wiederverwendung von Code
mit CCS und (2) die Bewertung der Qualitit von Bezeichnern. Dafiir wird in Kapitel 6
CopEBUDDY vorgestellt, ein Prototyp fiir die Interaktion mit dem CCS-Modell. Aufier-
dem werden Verbesserungen der Pretraining-Strategie vorgestellt, um die Robustheit des
CCS-Modells bei der Interaktion mit echten Nutzern zu verbessern. Des Weiteren wird
in diesem Kapitel die Nutzlichkeit anhand zweier Nutzerstudien evaluiert. Dies erfolgt
zum einen anhand eines kontrollierten Experiments mit 41 Informatikstudenten und zum
anderen anhand einer dreimonatigen Fallstudie mit vier professionellen Softwareentwick-
lern. Das abschlieSende Kapitel 7 untersucht die Anwendung des SYNTAXPT-Modells fiir
die Schitzung der Qualitit von Bezeichnern in Programm-Code. Datiir werden neuartige
selbstiiberwachte Bewertungsfunktionen vorgestellt, die die Wahrscheinlichkeiten des
Sprachmodells nutzen, um Verstofie gegen etablierte Guidelines zur Benamung von Be-
zeichnern zu erkennen. Das Kapitel stellt den ersten Datensatz zur Bewertung der Qualitit
von Bezeichnern auf der Grundlage von Guidelines vor und zeigt, dass das SYNTAXPT-
Modell andere moderne Sprachmodelle bei dieser Aufgabe tibertrifft.

vi

1 Introduction and Motivation

1.1

1.2
1.3

Contributionsand Outline
1.1.1 PartI: Models and Techniques
1.1.2 PartIL: Applications
Publications
Methodology

2 Fundamentals

2.1

22

2.3

2.4

2.5

Text and Code Processing and Representations
2.1.1 Tokenization and Vocabulary
2.1.2 Representations of Source Code
Machine Learning Fundamentals
221 Training
222 Machine Learning Tasks
223 EvaluationMetrics

TransformerModel
2.3.1 Multi-Head Attention
2.3.2 DPositional Embeddings
Self-Supervised Learning and Language Models
24.1 WordEmbeddings.
242 Contextualized Language Models
24.3 Large Language Models
Information Retrieval
25.1 Keyword-Based Information Retrieval
2.5.2 Distributional Semantics

PART I: MODELS AND TECHNIQUES

3 Relative Structural Transformers

3.1

32

3.3

Introduction and Motivation
3.1.1 Contributions
RelatedWork
3.2.1 Natural Language Processing

3.2.2 Machine Learning in Software Engineering

Approach Lo oL

3.3.1 Relative Position Representations for Trees

3.3.2 Efficient Computation

vii

Contents

333 StructuralLoss.
34 ExperimentalSetup. L L Lo
3.4.1 ResearchQuestions
342 Pre-ProcessingTrees
343 TasksandDatasets.
344 HyperparametersandSetup L.

35 Results
3.5.1 Comparison against State-of-the-Art
352 AblationStudy Lo
3.6 Conclusionand Future Work 0.

Structural Pretraining Tasks for Generative Transformer Models

4.1 Introductionand Motivation
4.1.1 Contributions o L.

42 RelatedWork
42.1 Pretraining Strategies in Natural Language Processing
422 Language Models for Source Code
4.2.3 Structural Pretraining for Source Code

43 Background. oL o
43.1 Masked Language Modeling
432 RegularSpanMasking L.

4.3.3 Identifier Deobfuscation
44 Approach
44.1 PretrainingTasks o 0L

4.4.2 Tree-based File Truncation
45 ExperimentalSetup. L L L
45.1 ResearchQuestions
452 Model Architecture
453 Baseline
454 Tokenizer
455 PretrainingDataset,
4.5.6 Pretraining Hyperparametersand Setup

4.5.7 Fine-Tuning Tasksand Datasets
46 Results e
4.6.1 Comparison of Structural and Regular Pretraining

4.6.2 Benefitof Pretrainingon Code
4.6.3 Structural Pretraining vs. Relative Structural Transformer . . .
4.64 Comparison with State-of-the-Art
47 Conclusionand Future Work

Contrastive Pretraining for Contextualized Code Search

5.1 Introductionand Motivation
5.1.1 The Contextualized Code Search Task
512 Contributions

77
78
81
83
83
84
85
86
86
86
88
88
89
93
94
95
96
97
97
101
102
103
111
111
113
115
115
123

52 RelatedWork e
5.2.1 Natural Language Code Search
5.2.2 Self-Supervised Contrastive Learning for Code
5.2.3 Contextualized CodeSearch

53 Approach
5.3.1 DeleakingSteps oL
5.3.2 TrainingPipeline
5.4 Evaluation Dataset for Contextualized Code Search
5.4.1 Evaluation Protocol: Zero-shot Code Retrieval
5.5 ExperimentalSetup. oL Lo Lo
5.5.1 Research Questions
5.5.2 Hyperparametersand Setup
5.6 Results
5.6.1 Performance of Self-Supervised Contextualized Code Search .
5.6.2 Comparison to Statistical Baselines
5.63 General Encoder Quality
5.64 Comparison with OpenAl
5.7 Conclusionand Future Work

PAarT II: APPLICATIONS

6 Evaluating Contextualized Code Search in Practical User Studies
6.1 Introductionand Motivation
6.1.1 Contributions
62 RelatedWork
63 Approach
6.3.1 DemoApplication. oL
6.3.2 Model Enhancements
6.3.3 Indexingand Retrieval

6.4 Study A: ProgrammingExercises
64.1 ExperimentalSetup L L.
642 Results........ oo .
6.5 StudyB: Corporate Scenario
651 Resules.

6.6 Conclusionand Future Work

7 Spotting Identifiers that Violate Naming Guidelines
7.1 Introduction
7.1.1 Contributions
72 RelatedWork

7.2.1 Impact of Identifier Naming on Code Comprehension
722 NamingGuidelines
7.2.3 Automatic Improvement of Identifier Names

157
158
159
161
162
163
166
169
171
172
174
177
178
180

73 Approach 191

73.1 GenerativeRating o L 192

7.3.2 Probabilistic Interpretation L 195

7.3.3 Discriminative Rating 197

74 Datasetsot e 198
74.1 Fine-TuningDataset 199

742 Manually Annotated Dataset 201

7.5 ExperimentalSetup. oL 206
75.1 ResearchQuestions 206

7.52 EvaluationProcedure 207

7.5.3 Implementation of Other Language Models 208

754 Hardwareand Training 210

7.6 Results 211
7.6.1 Comparison of ScoringMethods 211

7.6.2 Comparison to State-of-the-Art Language Models 212

7.6.3 Guideline-specific Analysis 213

7.7 Conclusionand Future Work L. 216
8 Conclusion 219
8.1 Limitationsand Threatsto Validity 220
82 FutureWork 221

ParT III: APPENDIX

A Appendix to Part I 225
A.1 Relative Structural Transformer 225
A.1.1 Hyperparametersand Datasets 225

A.12 SamplePredictions 226

A2 Structural Transformer 227
A2.1 Datasets e e e 227

A22 TENSORTREELibrary 228

A3 COCOSExamples 230

B Appendix to Part II 231
B.1 Evaluating Contextualized Code Search in Practical User Studies 231
B.1.I IndexingStrategy 231

B.1.2 Example SolutionsinStudy A 232

B.1.3 Example RetrievalinStudy A L. 233

9 Glossary 235
9.1 Abbreviations e 235

9.2 Datasets. e e e e e 237

93 Metrics e e e e e e e 238
94 Models e 240
9.5 TEIMIS « v v v v e e e e e e e e e e e 243
Listing of Figures 247
Listing of Tables 249
References 251

Xi

xii

FURrR picH OLE.

xiii

Xiv

Danksagung

ZUALLERERST MOCHTE ICH mich bei meinen Betreuern Prof. Dr. Ulrich Schwanecke
und Prof. Dr. Adrian Ulges, bedanken. Eure fachliche Betreuung, das wertvolle und kon-
struktive Feedback und die Anmerkungen zu meiner Dissertation sowie den zugehorigen
Publikationen haben mafigeblich zur Qualitit dieser Arbeit beigetragen. Mein gréfter
Dank gilt jedoch dir Adrian. Du hast mich gemeinsam mit Prof. Dr. Dirk Krechel erstmals
fur die Forschung begeistert. Zunichst hast du mir nicht nur ein relevantes Thema fiir
meine Masterarbeit gegeben, sondern mir auch die Moglichkeit eréffnet, das Ergebnis
auf der AAAI zu prisentieren (Shah® and Villmow™ et. al. 2019). Das hat mein Interes-
se fiir Machine Learning und Deep Learning nachhaltig gewecke. Gerne denke ich an
den gemeinsamen Aufenthalt 2017/2018 am DFKI in Kaiserslautern wihrend meiner
Masterarbeit zuriick. Aufferdem méochte ich besonders fiir deine Unterstiitzung in allen
Phasen meiner Promotion danken. Deine Geduld, dein grofies Verstindnis und die un-
zihligen, hilfreichen Diskussionen haben mich stets motiviert und vorangebracht. Deine
Anmerkungen haben meinen wissenschaftlichen Schreibstil geprigt und mir beigebrache,

worauf es in der Wissenschaft ankommt.

Des Weiteren bedanke ich mich bei meinen Gutachtern Prof. Dr. Bernhard Humm und
Prof. Dr. Damian Borth fir ihre Bereitschaft, Zeit und Miihe, die sie in die Bewertung

meiner Arbeit investiert haben, was nicht selbstverstindlich ist.

Ein grofler Dank geht an meine Kollegen der Arbeitsgruppe LAVIS: Felix Hamann, Marco
Wrzalik, Viola Campos, Maurice Falk, Markus Eberts, Marcel Lamott, Melina Meyer,
Micha Selak und Julian Eversheim. Der wissenschaftliche Austausch mit euch sowie die
gemeinsame Zeit, ob in der Arbeit oder privat, waren fiir mich sehr bereichernd. Die
personlichen Freundschaften, die angenehme Arbeitsatmosphire und die gemeinsamen
Konferenzen, Workshops, Spieleabende, Sportaktivititen und Ausfliige werde ich in bester

Erinnerung behalten.

Ein weiterer Dank geht an meine Freunde und Familie, die mich wihrend dieser Zeit
unterstiitzt haben, allen voran an meine Frau. Deine Geduld und dein Verstindnis wurden
oft auf die Probe gestellt — insbesondere wihrend der intensiven Arbeitsphasen und der
vielen arbeitsreichen Wochenenden. Deine Motivation hat mich auch in schwierigen
Zeiten angetrieben und ich schitze es sehr, dass du mir in dieser Phase beigestanden hast,
obwohl unser Sohn gerade geboren war. Zuletzt méchte ich meinen Eltern von Herzen
danken. Ohne eure Unterstiitzung und euer Vertrauen in mich wire diese Dissertation nie
geschrieben worden. Ihr haben mir nicht nur die Méglichkeit gegeben zu studieren und

zu promovieren, sondern mich auch stets ermutigt und an mich glauben lassen.

XV

xvi

Notations

ABBREVIATIONS, TERMS, AND METRICS, such as A, dropout, and BLEU, are high-
lighted in dark red color and hyperlinked to their respective entry in the list of abbrevia-
tions in Sections 9.1 to 9.5. Additionally, all models and datasets that are referred to more
often—such as BERT and CODEXGLUE—are also highlighted, linked, and listed with
the corresponding reference in the glossary at the end of this thesis.

This thesis employs the mathematical notations and symbols listed below. Indexing vari-
ables, such as 7, j, and n, and other frequently used variables are only valid in the scope
of the respective section, or until they are redefined. Other notations and symbols are
defined in the text where they first appear.
This list of mathematical notations is adapted from:
Ian J. Goodfellow et al. (2016). Deep Learning. Adaptive computation and machine
learning. MIT Press. 1ISBN: 978-0-262-03561-3

SCALARS, VECTORS, MATRICES, AND TENSORS

a A scalar (integer or real) if not specified otherwise.
a A vector.

A A matrix.

1, A vector filled with ones of length n.

1 A matrix of ones of size n X n.

SEQUENCES AND DATASETS

= (x(l),xm, e ,x(”)) A sequence of 1 scalars.

= (m(l), @, .. :B(”)) A sequence of n vectors.

2@ orx® The i-th example from a sequence.

The subsequence of elements before the i-th element, excluding 2.
yory The target associated with & for supervised learning.

4 or g The prediction associated with y®,

xvii

http://www.deeplearningbook.org/

SETS AND SET NOTATION

A

0,1,...

A
R
N
\

Y

n}

A set.

The set of all integers between 0 and n.

The cardinality of set A.

The set of real numbers.

The set of natural numbers.

The vocabulary of a model (all tokens the model can predict).

INDEXING AND ELEMENTS

Element 7 of vector @, with indexing starting at 1.

A scalar associated with the i-th and j-th examples defined by the
context.

A vector associated with the i-th and j-th examples defined by the
context.

Element (4, j) of matrix A.

Row 7 of matrix A, sometimes denoted as A;.

1D slice of a 3D tensor at index i and j (vector).

VECTOR AND MATRIX OPERATIONS

AT

a'bora’ b
ABorA-B

Transpose of A.

Dot product of vectors @ and b.

Matrix product of A and B.

Euclidean norm of vector a.

Concatenation of vectors/sequences @ and b.
Number of elements in vector a.

INTERVALS AND NUMBERS

[a,b]
(]

k
M
B

The real interval including @ and b.

The real interval excluding a but including b.
Thousand, 103. For example, 1k = 1,000.
Million, 106. For example, 1M = 1,000,000.
Billion, 10°. For example, 1B = 1,000,000,000.

PROBABILITY AND STATISTICS

Probability distribution over a discrete or random variable.
Random variable a has distribution P.

Expectation of f(z) with respect to P(x).
Kullback-Leibler divergence between P and Q).

Gaussian distribution with mean p and covariance X..

. ke—X
Poisson distribution with rate), i.e., 2 AR

xviii

FuncTIONS AND OPERATORS

f:A—DB
f(z;0)

logx

exp T
min(z, y)
max(z, y)
abs(x)
ReLU(z)
o(x)
softmax(x)

dropout(x)

1 ondition
round(a)

[a]
la)

Function f with domain A and codomain B.
A function of @ parametrized by 6. (for brevity the argument 0 is
often omitted.)
Equivalent to.
Natural logarithm of z.
Exponential function of x.
Minimum of z and y.
Maximum of and .
Absolute value of .
Rectified Linear Unit, max (0, z).
Logistic sigmoid, m.
Softmax function, for the i-th dim ZCXPA
; exp(z;)
Dropout function, where each element of @ is zeroed out with proba-
bility p.
Equals 1 if the condition is true, 0 otherwise.
Rounds a to the nearest integer.
Ceiling function; smallest integer greater than or equal to a.
Floor function; largest integer less than or equal to a.

argmax_ f(x) Argument that maximizes f ().

argtop5, f(x) Top S arguments that maximize f(x).

Sometimes a function f acceptinga scalar as an argument is applied to a vector or matrix:

f(x) or f(X). This denotes an element-wise application of f to the array.

Xix

XX

Good programmers know what to write. Great ones know what ro

rewrite (and reuse).

— Raymond 1998, p. 24

Introduction and Motivation

ARTIFICIAL INTELLIGENCE (AI) is increasingly transforming knowledge-based work
across all types of industries, for example IT and engineering, the educational sector,
logistics, and health care. One prominent example of such knowledge-intensive activities
is software development. Developers need to understand and manipulate large codebases,
reuse code, transfer experience knowledge from one project to another, hunt bugs, come
up with good architectures, structure software to avoid pitfalls, and finally, the tedious task
of documenting software components. With the ever-growing reliance on software in all
aspects of society, the demand for skilled programmers continues to rise. However, while
the demand for software developers is increasing, the supply of skilled programmers is
not keeping pace. According to recent industry reports, this shortage is expected to grow
(Bitkom 2024). Bitkom (2024) estimates that the number of unfilled positions in the I'T
sector in Germany alone will rise from 150,000 in 2024 to 660,000 by 2040. Therefore,
tools and methodologies that can assist developers and enhance their productivity and

efficiency are of high societal and economic importance.

Software development is inherently complex and time-consuming, and software projects
have a chance of over 60% of failure or significant additional costs (The Standish Group
2013). A considerable portion of a developer’s time is spent not only on writing new code
but on reading, understanding, and reusing existing code. The time pressure and resource
shortages in customer-related projects leave only little time for detailed documentation,
which makes developing software components that address recurring software issues in a
sustainable and cross-project manner very challenging. Often enough, changes are only
implemented in the code and the existing documentations are not updated. A lot of

information is therefore only available in the code itself. Additionally, in modern agile

INTRODUCTION AND MOTIVATION

software development, code is implemented under strict deadlines and resource constraints
mostly within small, independent teams (The Standish Group 2013). This often leads to
the situation that good existing solutions are forgotten and unnecessarily redeveloped—

with the same errors and associated costs.

Therefore, an important issue in software development is the reuse of existing components
and solutions. Frakes and Nejmeh (1987) found that software reuse can not only effectively
assist developers, increase their productivity, but also enhance the software quality. By
increasing reliability and maintainability, reuse can also reduce the time and cost of software
development (Grechanik et al. 2007). However, identifying and integrating reusable code
components remain challenging tasks due to the sheer volume of available code and the
nuances of different programming contexts. The central source of knowledge for reuse are
the software company’s code repositories, i.e., the codebase or collection of source code,
its development over time in the form of commits, associated issues, and requirements in
the form of user stories. In order to reuse, software architects and developers (1) manually
search for suitable program parts, and (2) revise these and adapt them to the current issue.

Both steps are often time-consuming,.

Another important aspect of software development is the quality of the code. High-quality
code is essential for the maintainability and sustainability of software projects. One aspect
of code quality is the choice of identifiers: identifiers are the part of source code that
developers can directly influence and interact with. They are typically written in natural
language, are used to embed domain concepts, and have been found to be essential for
communication between developers and code readability (Fakhoury et al. 2020). Good
identifiers can significantly improve code readability and maintainability, while poor
identifiers can lead to confusion and errors. Many studies have demonstrated that low-
quality identifiers negatively impact code comprehension time (Deissenboeck and Pizka
2006; Fakhoury et al. 2020), which can directly increase development costs. To this
end, tools that can automatically assess the quality of identifiers in source code can assist

developers in writing better code and improve the overall quality of software projects.

Machine Learning (ML), and more specifically deep learning, has emerged as a powerful
tool to address these challenges in software development. With ML techniques, models
can build that assist developers in generating code, identifying reusable components in
large codebases, and detecting quality issues. This field of research is known as machine
learning for software engineering (Amershi et al. 2019), and has gained significant at-
tention in recent years. It is closely related to the field of Natural Language Processing
(NLP), that has also seen significant advancements, particularly with the development of
the transformer architecture (Vaswani et al. 2017) —which has been developed in 2017,
short before the work on this thesis started in 2018. This is mainly due to transformers’

ability to capture long-range dependencies in sequences, to parallelize with respect to

2

1.1. CONTRIBUTIONS AND OUTLINE

sequence length, and to store large amounts of knowledge/statistical patterns in its weights.
The success of transformers has been boosted through research that found pretraining
extremely effective (Radford et al. 2018; Devlin et al. 2019). Over the course of this thesis,
pretraining has shown to be one of the most important techniques in NLP and code
modeling. Pretraining on large unlabeled datasets allows models to learn general represen-
tations that can be fine-tuned for specific tasks with limited labeled data. Following this
development in NLP, pretrained transformers have also been applied to code understand-
ing: CoDEBERT (Fengetal. 2020) and CODET's are two prominent examples. The most
recent models understand both code and text: when research showed that pretraining of
even larger model sizes, with even more training data continues to improve performance,
NLP researchers acquired more diverse datasets that contain not only text but also large
amounts of code (Gao et al. 2021a), culminating in Large Language Models (LLMs), such
as CoDEX (Chen et al. 2021), GitHub Copilot (GitHub 2024), or ChatGPT (OpenAl
2024a), showing good understanding for source code. Although, the capabilities of such
LLMs are impressive, they are not error proof and have been found to often hallucinate,
especially when synthesizing text from their weights (Huang et al. 2023). Integrating
factual knowledge in the prompt using Retrieval-Augmented Generation (RAG) has been
found to reduce their hallucinations (Ram et al. 2023).

1.1 CONTRIBUTIONS AND OUTLINE

This thesis is located in the research field machine learning for software engineering, and
as outlined in the previous section, it explores the above key-findings—the transformer
architecture and large-scale pretraining—which it adapts to the domain of source code.

Its research has focused on two aspects:

o DPart [of this thesis aims to develop novel strategies that can effectively incorporate
the structural properties of source code into Machine Learning (ML) models. This
is an aspect of source code that the aforementioned Large Language Models (LLMs)
and others, that treat code as token sequences, neglect. Source code is—contrary
to natural language text—highly repetitive, structural, and operational (Hindle
et al. 2012), which makes it fundamentally different from natural language. This
stems from the code’s syntax and semantics that are defined by formal grammars
(much more rigorously than for natural language), which allow it to be represented
as Abstract Syntax Trees (ASTS).

o Part IT applies the strategies apart from research benchmarks that provide only
a narrow view of the model’s practical utility to two practical usage scenarios in

software development: code retrieval and identifier quality assessment.

Figure 1.1 provides an overview of the thesis structure and the models developed in this

thesis. The two gray blocks represent the two primary parts of the thesis: Part I “Models

INTRODUCTION AND MOTIVATION

Part I: Models and Techniques Part II: Applications

e - Models e . —\

Chapter 3: Relative Structural Chapter 7: Spotting Identifiers
Y - . .

| Transformers ' / that Violate Naming Guide-

SYNTAXPT \/ines)

rChapter 4: Structural Pretrain-)

(. . N\
ing Tasks for Generative Trans- Chapter 6: Evaluating Con-

\former Models _— textualized Code Search in

/ SYNTAXPT-ccs

—=
(Chapter 5: Contrastive Pre- 1
training for Contextualized

\Code Search

\Practical User Studies)

J

Figure 1.1: The thesis is divided into two parts: Part I: Models and Techniques (left) and Part Il: Applications (right).
Part | focuses on developing novel models and techniques to incorporate structural information from source code
into transformer architectures, resulting in two novel ML models: SYNTAXPT (which is an encoder-decoder model)
and SYNTAXPT-ccs (which is an encoder model for code retrieval). Part Il applies the developed models to real-world
problems in software development. The arrows indicate which model is presented in which chapter and how they are
used in the applications.

and Techniques” and Part 11 “Applications”. The main goal of the first part (Chapters 3 to 5)
is to improve the semantic understanding of source code using transformer-based models
by integrating structural information inherent in programming languages. This results
in two major models (ellipses in Figure 1.1): A generative encoder-decoder transformer
model for code, called SYNTAXPT (Chapter 4), and an encoder-based transformer model
for code retrieval called SYNTAXPT-ccs (Chapter 5). The second part develops the
CoDpEBUDDY application that applies the SYNTAXPT-ccs model to assist developers
in finding relevant code snippets in their company’s codebase (Chapter 6). Finally, the
SYNTAXPT model is applied to assess the quality of identifiers in source code (Chapter 7).

The thesis starts with an overview of the fundamental concepts in Chapter 2 and concludes
with a summary of the contributions, limitations, and future work in Chapter 8. In the
following sections the individual contributions to research of each chapter are presented

in detail.

1.1.1 Part I: Models and Techniques

Part I focuses on developing novel models and techniques to incorporate structural infor-
mation from source code into transformer models and aims to improve their performance

on code understanding benchmarks.

CHAPTER 3: RELATIVE STRUCTURAL TRANSFORMERS

In Chapter 3, we address the challenge of adding a structural prior to transformer models,

which are inherently designed for sequential data. At the time of work on this chapter,

4

1.1. CONTRIBUTIONS AND OUTLINE

transformers had only been used as baselines for specialized code models, and their perfor-
mance lacked behind state-of-the-art models (Alon et al. 2019a). This chapter introduces
anovel approach that extends relative positional embeddings to encode structural relation-
ships between nodes in ASTs. Specifically, it explores two relative positional patterns: the
path length between nodes and the explicit encoding of upwards and downwards steps in
the tree. Additionally, the chapter proposes a novel structure-aware loss function based on
predicting the Lowest Common Ancestor (LCA) of nodes, which encourages the model
to preserve structural information in its hidden states. This loss can be added to any type of
ML training that encodes trees, and is not limited to transformers. The key contributions

of this chapter are:

» Introduce a new relative positional tree pattern that represent movements within

the tree structure and derive an efficient implementation for it.
» Propose a novel loss function that predicts the LCA of nodes in trees.

» Demonstrate that various code-to-sequence tasks can be effectively approached
end-to-end" using self-attention-based transformers on trees with relative positional

embeddings and the aforementioned contributions.

» Achieve a 6% improvement over the state-of-the-art on commonly used code un-

derstanding tasks, such as method naming and code summarization.

This work results in a model called Relative Structural Transformer (RsT), which processes
tree-structured data efficiently and effectively, and addresses a direct limitation of the
transformer architecture in processing hierarchical data. Integrating structural priors can
reduce the amount of training data required when training end-to-end and focus the

model on the actual task.

CHAPTER 4: STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANS-

FORMER MODELS

In Chapter 4, we investigate a different strategy to improve the understanding of code by
incorporating structural information during the pretraining phase of transformer Language
Models (LMs) without modifying their architecture or input format—the code is encoded
asaregular sequence of tokens. Thereby, the chapter follows the insight that self-supervised
large-scale pretraining has become a standard practice in Natural Language Processing
(NLP) and that transformers benefit from denoising pretraining on extensive datasets. In
the context of code, however, only few approaches have explored pretraining on code at the
time of work, most of which have focused on token-level tasks (Feng et al. 2020; Ahmad

etal. 2021), and even fewer have considered the structural aspects of code to construct

'This thesis uses the term end-to-end to describe models that are trained on the actual task, without any
intermediate steps or auxiliary tasks.

INTRODUCTION AND MOTIVATION

denoising pretraining tasks (Lachaux et al. 2021). Specifically, this chapter explores a novel

self-supervised pretraining strategy that incorporate structural information from code.

Especially, this chapter introduces a novel structural pretraining task called tree-based span
selection, which selects spans for masking based on the AST of the code. This is shown to
produce more challenging and contextually rich training examples than traditional random
short-span masking. The chapter also extends and improves the structural pretraining task
identifier deobfuscation (Lachaux et al. 2021) and trains the first multi-task LM using this
task across 16 different programming languages. We call the resulting LM SyNTAXPT
(see Figure 1.1) and demonstrate that it outperforms the RST model from the previous
chapter on code summarization. Additionally, the chapter presents a technique called
tree-based file truncation for truncating long code files to a fixed size, while preserving

contextual information. Overall, the key contributions of this chapter are:
» Introduce the novel self-supervised tree-based span selection pretraining task.

» Extend and improve the pretraining task identifier deobfuscation and applying it

across multiple programming languages.

» Present the TENSORTREE library that enables developers to work with tree struc-
tures in PyTorch efficiently, which serves as a basis for implementing the above

pretraining tasks. It has been open-sourced and is available on GitHub (Villmow
2021).

» Develop a novel multi-task pretraining approach that combines structural and
regular pretraining tasks, and is trained in a self-supervised manner on unimodal
code data, which we call SYNTAXPT.

» Demonstrate that the structural pretraining tasks lead to better code understanding
capabilities compared to regular (token-level) tasks, which we measure on five
CoDpEXGLUE benchmarks (Luctal. 2021). Additionally, SyNTAXPT outperforms
the state-of-the-art on four of them, including the RsT model from the previous
chapter.

Opverall, this chapter shows that incorporating structural information during pretraining
improves the model’s understanding, leading to an improved performance on downstream
tasks. That’s why the SYNTAXPT model is used in the following chapters for code retrieval

and identifier quality assessment tasks.

CHAPTER 5: CONTRASTIVE PRETRAINING FOR CONTEXTUALIZED CODE
SEARCH

Code reuse is a fundamental aspect of software development, and code retrieval is a key

task in this context, which is the focus of Chapter 5. In particular, we aim to develop a

6

1.1. CONTRIBUTIONS AND OUTLINE

model that can retrieve relevant code snippets based on a given partial coding context
(e.g., the current file in the editor), with a specific position-of-interest (e.g., the cursor
position). This task is called Contextualized Code Search (CCS) (Mukherjee et al. 2020),
and the task’s setup is similar to code autocompletion, but it rather aims to retrieve code
segments from a codebase that implement the missing functionality instead of synthesizing
the missing code from an LM’s weights. The chapter presents a novel self-supervised
approach to train CCS retrievers without the need for labeled data, using contrastive
learning on context-target pairs created by erasing random blocks of code from random
code contexts, where the erased block is used as the retrieval target. While this task has
been effectively used in NLP to train retrievers for question-answering tasks (Lee et al.
2019), the chapter demonstrates that simply applying this trick to source code does not
lead to good retrieval performance for CCS and performs worse than traditional keyword-
based retrieval methods, such as BM25 (Robertson and Zaragoza 2009). This is due to
trivial patterns the retriever can exploit during training. To address this limitation the
chapter introduces novel deleaking steps, that remove such patterns from the training pairs.
The chapter applies this pretraining strategy to the SYNTAXPT model from Chapter 4
and creates a novel CCS retriever called SYNTAXPT-ccCs (see Figure 1.1). Also, the
chapter presents a manually curated dataset based on aligned code clones called Cocos
(COntextualized COde Search Dataset) for evaluating CCS models. In summary, the key

contributions of this chapter are:

» Introduce the Cocos dataset, to directly evaluate Contextualized Code Search
(CCS) models, based on annotated code clones. Made publically available Villmow
(2022)2.

» Present a novel self-supervised approach to contextualized code search using Cloze
task-based contrastive pretraining on source code, along with deleaking steps to

improve retrieval performance.

» Demonstrate that the proposed pretraining approach achieves state-of-the-art per-
formance on code retrieval tasks and improves performance on encoder-based code
understanding tasks such as defect detection and code clone detection, outperform-

ing previous state-of-the-art results.

Overall, this chapter extends the application of the models developed in previous chapters
to practical code retrieval tasks. From a developer’s perspective, the model can be used for

opportunistic reuse searching for code snippets based on the given code context.

thtps://github.com/villmow/coling-cocos

https://github.com/villmow/coling-cocos

INTRODUCTION AND MOTIVATION

1.1.2 Part II: App[imtwm

Part IT of this dissertation will shift the focus from the design of machine learning models
and training regimes to practical applications of the developed models. It is important to
note that the evaluations in Part I primarily aimed to measure the capabilities of the models
for the respective task through standard machine learning benchmarks. This is common
practice in ML research and important for optimizing ML pipelines. Nonetheless, such
benchmarks provide only a narrow view of the model’s practical utility, which depends on
other factors such as user behavior and preferences. Part I explores practical applications of
the models and techniques developed in Part I, in which the SYNTAXPT and SYNTAXPT-

ccs are used in zero-shot settings to solve two practical software development problems.

CHAPTER 6: EVALUATING CONTEXTUALIZED CODE SEARCH IN PRACTICAL
USER STUDIES

In Chapter 6, we want to assess the real-world applicability of the proposed code retrieval
model from Chapter 5 in practical software development scenarios. To this end, the
chapter introduces CODEBUDDY, a prototype application for CCS that allows developers
to interactively search for relevant code snippets based on their current coding context.
It uses the SYNTAXPT-ccs model from Chapter 5 to retrieve code snippets from a
codebase in a zero-shot setting. To adapt search to practical user queries—which may be
incomplete or imprecise— this chapter enhances the self-supervised pretraining approach
from Chapter 5 to improve the model’s usability and robustness in handling real user
input. It also introduces an indexing, and a post-processing strategy to filter redundant
results from SYNTAXPT-ccs. To evaluate CODEBUDDY, we conduct two user studies:
a controlled experiment with 41 computer science students working on programming
exercises (Study A), and a case study with four professional software developers from the
AOE GmbH in Wiesbaden using CODEBUDDY in their regular work activities (Study
B). Overall, the key contributions of this chapter are:

v

Enhance the self-supervised pretraining approach from Chapter 5 to improve us-

ability and robustness for end-users.

» Develop a novel post-processing strategy to filter redundant code snippets from

the retrieval results.

» Present CODEBUDDY, the first tool for interactive contextualized code search. The

software is made publically available under Villmow (2024)3.

» Evaluate CODEBUDDY through two user studies, and demonstrate its practical

utility and impact on developer efficiency.

3https://github.com/villmow/codebuddy

https://github.com/villmow/codebuddy

1.2. PUBLICATIONS

This chapter applies the self-supervised CCS strategy from Chapter 5 into a practical
tool that can assist developers with code reuse. It studies whether this tool enhances their

productivity and showcases potential use cases in real-world software development.

CHAPTER 7: SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

In Chapter 7, we explore another practical application of the SYNTAXPT model and inves-
tigate its ability to assess the quality of identifiers in source code. High-quality identifiers
are important for code readability and maintainability, and thus we want to assist develop-
ers in writing good identifiers. The chapter proposes a novel self-supervised approach that
assesses whether LMs can detect violations of established identifier naming guidelines.
To this end, it introduces the first dataset for assessing the quality of identifiers based on
coding guidelines, which consists of over 6000 dense annotations across 28 common nam-
ing guidelines. The chapter proposes and evaluates four different self-supervised scoring
functions (three generative and one discriminative) to extract quality scores for identifiers

from an LM. The key contributions of this chapter are:

» Create a dataset for evaluating identifier quality based on established coding guide-
lines. Made publically available under Villmow et al. (2023a)%.

» Propose and evaluate novel scoring functions for assessing identifier quality using

language models.

» Demonstration that the SYNTAXPT model outperforms other state-of-the-art
language models on this task, including larger models like INCODER.

» Provide an in-depth analysis of guideline-specific performance and discusses chal-

lenges in detecting certain types of guideline violations.

This chapter demonstrates the potential of LMs to aid in code quality assurance by identi-

fying poor naming practices.

1.2 PUBLICATIONS

The contributions of this thesis have been published in the following peer-reviewed publi-
cations in ascending date order® and Page 279 provides my individual contributions to

each publication:

» Johannes Villmow, Adrian Ulges, and Ulrich Schwanecke (2021b). A Structural
Transformer with Relative Positions in Trees for Code-to-Sequence Tasks. In
International Joint Conference on Neural Networks, [J[CNN 2021, Shenzhen, China,
July 18-22, 2021. IEEE, pp. 1-10 (Chapter 3)

4https://zenodo.0rg/rec0rds/7612762
> A star () denotes shared first authorship.

https://doi.org/10.1109/IJCNN52387.2021.9533717
https://doi.org/10.1109/IJCNN52387.2021.9533717
https://zenodo.org/records/7612762

INTRODUCTION AND MOTIVATION

» Johannes Villmow, Viola Campos, Adrian Ulges, and Ulrich Schwanecke (2022).

Addressing Leakage in Self-Supervised Contextualized Code Retrieval. In Proceed-
ings of the 29th International Conference on Computational Linguistics, COLING
2022, Gyeongju, Republic of Korea, October 12-17, 2022. International Committee
on Computational Linguistics, pp. 1006-1013 (Chapters 4 and 5)

» Johannes Villmow*, Viola Campos®, Jean Petry, Amine Abbad Andaloussi, Adrian

Ulges, and Barbara Weber (2023b). How Well Can Masked Language Models Spot
Identifiers That Violate Naming Guidelines? In 237d IEEE International Work-
ing Conference on Source Code Analysis and Manipulation, SCAM 2023, Bogotd,
Colombia, October 2-3, 2023. IEEE, pp. 131-142 (Chapters 4 and 7)

» Johannes Villmow, Adrian Ulges, and Ulrich Schwanecke (2024). Evaluating

Contextualized Code Search in Practical User Studies. In INFORMATIK 2024,
Wiesbaden, Germany, 24. September — 26. September 2024. Vol. 352. LNIL. GI,
pp- 1393-1403. 1sBN: 978-3-88579-746-3 (Chapter 6)

Additionally, the following peer-reviewed publications with me as a (co-)author have been

published in the context of my doctoral studies, but have not been included in this thesis:

10

e Johannes Villmow, Marco Wrzalik, and Dirk Krechel (2018). Automatic Key-

phrase Extraction Using Recurrent Neural Networks. In Machine Learning and
Data Mining in Pattern Recognition - 14th International Conference, MLDM 2018,
New York, NY, USA, July 15-19, 2018, Proceedings, Part II. vol. 10935. Lecture
Notes in Computer Science. Springer, pp. 210-217

Haseeb Shah*, Johannes Villmow*, Adrian Ulges, Ulrich Schwanecke, and Faisal
Shafait (2019). An Open-World Extension to Knowledge Graph Completion
Models. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press, pp. 3044~
3051

Haseeb Shah, Johannes Villmow, and Adrian Ulges (2020). Relation Specific

Transformations for Open World Knowledge Graph Completion. In Proceedings of
the Graph-based Methods for Natural Language Processing (TextGraphs). Barcelona,

Spain (Online): Association for Computational Linguistics, pp. 79-84

Felix Binder, Johannes Villmow, and Adrian Ulges (2020). Bidirectional Trans-
former Language Models for Smart Autocompletion of Source Code. In 50. Jabr-
estagung der Gesellschaft fiir Informatik, INFORMATIK 2020 - Back to the Future,
Karlsrube, Germany, 28. September - 2. Oktober 2020. Vol. P-307. LNI. GI,
pp- 915-922

https://aclanthology.org/2022.coling-1.84
https://doi.org/10.1109/SCAM59687.2023.00023
https://doi.org/10.1109/SCAM59687.2023.00023
https://doi.org/10.18420/inf2024_122
https://doi.org/10.18420/inf2024_122
https://doi.org/10.1007/978-3-319-96133-0_16
https://doi.org/10.1007/978-3-319-96133-0_16
https://doi.org/10.1609/aaai.v33i01.33013044
https://doi.org/10.1609/aaai.v33i01.33013044
https://aclanthology.org/2020.textgraphs-1.9
https://aclanthology.org/2020.textgraphs-1.9
https://doi.org/10.18420/inf2020_83
https://doi.org/10.18420/inf2020_83

1.3. METHODOLOGY

e Johannes Villmow, Jonas Depoix, and Adrian Ulges (2021a). ConTest: A Unit
Test Completion Benchmark featuring Context. In Proceedings of the 1st Work-
shop on Natural Language Processing for Programming (NLP4Prog 2021). Online:
Association for Computational Linguistics, pp. 17-25

e Marco Wrzalik, Julian Eversheim, Johannes Villmow, Adrian Ulges, Dirk Krechel,
Sven Spieckermann, and Robert Forstner (2023). Value Stream Repair Using Graph
Structure Learning, In Advances and Trends in Artificial Intelligence. Theory and
Applications - 36th International Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems, IEA/AIE 2023, Shanghai, China, July
19-22, 2023, Proceedings, Part I1. vol. 13926. Lecture Notes in Computer Science.
Springer, pp. 15-32

1.3 METHODOLOGY

The research methodology of this thesis is based on the principles of Artificial Intelligence
(AI)-driven research for information systems, which is a combination of behavioral and
design-oriented research. It follows the Design Science Research methodology (Hevner et al.
2004), which is a problem-solving paradigm that aims to create innovative solutions to
real-world problems. Hevner et al. (2004) state that the goal and outcome of design science
research is to develop and evaluate artifacts, for example, algorithms, models, prototypes, or
systems, that improve the understanding of a given problem domain and provide solutions
to problems in that domain. It acknowledges that the development of artifacts is an
iterative process that consists of several phases, including problem identification, solution
design, rigorous evaluation, and communication, that can be repeated until a satisfactory

solution is found.

In Part I, the focus is on developing new models and techniques using standard machine
learning research methodology (Goodfellow et al. 2016, p. 421). This involves identifying
research gaps through related work; iteratively developing, adapting, and optimizing
models from the literature; and rigorously evaluating them on standard datasets and
benchmarks using established performance metrics. Additionally, ablation studies are
conducted when feasible to assess the impact of various model components. The results
of this process are communicated to the research community and also approved through

peer-reviewed publications.

On the other hand, Part IT applies the artifacts from the previous part (i.c., the developed
models) to real-world problems. In this case, the artifact takes the form of software tools
that are evaluated in practical settings. Their evaluation includes user studies to assess
the utility of the models, as well as qualitative and quantitative analyses to measure their

performance in real-world scenarios. Chapter 6 provides a more detailed description of

11

https://aclanthology.org/2021.nlp4prog-1.2
https://aclanthology.org/2021.nlp4prog-1.2
https://doi.org/10.1007/978-3-031-36822-6_2
https://doi.org/10.1007/978-3-031-36822-6_2

INTRODUCTION AND MOTIVATION

how the design science research methodology is applied to iteratively develop and evaluate

the CoDEBUDDY prototype.

12

Programs must be written for people to read, and only incidentally

for machines to execute.

— Abelson and Sussman 1985, p. xxii

Fundamentals

THIS CHAPTER introduces the fundamental concepts and techniques that are essential
for understanding the subsequent chapters. Most of it is based on the following books:

e lan]. Goodfellow etal. (2016). Deep Learning. Adaptive computation and machine
learning. MIT Press. 1SBN: 978-0-262-03561-3

o Dan Jurafsky and James H. Martin (2009). Speech and Language Processing: an
Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition, 2nd Edition. Prentice Hall series in artificial intelligence.
Prentice Hall, Pearson Education International. ISBN: 9780135041963

o Christopher D. Manning et al. (2008). Introduction to Information Retrieval.
Cambridge University Press. 1ISBN: 978-0-521-86571-5

2.1 TEXT AND CODE PROCESSING AND REPRESENTATIONS

Text and code processing involves converting raw text and code data into a format that can
be used as input to machine learning models. This process typically starts with tokenization,
constructing a vocabulary construction, and the use of various representations such as

subword representations and Abstract Syntax Trees (ASTs) and Concrete Syntax Trees

(CSTS).

2.1.1 Tokenization and Vocabulary

Tokenization is the process of breaking a sequence of characters into smaller units, called

tokens. In Natural Language Processing (NLP), tokens are typically words or subwords

13

http://www.deeplearningbook.org/
https://www.worldcat.org/oclc/315913020
https://www.worldcat.org/oclc/315913020
https://www.worldcat.org/oclc/315913020
https://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf

FUNDAMENTALS

def fib(n):
if n <= 1: return n
return fib(n - 1) + fib(n - 2)

Figure 2.1: A Python function that computes the 71-th Fibonacci number.

(i.e., parts of a word), but they can also be punctuation marks or special characters. In
code processing, tokens are typically programming language keywords, identifiers, and
subwords of identifiers. Tokenization is typically the first step in processing text and code
data for machine learning models. Consider the code snippet in Figure 2.1. A tokenization
process could split the code into the following tokens: def, fib, (, n,), :, INDENT,
if,...,).

For a sequence of characters ¢, the tokenization process produces a sequence of tokens
w = (w, w®, ... w), where cach token w® isa substring of c. We can build a
vocabulary, denoted as V, by collecting the set of unique tokens in a dataset. For the ease
of notation—even though the vocabulary is a set—this work defines it to be sorted, so that
it can be indexed like a sequence, i.e., V.= {vM) 0@ »(VD}, where V) = 40 i
the j-th token in the vocabulary. Let vocab: V—{1, ..., |V|} be a function that maps a

token ¢ to its index in the vocabulary, i.c.,
vocab(t) = j if t =0\, (2.1)

The vocabulary is used to map the sequence of token-strings w to a numerical vector
T = (:U(l), @ x(")) that can be used as input to machine learning models, where

cach element () is the index of the token w(® in the vocabulary, i.c., (¥ = vocab(w®).

In addition to the tokens in the dataset, the vocabulary also contains some special tokens

that do not correspond to actual words or code tokens in the input data:

[unk] : Unknown token used to represent tokens that are not in the vocabulary.

[pAD] : Padding token used to fill sequences to a certain length, for example, when
batching multiple sequences of different lengths. This token is ignored when com-

puting the loss.

[cLs] : Classification token used to represent the start of a sequence.

[e0s] : End-of-sequence token used to represent the end of a sequence.

[mask] : Mask token used to represent parts that have been hidden.

(mask) (eos)

Throughout this thesis, notations such as are used to denote such special

(mask) — vocab([MASK]).

ory
tokens, i.e.,

14

2.1. TEXT AND CODE PROCESSING AND REPRESENTATIONS

Jurafsky and Martin (2009, p. 19) state that there are two types of tokenization algorithms:
top-down and bottom-up tokenization. Top-down tokenization defines a set of rules that
split text into tokens, while bottom-up tokenization learns the tokenization rules from the
data. Bottom-up tokenization is also referred to as subword tokenization. Throughout

this thesis, both types are used in combination to tokenize source code.

Tor-DOwWN TOKENIZATION

Top-down or rule-based tokenization consists of a set of rules that define how to split
text into tokens, similar to regular expressions. For natural language this approach can be
challenging, as the rules are often language-specific and hard to generalize. Think of the
ambiguity between apostrophes in English, which can be used to indicate possession or
contraction (e.g., John’s car vs. John’s going to the store). This makes it difficult to define a set
of rules that can accurately tokenize text in natural language. However, the opposite is true
for source code. Since source code is well-defined by a context-free grammar, the grammar
already defines the necessary rules for tokenization. A rule-based tokenization strategy has
the advantage that the parser generates a syntax tree that represents the syntactic structure
of the code. The syntax tree for the code snippet in Figure 2.1 is shown in Figure 2.2.
These representations for code will be introduced in Section 2.1.2. In addition to these
structural properties, source code also contains natural language elements, e.g., identifier
names, strings, and comments. Tokenizing these elements can be as complicated as in

Natural Language Processing (NLP).

The design of the tokenization algorithm strongly influences the amount of information
that is retained in the token sequence. For example, in the Java programming language,
whitespace is not important, and can be removed without losing information (except for
string literals). In Python, however, whitespace is used to indicate the structure of the
code, and removing it would result in a loss of information. Consider the code snippet
int studentCount = 5; , that can be tokenized with a parser into the following tokens: int,

studentCount, =, 5, ;. Some approaches do not retain the whitespace tokens, which
shortens the tokenized sequence, but makes the tokenization irreversible—the original
code cannot be reconstructed from the token sequence. For languages like Python, special

indent and dedent tokens can be used to indicate the structure of the code.

Top-down approaches have the drawback, that the size of V “for a text goes up significantly
faster than the square root of its length in words” (Jurafsky and Martin 2009, p. 15). Every
misspelling of a word will result in a new token in the vocabulary. When training machine
learning models for text and code processing, a major computational factor is the size of the
vocabulary. For example, in order to predict the next token in a sequence, the model must
compute a probability distribution over the entire vocabulary with the softmax function.

Large vocabulary sizes increase the complexity of this task. Hence, the vocabulary is

15

FUNDAMENTALS

often limited to the most frequent tokens in the dataset. But then out-of-vocabulary
(OOV) issues arise at inference time, when the model encounters tokens not seen during
training (e.g., that were too infrequent). Typically, an unknown token at inference time is
represented with a specific marker (%) Various approaches, such as copy mechanisms
in sequence-to-sequence pointer networks (Vinyals et al. 2015) that allow models to copy
tokens from the input sequence, have been developed to address this issue. A more recent
and widely adopted approach is to use subword tokenization, which is discussed in the

following section.

SUBWORD TOKENIZATION

Subword tokenization is a bottom-up approach that learns the tokenization rules from
the data. With subword tokenization, words are broken down into smaller units, called
subwords, that can capture morphological information and handle OOV words. For
example studentCount becomes student and @ecount , where @e denotes that the token
is a continuation of the previous token. The maximum amount of subword tokens is a
hyperparameter that can be adjusted to control the size of the vocabulary. Typically, it is
much smaller than the number of unique words in the dataset and ranges between 32k
tokens, used in CODET's (Wang et al. 2021b), and 250k tokens, used in XLM-R (Conneau
et al. 2020). The smallest base-units can be the individual characters of the alphabet, or
even better the 128 possible values of a byte. When a word is so uncommon, that none of
the bigger subwords match, the word can be at least segmented in a sequence of characters.
However, this might not be enough given that Unicode in version 16.0 contains more than
150k characters. To address this issue, many approaches use byte-level base-units (Wang
et al. 2020) that segment also Unicode characters through a sequence of byte tokens. This
effectively solves the OOV problem.

Different subword tokenization algorithms have been developed, including Byze Pair
Encoding (BPE) (Sennrich et al. 2016), Unigram Language Model (Kudo 2018), and the
proprietary WordPiece algorithm (Devlin et al. 2019). Throughout this thesis, all of these
algorithms are referred to as BPE. In Chapter 3 a subword tokenization model is trained
with the Byte Pair Encoding (BPE) algorithm proposed by Sennrich et al. (2016), while
in Chapter 4 a subword tokenization model is trained with the Unigram Language Model
from Kudo (2018). These two types of models are now explained in detail.

ByTE PalR ENCODING The earliest approach to subword representations and its
namesake is the Byte Pair Encoding (BPE) algorithm, a data compression algorithm
proposed by Gage (1994) and applied to machine learning by Sennrich et al. (2016). The
BPE algorithm is trained by learning merge operations. Starting with a vocabulary of
base-units, the algorithm iteratively merges adjacent tokens into new tokens based on their

frequency in the dataset, until a predefined vocabulary size is reached. The same merge

16

2.1. TEXT AND CODE PROCESSING AND REPRESENTATIONS

operations can be applied at inference time to tokenize new data. The resulting vocabulary
of merged tokens contains subwords that can be used to represent words in the dataset.
One drawback of the algorithm proposed by Sennrich et al. (2016) is that it requires an
initial tokenization on whitespace, which makes the tokenization process irreversible. A
byte-level version of this algorithm is used in the GPT-2 model (Radford et al. 2019).

UNIGRAM LANGUAGE MoODEL Kudo (2018) proposed a probabilistic algorithm that
assigns a probability to each subword token in the vocabulary, called the unigram language
model. It is implemented in the SentencePiece library (Kudo and Richardson 2018). It
is formulated as an “entropy encoder that minimizes the total code length for the text”
(Kudo 2018, p. 69). To this end the approach first gathers a large vocabulary of subword
tokens, that exceeds the desired vocabulary size by far, and then iteratively removes the
least probable tokens with an expectation-maximization algorithm until the desired size is
reached (Miclke et al. 2021). The tokenization model can output different segmentations
for the same input, because of the probabilistic nature of the model, which can potentially
improve robustness of the model—similar to dropout. However, this is rarely used, because
typically the training data is encoded in a preprocessing step for faster loading times during
training. In SentencePiece, whitespace is considered a token, so no pre-tokenization is
required, and the tokenization is reversible. The unigram language model is used in the
Ts model (Raffel et al. 2020). Even though the SentencePiece library implements both
subword tokenization algorithms, when referring to the unigram language model, the

term SentencePiece is used throughout this thesis.

2.1.2 Representations of Source Code

In machine learning on source code, the code is commonly represented in various forms.
For example, Li et al. (2023) follow common practice in NLP and use a sequence of code
tokens as input to a model. Alon et al. (2019b) and Alon et al. (2019a) use ASTs to
represent source code (see Figure 2.2), while Guo et al. (2021) use program dependency
graphs (Ferrante et al. 1987), that contain information about the control and data flow of

the program.

ABSTRACT SYNTAX TREES

Abstract Syntax Trees (ASTs) are widely used throughout the machine learning on code
community. They have found use in applications for accurate source code differencing
(Falleri et al. 2014), automatic program repair (Weimer et al. 2009), source code sum-
marization (Alon et al. 2019a), and source code search (Paul and Prakash 1994). An
AST is a tree representation of the syntactic structure of source code, which results from
parsing the source code with a context-free grammar. ASTs are constructed by parsers like

javalang (Thunes 2023), a Java parser implemented in Python, or tree-sitter (Brunsfeld

17

FUNDAMENTALS

FunctionDefinition
Identifier
fib Identifier IfStatement ReturnStatement

n
[v
[Identifier] <= [Integer] [ReturnStatement] &

1 (1dentifier] [rdentifier] [Argumentiist] [1dentifier] [ArgumentList]

5 1

BinaryOperator fib BinaryOperator

[Identifier I Integer] [Identifier] - [Integer I

o <

S

o <
5 <

Figure 2.2: The AST of the Fibonacci function shown in Figure 2.1.

2023), which supports several programming languages. The grammar’s production rules
determine the AST’s structure: nonterminal nodes represent grammar rules and terminal
nodes represent source code elements. The AST excludes certain code elements which are
captured by its structure, such as keywords (def , return), comments, and punctuation

(brackets, colons).

Formally an AST is a rooted tree with an unlimited degree. Given the ubiquity of rooted
trees in computer science, a formal definition of a tree is omitted in this thesis. Instead,
a short informal definition is given here. A tree has a single node called the root node,
which is the only node without a parent. All other nodes have exactly one parent. Because
the degree is unlimited, each node can have an arbitrary number of children, including
zero. Nodes without children are called leaf” or terminal nodes, while a node that has at
least one child is called a nonterminal node. Every node has a label, which is a string that
describes the node’s role in the tree. For nonterminal nodes the label is a value from the

set of nonterminal labels IL, while for terminal nodes the label can be an arbitrary string.

For instance, in Figure 2.2 the AST of the fib function from Figure 2.1 is shown. In the
tree, nonterminal nodes such as Module , FunctionDefinition and ReturnStatement corre-
spond to grammar rules, while terminals such as fib and n represent source code tokens.
Typically, ASTs are language-specific, since the nonterminal nodes originate from the

grammar of the programming language and the grammar rules are not universal across

18

2.1. TEXT AND CODE PROCESSING AND REPRESENTATIONS

Unique Nonterminals
Language . Files)
Nonterminals per File
C 101 2,242,379 1036.0
Cc# 218 2,843,642 717.5
C++ 165 3,734,357 1014.4
CSS 52 349,525 816.8
Go 93 1,759,600 1067.8
Haskell 180 114,311 1005.9
Java 123 7,345,753 720.8
JavaScript 109 4,471,689 720.7
Julia 82 34,403 522.8
OCaml 193 55,838 1226.3
PHP 141 2,206,063 616.5
Python 100 3,016,545 938.7
Ruby 112 1,068,668 459.2
Rust 152 366,891 1111.9
Scala 100 273,822 506.8
TypeScript 166 2,299,964 504.0

Table 2.1: Statistics on the number of nonterminal labels |]L\ in tree-sitter ASTs and CSTs for various programming
languages. The data was collected by analyzing 237k open-source repositories on GitHub.

languagesl. For example in tree-sitter, the nonterminal for a function in Python is called
FunctionDefinition , while for Javaitis called MethodDeclaration . Table 2.1 shows the num-
ber of unique nonterminal labels in the AST and CST for various programming languages,

as extracted from 237k open-source repositories on GitHub.

For each node 7 in a tree, there is a unique path from the root to that node. This path is
represented as (i1, . . ., 4,), where i = 1 is the root, and i, = 7 is the node in question,
and foralll € {2,...,u},4;_1 is the parent of node 4;. The depth of the node 7 is equal

to the number of nodes u on this path:
depth(i) = u (2.2)

The set of ancestors for node 7 includes all nodes along this unique path. Note that node ¢

is part of its own ancestor set:
ancestors(i) = {i1,...,0y} (2.3)

However, 7 is excluded from the set of descendants of node 7, which comprises all nodes

for which 7 is an ancestor:

descendants(i) = {j | ¢ € ancestors(j) A i # j} (2.4)

"While most ASTs are language-specific, some approaches, such as Babelfish (2020), try to standardize
AST representations across programming languages. Therefore, they define a universal AST format that
works on many source code languages. However, these are not used in this thesis.

19

FUNDAMENTALS

The Lowest Common Ancestor (LCA) of two nodes 7 and j is defined as the ancestor a

common to both and having the greatest depth.

lea(i, j) = arg max depth(a) (255)

a € ancestors(%)Nancestors(j)

In an AST, the LCA tells us to which syntactical construct both nodes belong.

CONCRETE SYNTAX TREES

Concrete Syntax Trees (CSTs) contain every token in the source code as a terminal node,
unlike ASTs. Comparing the AST in Figure 2.2 with the CST in Figure 2.3 shows that, al-
though they share identical nonterminal node structures, the CST has additional terminal
nodes—highlighted in orange outlines—that were omitted in the AST. This results in a
higher node or token count than the AST. Parsers like tree-sitter generate CSTs without
whitespace. In this thesis, however, CSTs are adapted to explicitly include whitespace.

Because the CST includes all tokens and whitespace, it can be easily reverted to source
code by concatenating the terminal nodes. This is useful for source code manipulation,

including comment removal, variable renaming, and code reformatting.

Identlifier [Ifstatement] [Returnstatement]

Identifier

B e)Y E) G UEUOHE

Figure 2.3: The Concrete Syntax Tree (CST) of the Fibonacci function shown in Figure 2.1. This figure shows a partial
CST, truncated at the orange ReturnStatement node for brevity. New tokens compared to the AST from Figure 2.2 are
highlighted with orange outlines. Space characters are visualized by the symbol .. and line breaks by <J. Note that all

El

leaves together make up the original source code.

2.2 MACHINE LEARNING FUNDAMENTALS

Machine Learning (ML) is a powerful approach to solve tasks by learning from data instead
of manually designing algorithms and decision logic. Machine Learning (ML) algorithms
(also called models) have been found in the last 10 years to be excellent at recognizing

patterns and making decisions in many domains. Problems that were previously considered

20

2.2. MACHINE LEARNING FUNDAMENTALS

too complex to solve with traditional programming methods, such as machine translation,
can now be solved with machine learning, and in particular deep learning models. ML
models need to be trained on a dataset that contains examples of the task they are supposed
to solve before they can make predictions on new data. In essence, ML models define
a parametric function f(; @) that maps an arbitrary input & to an output y, whereas
the function’s parameters @ are learned from the training data. In this thesis the input to
all models is a sequence or vector of token indices ¢ € {1, ..., |V|}" produced by the

tokenization process described in Section 2.1.1.

2.2.1 Training

The models in this thesis are neural networks, in particular deep learning models, which
are typically trained using maximum likelihood (Goodfellow et al. 2016, p. 173). The
model function outputs a probability distribution and the cross-entropy loss can be used to

train the model.

f(:l?; 0) = pmodel(y | x; 0) (26)

For an input @, typically described by a vector, and a corresponding desired output y,
the goal is to find a maximum likelihood estimator so that the model distribution closely

matches the empirical distribution of the training data Par, for parameters 6.
éML = arg max E(X7Y)Nﬁdata logpmodel(y ‘ I, 9) (2.7)
o

Finding this maximum likelihood estimator is equivalent to minimizing the Kullback-
Leibler divergence—which measures how different two probability distributions are—
between the model and the empirical distribution in a loss function. In practice, this is

commonly referred to as cross-entropy or negative log-likelihood loss.

ﬁ(e) = DKL(ﬁdata H pmodel)
= E(x,y)wﬁda[a [Iogﬁdata(y ’ $) - logpmodel(y | Z; 0)]
= _E(X7Y)Nﬁdata logmedel(y ’ &Z; 0) (28)

One advantage of this approach is that designing a model that outputs pmode1 (¥ |) au-
tomatically defines a loss function that can be directly used to train the model (Goodfellow
etal. 2016). To this end, mini-batch stochastic gradient descent is used to approximate the
expected value of the loss function by sampling mini-batches of size IV from the training
data. Here a batch of paired examples (ac(l) , y(l)), ey (w(N), y(N)) is drawn from the

training data.

N
1))
L£(0) ~ N Z — log Pmodel (¥ |) (2.9)
i—1

21

FUNDAMENTALS

For brevity, the parameters 6 and the expected value of the loss are omitted in the subse-

quent sections and the negative log-likelihood loss is denoted as:

L(0) = —logp(y | @) (2.10)

OPTIMIZATION AND STOCHASTIC GRADIENT DESCENT

Optimization is the process of finding the best parameters @ for a model that minimize
the loss function £(8). To do so, gradient descent is a widely used optimization algorithm
that iteratively updates the parameters in the direction of the negative gradient of the
loss function with respect to the model’s parameters V Lg. The gradient is calculated
via backpropagation, whereas modern frameworks such as PyTorch (Paszke et al. 2019)

automate this differentiation process.

Gradient descent’s most important hyperparameter, the learning rate Ay, controls the
step size in the direction of the gradient and typically ranges between 1076 and 1071,
Ideally, the gradient would be computed over the entire dataset, but this is computationally
prohibitive for large datasets (Goodfellow et al. 2016, p. 152). To combat this, one
approximately estimates the gradient by computing it on a random mini-batch of size hy,
over which the individual per sample losses are averaged. This approach is called mini-
batch stochastic gradient descent. The batch size is another hyperparameter that affects
performance, and training continues until one observes overfitting, which is determined

by monitoring the loss on a validation set.

There are many modern adaptive variants of gradient descent, such as Adam (Kingma
and Ba 2015) and Adafactor (Shazeer and Stern 2018), which adapt the learning rate for
each parameter based on the first and second moments of the gradient. Since Adam is
widely used in practice and fairly robust with respect to the choice of hyperparameters
(Goodfellow etal. 2016, p. 309) it is used as the default optimizer in this thesis. Specifically,
most experiments use the AdamW variant of the Adam optimizer (Loshchilov and Hutter
2019), which decouples weight decay from the optimization steps and has been shown to

improve the performance of transformers in practice (Radford et al. 2018).

DATASETS AND HYPERPARAMETER OPTIMIZATION

Training of deep neural networks requires large amounts of data, which is typically split
into three sets: the training set, the validation set, and the test set. The training set is used
to train the model, the validation set is used to tune hyperparameters, and the test set is
used to measure the final model’s generalization performance. Many of the benchmark
datasets used in this thesis are publicly available, widely used in the research community,
and come with predefined splits to ensure comparability with other models (e.g., the

CoODEXGLUE benchmark collection).

22

2.2. MACHINE LEARNING FUNDAMENTALS

Special attention should be paid to the dataset split in machine learning for source code.
A naive split at example level may result in the same identifiers or methods appearing all
over training, validation, and test sets, leading to data leakage. To circumvent this issue,
datasets for machine learning on source code are typically split at a project level, so that
the model’s ability to generalize to new, unseen projects can be accurately measured. This

thesis evaluates only on datasets that adhere to a project-level split.

As it is common practice in ML, the models in this thesis have been developed iteratively.
Following Goodfellow et al. (2016, p. 421) first one or more performance metrics are
specified, next a working pipeline is established that allows to train and evaluate models
on the training and validation set. Then the models are iteratively improved by changing
their architecture, the loss function, the data handling, or other hyperparameters. For
example in Chapter 5, the author tried contrastive learning with a triplet margin loss
before switching to the InfoNCE loss, which was found to lead to a higher validation
performance. During the iterative development phases in this thesis, the author measured
performance exclusively on the validation set and the test set was only used once at the
end of the development process. This is important because frequent ablation on the test

set increases the risk of overfitting, which can lead to overly optimistic results.

HYPERPARAMETER OPTIMIZATION Hyperparameter optimization is the process
of finding the best hyperparameters for a machine learning model. Hyperparameters
are parameters that are not part of the training/optimization process. For example, the
aforementioned process of measuring the benefit of adding a different loss function is an
example of hyperparameter optimization. Such hyperparameters, that are specific to the
model architecture often include the number of layers, the number of hidden units, and
the dropout rate, are typically determined only once and then kept fixed for all test runs.
Hyperparameters that should be fine-tuned for each specific task and dataset include the
learning rate Ay, the batch size hp, and the number of epochs he.

The more general architectural hyperparameters are set based on the literature or deter-
mined by the aforementioned iterative process. The more fragile hyperparameters are
optimized using a hyperparameter optimization strategy called sweep. A sweep explores
different hyperparameter configurations, keeps the best one in a trial and error fashion,
and then uses the best configuration for the final evaluation. A search strategy decides
which configurations to explore, for example, grid search, random search, Bayesian opti-
mization, and evolutionary algorithms. The ones used in this thesis are grid search and
Bayesian optimization. Grid search is a brute-force approach that evaluates all possible
combinations of a predefined set of hyperparameters. Bayesian optimization models the
hyperparameter space as a probabilistic model and iteratively samples the most promising
hyperparameters. This thesis uses the implementation of the Weights and Biases platform
(Biewald 2024).

23

FUNDAMENTALS

OVERFITTING AND EARLY STOPPING One common problem in machine learning
is overfitting, which occurs when the model performs well on the training set but poorly on
the validation set. This is often caused by the model memorizing training data (or noise in
it) or the model being too complex for the given data. Large models with many parameters,
that have large capacity, are more prone to overfitting. This work closely follows the early
stopping approach described by Goodfellow et al. (2016, p. 239) to prevent overfitting
and reduce training time during sweeping: During training the best model checkpoint
according to the validation performance is saved, and the run is stopped if its performance

did not improve over three consecutive epochs.

2.2.2 Machine Learning Tasks

A machine learning task defines how the system should process an example (Goodfellow
etal. 2016), i.e., the task defines the output of the model function f(x), mapping the
input & to an output y. While the prediction target ¢ has been abstract so far, in practice,
it represents a concrete output serving a specific purpose defined by the task. For example,
in regression tasks, the model predicts a continuous value; in classification tasks, it predicts
a class label or a probability distribution over classes; and in sequence prediction tasks, it
generates a sequence of tokens. The following sections introduce the machine learning

tasks relevant to this thesis.

CLASSIFICATION

Classification is one of the most common machine learning tasks and is the foundation of
all tasks addressed in this thesis. The goal of classification is to predict which of k classes
an input belongs to. Examples in this thesis include next-token prediction in sequence
prediction models (where tokens in the vocabulary are the classes), defect detection (pre-
dicting whether code contains a bug), and similarity search (determining which of k code
snippets matches a query). Classification is also widely used in other domains, such as
image classification (e.g., determining whether an image contains a dog, cat, or horse),

sentiment analysis (classifying a text as positive or negative), and spam detection.

All ML models used in this thesis represent a function f: V™ > R¥, Typically, a softmax

layer converts the model’s k-dimensional output logits 2 = f(«) into a probability
distribution:

Pmodel(Y |) = softmax(z) (2.11)

CXP(ZZI) (2 12)

T ()

wherey € {1,..., k}is the true class label. Subsequently, training is done by minimizing
the negative log-likelihood loss, as detailed in Section 2.2.1. Note that in this thesis, when

24

2.2. MACHINE LEARNING FUNDAMENTALS

a classification model outputs logits instead of a probability distribution, the output is
converted to one with softmax. Afterwards, the most likely class is selected using the

argmax function:

§ = argmax Pmodel(y |) (2.13)
ye{l,....k}

SEQUENCE PREDICTION

Sequence prediction is a structured output task where the goal is to predict a sequence
of tokens that depend on one another, often based on a sequence of input tokens. Most
experiments in this thesis are sequence prediction tasks, e.g., machine translation, code sum-
marization, and language modeling. Specifically, this thesis studies sequence-to-sequence

models, which are a class of models that map an input sequence to an output sequence.

Foraninputz = (z), ..., 2("), the model generates an output sequence by iteratively
predicting the next token §7(*) € V given the input and previously generated tokens §(<?).

The model outputs a probability distribution over tokens in the vocabulary:

y“) = arg max Pmodel (W | Q(Q),w) (2.14)
wev

TOKEN-SELECTION STRATEGIES In sequence prediction models, the decoding pro-
cess predicts the next token based on the input and previously generated tokens, until the

model predicts a special end-of-sequence token [E0S] .

o The simplest token selection strategy is greedy decoding, which selects the token
with the highest probability (as in the last equation). However, it can lead to
suboptimal results by getting stuck in local optima (Jurafsky and Martin 2009,
p- 233). Also, greedy decoding has been found to lead to repetitive outputs, which
can be circumvented by prohibiting the model from predicting the same n-grams

multiple times in a row (Paulus et al. 2018).

o Sampling is another, equally efficient strategy that introduces randomness by sam-

pling from the model’s output distribution:
9 ~ Pmogai(w | 915) (2.15)

However, sampling can lead to unstable or nondeterministic results, which can be
problematic for reproducibility. Variants like top-k sampling and top-p sampling
control randomness by sampling from the top-k tokens or the top-p percent of the
probability mass, respectively (Holtzman et al. 2020). This can make the generated

sequences appear more human-like.

25

FUNDAMENTALS

® Beam search is a more sophisticated strategy commonly used in machine translation
(Jurafsky and Martin 2009, p. 276). It keeps track of the k& most likely sequences
and expands each by predicting the next token. This results in a tree of possible
sequences, where only the k£ most likely sequences, for which the sum of the tokens’
log-probabilities is the highest, are kept and expanded. At the end the sequence
with the highest overall probability is selected. In this thesis unless otherwise stated,
beam search is used with a beam width of & = 5, which is the most common setting
(Jurafsky and Martin 2009, p. 281).

Unless otherwise stated, this thesis uses beam search for the final predictions on the test

set, and greedy decoding for the predictions during validation.

TRAINING AND Loss The training data for sequence-to-sequence models consists of
paired examples (2, y), wherey = (y(), ..., y(™)) is the ground truth target sequence.

The loss function minimizes the average negative log-likelihood of the target tokens:
1 & A .
Lseq(0) =~ ; log Pmodel (¥ | ¥V,) (2.16)

It is common practice to train the model using zeacher forcing (Williams and Zipser 1989),
where the model predicting the output y(*) receives the sequence of previous ground truth
(<9)

outputs Y = as input during training (Goodfellow et al. 2016).

LABEL-SMOOTHED CROsS ENTROPY LOss An alternative to the cross-entropy loss
is the label-smoothed cross-entropy loss, which encourages less confidence in the model
and acts as a regularization technique (Goodfellow et al. 2016, p. 243). Label smoothing
replaces the hard targets of the cross entropy loss with a soft distribution, in which the
correct class is correct only with a probability of 1 — €. The remaining probability mass
of € € [0, 1] is spread across all other possible classes or—in our case—tokens in the

vocabulary V.

ﬁseq-smooth(a) = - Z (1 — 6) 'logpmodel(y(i) | y<<l),m)

~
—_

te—T > .logpmodel(t]y(d),w) (2.17)
teV,t£y()

The term log pmodel(y(i) | y(<D), x) refers to the log-probability of the actual next token
y®, while log Pmodel (t | y(<D) is the log-probability for all other tokens ¢ in the

vocabulary.

26

2.2. MACHINE LEARNING FUNDAMENTALS

CONTRASTIVE LEARNING

This section discusses contrastive learning, which is used in the context of Contextualized
Code Search (CCS) in Chapter 5 to retrieve code snippets that complement each other
and for clone detection in Section 4.5.7. Contrastive learning—sometimes also called
metric learning or learning to rank—is a machine learning approach that aims to learn
a relation or similarity measure between pairs of inputs. This is a broad concept that
can be applied to many different tasks. For example, contrastive learning can be used to
learn clone detection (document-document similarity), to train Information Retrieval
(IR) systems (query-document similarity) (Karpukhin et al. 2020), but also to learn word
embeddings (Mikolov et al. 2013b), to verify that two handwritten signatures are the same
(Bromley et al. 1993), and to determine which pairs of nodes in a graph are most likely to
be connected (Shah* et al. 2019).

This section focuses on contrastive learning in the context of IR. In this scenario a pair
of two different objects forms the model input: gueries and documents (the documents
are also referred to as keys in the context of contrastive learning). Some documents are
relevant to a query, while others are not. The goal is to learn mappings from queries
and documents to a common latent space, in which the similarity between the query
and relevant documents is higher than the similarity between the query and irrelevant
documents. During inference, one first encodes all documents into representations and
can then retrieve the most relevant documents by computing the similarity between the
query’s and documents’ representations, using (approximate) nearest neighbor searches
(Malkov and Yashunin 2020) for which libraries like FAISS (Douze et al. 2024) or vector
databases exist (Zayarni 2023).

SIMILARITY FUNCTIONS = Similarity is a measure of how much two things are alike.
This is a fuzzy concept, and depends on the use case. For example, in IR, one could consider
two documents similar if they share many words, however, that might not capture all
aspects of similarity. For example, the words database and db are semantically similar but
notidentical. A common measure for the similarity of vectors is the cosine similarity, which

measures the cosine of the angle between two equally sized vectors simcosine : R? x R? —

[—1,1]. Itis defined as:
q-k

~ llgll - [I%]

When both vectors are normalized, the cosine similarity is equivalent to the dot product

Simcosinc(qa k) (218)

of the two vectors, which can be computed efhciently using matrix multiplication. Often
the term distance is used instead of similarity, which is simply the inverse of the similarity
function, i.e., disteosine —> [0, 2], where distcosine(@, k) = 1 — simcosine (g, k). Thus,
cosine distance tells us how dissimilar two vectors are. Other commonly used similarity

or distance functions include the Euclidean distance (L2 distance), which measures the

27

FUNDAMENTALS

straight distance between two points in space, and the Manhattan distance (L1 distance),
which measures the distance between two points by summing the absolute differences of

their coordinates.

CONTRASTIVE ARCHITECTURES The general approach in this thesis is to learn
similarity between two inputs from examples with relevance labels, i.e., the pair of inputs
is either similar or dissimilar (relevant or irrelevant). To this end, the model is trained to
maximize the similarity between similar pairs and minimize the similarity between dissim-
ilar pairs. Contrastive models typically utilize a joint embedding architecture (Bromley
etal. 1993; He et al. 2020; Chen et al. 2020; Bardes et al. 2022), which is often referred to
as a siamese network (Bromley et al. 1993) (when the two inputs are encoded by the same
model) or as a bi-encoder architecture. A bi-encoder architecture consists of two machine
learning models that encode queries & and keys ¥ into dense representations g= f (x; 0)
and k=f"(y; 0'), respectively. The resulting representations g, k € R? are called se-
quence embeddings and are subsequently used to measure similarity. Several approaches
adopt shared weights between the two encoders (Gao et al. 2021b; Bardes et al. 2022),
ie, @ = 0, which leads to a siamese network architecture (Bromley et al. 1993) where
both sequences are encoded by the same encoder. This practice reduces the overall amount
of parameters and is utilized throughout this thesis. In some approaches the sentence
embeddings g, k are projected to a different dimensionality d’ by projectors g(q; 6,) and
g’ (k;04) (Bardes et al. 2022) before similarity computation. A lower dimensionality
speeds up the retrieval process, since embeddings are compared against millions of other
embeddings, however, it can also reduce the quality of the embeddings. Having different
projectors for context and query can also be used to introduce asymmetry to the siamese

network.

CoNTRASTIVE Loss Consider a set of K documents {y(l), e ,y(K)} and a single
query &. One of the documents y® is relevant to the query, while the remaining K —1 are
irrelevant. These are called negative examples. The corresponding sequence embeddings are
denoted with g for the query, and k() for the documents, from which k@ is the embedding
for the relevant document. A contrastive loss is low when the similarity between the query
and the relevant document is high and the similarity between the query and irrelevant
documents is low. This thesis uses the following InfoNCE loss proposed by Oord et al.

(2018) for all contrastive learning tasks:

exp(simeosine (¢, K¥) /7)
Zilil CXP(Simcosine(qa k(z))/T)

Linfonce(0) = — log (2.19)

28

2.2. MACHINE LEARNING FUNDAMENTALS

This is essentially a normalized temperature scaled cross entropy loss, where 7=0.1 is a
temperature hyperparameter (Chen et al. 2020). The loss is minimized when g and k%

are identical and q is dissimilar to all negative examples®.

NEGATIVE SAMPLING Minimizing the loss function enforces the model to perform
pair matching, i.e., identifying the correct pair amonga set of pairs, in which only one pair
is relevant. The difficulty of this task directly influences the extent to which the model
must semantically understand the given content. This correlation has been confirmed
by recent work, which demonstrated that the quality of negative examples significantly
impacts overall performance (Chen et al. 2020; Ren et al. 2021), and corresponds to
the intuition that increasing the number of negative examples increases the difficulty of
the task. One can manually choose the most difficult negative examples from a dataset
(which could potentially be mislabeled), or learn complementary rankings by choosing
negative examples another model favors (Wrzalik and Krechel 2021). However, most
common because of its simplicity is to use random negative sampling, for which the
implementation is straightforward: Since batches are constructed randomly from the
dataset, the remaining examples from the batch that are not relevant to the query are
used as negative examples. This is called in-batch negative sampling and is used in this
thesis®. It is possible to construct pairs not only using (query, document) pairs, but also
(query, query) and (document, document) pairs, which additionally increases the number
of negative examples (Chen et al. 2020) and is used in this thesis. This process is done for

all positive pairs in the batch and the individual losses are averaged.

2.2.3 Evaluation Metrics

Evaluation metrics are used to measure the performance of machine learning models on
specific tasks. The type of the task, but also the dataset determine which metrics can be
used. For example, classification tasks typically report F1-score, while sequence prediction
tasks use BLEU (Bilingual Evaluation Understudy). Balanced datasets can be evaluated
using accuracy, while imbalanced datasets are better evaluated using precision and recall.
Performance of IR models can be assessed with the Mean Reciprocal Rank (MRR), Mean
Average Precision (MAP), and Normalized Discounted Cumulative Gain (nDCG). The

following sections introduce the evaluation metrics used in this thesis.

*Many other loss functions exist for contrastive learning, such as well known margin-based triplet losses or
the more recent VICReg loss (Bardes et al. 2022). However, many self-supervised approaches to contrastive
learning have demonstrated that the InfoNCE loss achieves a strong performance (Sohn 2016; He et al. 2020;
Gao et al. 2021b). Hence, it is used in this thesis.

3Note that for a batch with Ay, pairs, this must not mean that there are by, — 1 negative documents, as
some other examples in the batch might also be relevant to the query and thus are excluded from the negative
examples for this query.

29

FUNDAMENTALS

PrecIsioN, REcALL, AND F1-SCORE

The most commonly used evaluation metrics are precision, recall, and F1-score. In binary
classification tasks, I'P, TN, F'P, and F'N represent true positives (correctly predicted
positive samples), true negatives (correctly predicted negative samples), false positives
(incorrectly predicted positive samples), and false negatives (incorrectly predicted negative
samples), respectively. Then precision quantifies the percentage of samples predicted to be
positive that are indeed positive:

TP

Precision == m (2.20)

In IR tasks, precision is the fraction of relevant documents among the retrieved documents.

Recall measures the percentage of positive samples that have been predicted correctly:

Recall = — 1 (2.21)
cca _TP—|—FN .

In IR tasks, recall is the fraction of relevant documents that have been retrieved by the

model.

The Fl1-score is defined as the harmonic mean of precision and recall:

Precision - Recall
Fl-score = 2 - — (2.22)
Precision + Recall

It is a balanced metric that combines precision and recall into a single value. There are two
common ways to aggregate these scores over a test set: One can either compute precision,
recall, and F1-scores for each sample and then average them to obtain a macro-averaged
score. Alternatively, one can sum the T'P, F'P, and F'N across all samples and then

compute precision and recall, which is called micro-averaging.

ACCURACY

Accuracy measures the percentage of correct predictions over all predictions:

Accuracy = IP+IN (2.23)
YT TPITN+FP+FN ‘

It is commonly used in classification tasks with balanced class distributions, but can be
misleading when classes are imbalanced. For example, consider a classifier that always
predicts the majority class in a binary classification task with a 90% majority class. This

classifier would achieve an accuracy of 90%, but would not be useful in practice.

30

2.2. MACHINE LEARNING FUNDAMENTALS

BLEU

For sequence prediction tasks, the BLEU metric is commonly used to evaluate the quality
of the generated sequences. It was introduced by Papineni et al. (2002) and is designed
to measure the overlap between a model’s output and multiple reference sequences. It is
commonly used to evaluate machine translation systems (Vaswani et al. 2017). BLEU
calculates the precision of n-grams, denoted with By, Ba, B3, By for n-gram sizes 1 to 4,
found in the predicted sequence against those in the reference sequences, regardless of

their position.

ZCE(C Zn-gramGC CountCliP(n'gram)
Bn =pn = ;
Y ocrec Zn—gram’ec’ count(n-gram’)

(2.24)

Additionally, a brevity penalty is applied to penalize shorter predictions. An overall BLEU

score is computed as the geometric mean of the n-gram precision scores, modified by the

brevity penalty (BP):
11
BLEU = BP-exp |) 1 logBn (2.25)
n=1
1 ifc >
BP — rest (2.26)

el=¢ otherwise
In this formula, ¢ and 7 represent the lengths of the candidate and the best matching
reference sequences, respectively. Here, C denotes the set of candidate sequences. Most
importantly, count;p, (n-gram) clips the count of the n-gram to its maximum count in
the reference sequences. To obtain a final corpus-level BLEU score the micro average is
computed by summing the nominators and denominators of all prediction and reference(s)

pairs.

INFORMATION RETRIEVAL METRICS

Information Retrieval (IR) metrics are used to evaluate the performance of IR systems,
which retrieve documents based on a user’s query or a given document. In IR a large corpus
of documents is indexed. To evaluate the quality of the retrieval, a set of queries exists
Q, each query ¢ has a set of relevant documents ID;. An IR system retrieves a ranked list
of documents for each query, and this section denotes the i-th retrieved document for
query q as d,(]l) . The result is a hit if the returned document is relevant to the query, i.e.,
dqz) € Dy. The following metrics are used to evaluate the quality of the ranking of the

retrieved documents.

31

FUNDAMENTALS

PRECISION AT k Simply using precision or recall for IR tasks can be misleading, since
they do not account for the order of the retrieved documents. Hence, in IR tasks, often
only the top k retrieved documents are considered, such as the top 10 or top 100, as these
are the search results a user would typically inspect. For a single query ¢ € Q, precision at

k (Prec@k) measures the proportion of relevant targets among the top k retrieved results.

Prec@k(q =7 Z ld(l 'ep, (2.27)

The recall at k (Recall@k) is defined analogously, but measures the proportion of relevant

targets that are retrieved in the top & results.

k
Recall@k(q Z e, (2.28)

Note that both metrics do not account for the order of the retrieved results within the top
k results. To obtain an overall score for a test set, Prec@k and Recall@k are averaged over

all queries in the dataset.

AVERAGE PRECISION Average Precision (AP) is defined as the mean of the Prec@k
scores at each relevant target position and rewards relevant targets earlier in the result list.

For a single query g, the AP is calculated as:

|Dg|

Z Prec@k(q d(k)E]D) (2.29)

MEAN AVERAGE PRECISION The most common evaluation metric among the text
retrieval community is Mean Average Precision (MAP) (Manning et al. 2008, p. 159).
The MAP is the mean of the AP scores across all queries, and provides a single score that

measures the quality across all recall levels.

MAP = Z AP(q (2.30)
|Ql e

MEAN REcIPROCAL RANK Often a user considers only the first relevant document,

and the Mean Reciprocal Rank (MRR) metric reflects this by measuring the reciprocal of

32

2.3. TRANSFORMER MODEL

the rank of the first relevant document in the list of retrieved documents.

1 1
MRR = = » (2.31)
|Q| prerd rank,

where rank, is the position of the first relevant document in the list of retrieved documents
for query g. If none of the retrieved documents are relevant to the query, the reciprocal
rank is zero. The MRR is used instead of using the mean rank, since the mean rank can be

skewed by outliers (e.g., a single query with a very high rank).

NORMALIZED D1SCOUNTED CUMULATIVE GAIN The aforementioned all operate
on binary relevance scores, where a document is either relevant or not. Some IR evaluation
benchmarks provide relevance scores for the retrieved documents (e.g., 1 to 4, where 4
is the most relevant). The Normalized Discounted Cumulative Gain (nDCG) metric is
designed to take this degree of relevance of a result into account (Manning et al. 2008,

p- 163). For a query ¢ with a result list of length k£, nDCG is calculated as:

9Rel(g, d(2 -1

k
DCG@k(q }: (2.32)

log, (1 + 1)

The nDCG is then computed by normalizing the DCG@*k by an ideal ranking IDCG@*,
in which the relevant documents sorted by their relevance score are at the top of the result

list.

DCG@k(q)

nDCG@#k(q) = IDCG@k(q)

(2.33)

where Rel(q, dﬁ]) is the relevance score of the i-th document in the result list for query g,
and m is the number of relevant documents for query ¢. To compute an overall nNDCG

score for a test set, the nDCG scores are averaged over all queries.

2.3 TRANSFORMER MODEL

The transformer architecture as introduced by Vaswani et al. (2017) has been designed for
sequence-to-sequence generation tasks (see Section 2.2.2). The architecture as proposed
by Vaswani et al. (2017) is used in Chapter 3, while the remaining chapters train models
that use an architecture based on the T5 model from Raffel et al. (2020), which contains
some minor architectural improvements over the original transformer model, that will
be detailed when relevant. This section does not cover all details of the transformer
architecture, but focuses on the components and concepts that find application in this
thesis. For a more detailed description of to the transformer architecture, the reader is

referred to the original paper (Vaswani et al. 2017).

33

FUNDAMENTALS

Output Probabilities

Linear

Add & Norm

Add & Norm

N\ Multi-Head
Attention

Add & Norm

Feed Forward

Nx Add & Norm
Masked
Multi-Head Multi-Head
Attention Attention
—] -/
- J - J
Absolute Relative Absolute
Positional Positional E)—H Positional
Encoding Encoding A Encoding
Input Output
Embedding Embedding
Inputs Outputs (shifted right)

Figure 2.4: Visualization of the transformer architecture, that shows two commonly used techniques to integrate
positional information into the model: either absolute or relative positional encodings are used to encode positional
information in the transformer. Absolute positional encodings (shown in green) are added to the token-input embeddings
to encode positions in the input sequence. Meanwhile, relative positional encodings (red) are integrated into the self-
attention mechanism (light yellow). lllustration adapted from Vaswani et al. (2017).

First, the transformer architecture is a sequence-to-sequence model, which consists of a
transformer encoder and a transformer decoder (see Figure 2.4). The transformer encoder
maps the input vector which consists of tokens indices = (1), ..., (") (compare
Section 2.1.1), to a series of hidden states or vectors z = (z(1), ... 2(")), where n is the
number of tokens, and each () € R% is the d-dimensional hidden state representing
token 7. The decoder uses encoder-decoder attention to attend to z to generate an output
token sequence y = (g)(l), . ,gj(m)) in an autoregressive manner. Architecturally, as
visualized in Figure 2.4, both the encoder and decoder consist of multiple stacked layers,
each working on embeddings of dimension d. The output of each layer is input to the
next one. The output 2 of the last layer of the encoder is used as additional input to the
decoder. The last layers output of the decoder is fed into a prediction head to predict y,
consisting of a linear layer, that maps the hidden state to logits of the output vocabulary

size, followed by a softmax layer (compare Section 2.2.2).

34

2.3. TRANSFORMER MODEL

Initially, the input tokens are embedded using a learned embedding matrix E;, € RIVIxd,
turning & into a sequence of embeddings (1), ..., (™). The prediction head needs to
perform the inverse operation, mapping the hidden states back to the vocabulary space, i.c.,
requires a weight matrix Eo, € R¥IVI, To this end, one has the option to use the same
embedding matrix Eo, = E; asthe weight in the prediction head (this is called tied
embeddings), or to use a separate matrix. Note that these matrices contain a considerable

amount of the model’s parameters.

Each layer contains a multi-head self-attention and a feed-forward sublayer. A residual
connection (He et al. 2016) surrounding each sublayer allows the model to propagate
information through the layers and is followed by layer normalization (Ba et al. 2016). Self-
attention computes new representations for each token by attending to all other tokens in
the input sequence. The attention mechanism is the key component of the transformer
architecture and is described in detail in the next section. The feed-forward layer, a fully
connected network with an activation function, operates on each position separately and

identically.

The decoder differs from the encoder in two ways. First, its self-attention sublayer is
masked to prevent attending to future positions during training. Second, it includes a
third sublayer between self-attention and feed-forward, which performs encoder-decoder

attention, and allows the decoder to attend to the encoder’s output.

2.3.1 Multi-Head Attention

Multi-head attention is the essential component of the transformer architecture (Vaswani
etal. 2017). Its purpose is to enable the model to focus on relevant parts of the input
sequence while computing a representation for a specific token. The attention mechanism
is applied in two distinct forms in the transformer’s encoder and decoder: First, self-
attention not only allows every token in & to attend to every other token in @, but it
also allows the decoder to attend to previously generated tokens y(<i). Second, encoder-
decoder attention allows the decoder to focus on different parts of the input sequence.
Attention effectively computes a weighted sum of linearly transformed value embeddings,
with the weights derived from a compatibility score between (linearly transformed) query
and key embeddings. The queries are the items of interest (Jurafsky and Martin 2009,
p- 217), while the keys are tokens against which the queries are compared, resulting in
the so-called attention weights. The values are then weighted and summed based on the
attention weights. In self-attention, the query, key, and value embeddings all originate from

the same input sequence (either or y), while in encoder-decoder attention, the query

“Vaswani et al. (2017) use the Rectified Linear Unit (ReLU) activation function, while the newer T's
model use Gaussian Error Linear Unit (GELU) (Raffel et al. 2020).

35

FUNDAMENTALS

embeddings come from the preceding decoder layer, and the key and value embeddings

come from the encoder output.

In practice, the attention mechanism is implemented as a multi-head attention mechanism,
where the aforementioned attention computation is performed by attention heads in
parallel, each mapping the input sequence to a different dj,-dimensional vector space. After
computation their outputs are concatenated and linearly transformed back to dimension-
ality d, to produce the final attention layer output sequence (see Vaswani et al. (2017) for
details). Formally, a self-attention head has parameters WQ, WE WV e R4%dn that
maps the input sequence of embeddings z=(z"), ..., () with) € R to head-
specific vector spaces’. This sequence can be the output of the previous transformer layer
or the input embeddings in the first layer. The self-attention head calculates the attention
weight ov;; for each token pair 7 and 7, and produces a head-specific output sequence of
embeddings z, = (z}(Ll), e z}(ln)) with z,(j)e]Rdh as a weighted sum (compare Shaw
et al. (2018) for this section).

z}(f) = Z aijzv(j)WV (2.34)
j=1

The attention weight c;; is determined by a softmax over the compatibility scores e;;.

_ exp(eqy)
> k=1 exp(€ik)

The compatibility score e;; is computed using a scaled dot product of the linearly trans-

(2.35)

Odij

formed query and key embeddings.

2OW) (2OWE) "
€ij = ()\/(ﬁ) (2.36)

The final output of the attention layer is the concatenation of the outputs of all attention

heads, linearly transformed to dimensionality d, which is omitted here for brevity.

Essentially, the attention weights a;; indicate how much each token j in the reference
sequence contributes to the interpretation of token ¢. Tokens with higher attention weights
have a stronger influence when computing the output embedding z}(:). The transformer
can use this mechanism to contextualize each token by incorporating information from
the entire sequence. This allows capturing long-range dependencies much better than

traditional Recurrent Neural Network (RNN) architectures.

5For encoder-decoder attention, different input sequences are used as outlined above, but this is omitted
here for brevity, since the work in Chapter 3 only modifies self-attention.

36

2.3. TRANSFORMER MODEL

2.3.2 Positional Embeddings

The transformer architecture as described so far lacks a positional bias for recognizing
the sequential order of tokens, because of the absence of recurrence or convolutional op-
erations. Figure 2.4 shows two ways to overcome this problem: One can use cither absolute
positional embeddings (green) which are added to the input embeddings (), . .. 2(™)
(Vaswani et al. 2017) or relative positional embeddings (red) (Shaw et al. 2018; Raffel
et al. 2020) which are integrated into the self-attention mechanism. Absolute positional
embeddings encode fixed positions of tokens in the input sequence, while relative posi-
tional embeddings encode the relative distance between tokens in the input sequence.
In Chapter 3, this thesis proposes a novel way to encode trees with relative positional

embeddings.

ABSOLUTE PoSITIONAL EMBEDDINGS

Absolute positional embeddings use fixed vectors to represent token positions. They ensure
each token’s position in a sequence is uniquely identifiable. These embeddings can be
cither predetermined (e.g., sinusoidal) or learned during training. This positional vector
aP%%) € R% is added to the input embedding x(P%) of the token at the corresponding
position pos. In order for this approach to be effective, it has to be compatible with the
input embedding, and thus the positional vector shares the same dimensionality d as the
input embedding of the model. Vaswani et al. (2017) define the sinusoidal positional

embedding for a given position pos and dimension as:

(pos) . bos
CL2,L- = Sin <W> (237)
(pos) pos

An interesting property of sinusoidal embeddings is that they allow the model to attend

pos+k)

to future positions, because a/ is expressible as a linear function of a(P°*), which

allows learning temporal relations in the attention mechanism.

RELATIVE POSiTiONAL EMBEDDINGS

Relative positional embeddings, on the other hand, determine the positional embedding
between token pairs based on their relative positions in the input sequence (Shaw et al.
2018). The authors define the positional relationship between tokens 7 and j as the number

of tokens separating them, as shown in Figure 2.5, limited to a maximum k.

dist(¢, 7) = min(abs(j — 1), k) (2.39)

37

FUNDAMENTALS

o2 el TTeel
e ,“':::°~7l ‘1‘,‘3‘_2_‘\\ 9 ‘~\\\ ‘ ‘\\\
y's g R .25 A w3 A
21— 22— @) —— (D) —— . (5) ——p 1 (6) ——p . (7) 2

Figure 2.5: Visualization of some relative distances in a sequence of tokens.

Atensor R € R X (k+1)X2 gervesagan embedding table for storing the relative positional
embeddings. The embedding table is indexed by the order and the positional difference
1._. € Rn
1<y

for each positional pattern. The indicator function 1;; is 1 if 7 is to the left of j and 0

between tokens ¢ and j to retrieve the corresponding embedding R. 4 (;, ;)

otherwise. This enables the transformer to recognize when the order of tokens 7 and j is
interchanged. To enhance the readability, the relative positional embedding for tokens 4

and j is denoted as 7 == R, gi51(; . The positional embedding is shared between

)71i<j
attention heads, but not across layers.

Note that two distinct positional embeddings 7’% , TZ-IJ{
of the attention mechanism: (1) during the weighted sum computation, influencing the

can be integrated at different stages

values, and (2) during compatibility calculation, modifying the keys. In the first case, the
attention weighted sum from Equation (2.34) is modified to include the relative positional

embedding 'r}; between tokens ¢ and j:
z}(f) = Z i (®DWV 4) (2.40)
j=1

In the second case, the compatibility score €;; from Equation (2.36) is augmented with

relative positional embedding ri]]{ when comparing keys and queries:

2w (2IWE ¢ rg;)T
€ij = (2.41)
Vdp

In practice, Shaw et al. (2018) found using (1) and (2) performs equally well as using only

(2)°. The authors also found that maximum distances k>2 does not significantly improve
performance. They argue that this could be because, even though a single transformer layer
cannot directly use positional information beyond this upper bound, it can be propagated

to subsequent layers, which can infer it.

More recent works, such as the Ts architecture used in Chapters 4 to 7, use a bucketed
approach instead of the simple clipping, e.g., this token is next to you, these are near, these

are far away, and so on. Raffel et al. (2020) categorize the distances into 32 buckets that

SSpecifically, approaches (1) & (2) and only (2) achieve 25.8 BLEU, while using only approach (1)
achieves 25.3 BLEU on the WMT 2014 English-German translation task.

38

2.4. SELF-SUPERVISED LEARNING AND LANGUAGE MODELS

represent logarithmically increasing distances, starting from 1 until a maximum distance of
K .,V
ij o Tig:
bucketed positions in subsequent layers, as with clipping. Furthermore, the T architecture

128. Each bucket has two learnable embeddings The transformer can refine the
does not use vector embeddings (r; € R?), but instead add scalars element-wise, i.c.,

rij € R, which are shared across all heads and layers.

2.4 SELF-SUPERVISED LEARNING AND LANGUAGE MODELS

Supervised learning algorithms rely on a training set of input examples & and output
examples y (Goodfellow et al. 2016, p. 136). During training, a machine learning model
learns to associate an input with its corresponding output (as for the tasks described
in Section 2.2.2). In contrast, unsupervised learning “refers to most attempts to extract
information from a distribution that do not require human labor to annotate examples”
(Goodfellow et al. 2016, p. 142). Self-supervised learning is a mixture of unsupervised and

supervised learning, as it creates supervised training data without human intervention.

Annotating large datasets for supervised learning is cost-intensive, so that self-supervised
pretraining strategies have gained popularity. These strategies aim to build an initial under-
standing of the underlying data using an auxiliary task, such as language modeling. After
pretraining, the internal knowledge can be applied to a downstream task, which is also
called transfer learning (Goodfellow et al. 2016, p. 536). Transfer learning assumes the
variations and patterns learned during pretraining to be also useful for the downstream
task. This is a powerful concept, as it allows models to be trained on large amounts of
unlabeled data, and then used for a variety of tasks, even if only a small amount of labeled
data is available for the target task—sometimes even without any labeled data at all, which
is called zero-shot. Self-supervised pretraining tasks typically operate on unimodal data,
such as large collections of code or text, and do not require human annotation. Instead,

they bootstrap input/output pairs for supervised learning with auxiliary tasks.

Language Models (LMs) are a popular self-supervised learning strategy for NLP tasks.
Generally speaking, an LM defines a probability distribution over sequences of tokens
(Goodfellow et al. 2016, p. 461), and is trained to predict parts of a sequence based on the
context. How context and the part to predict are defined varies between different models
and learning objectives. In the last 10 years, LMs have been subject to intensive study,
leading to three distinct generations of language models. In the following sections, these
different generations of LMs and their associated self-supervised learning strategies are

discussed.

2.4.1 Word Embeddings

It has long been known that words that occur in similar contexts have similar meanings

(Firth 1957). Word embeddings adopt this idea, where terms or documents are represented

39

FUNDAMENTALS

asdense vectors v € RY of smaller dimensionality in a latent space, so that similar terms are
close to each other and relations between terms can be captured (Mikolov et al. 2013c). The
Continuous-Bag-Of-Words (CBOW) approach to learning word embeddings proposed
by Mikolov et al. (2013a) is trained using a self-supervised cloze task objective on a large
corpus of text. For each word (") in a text corpus of T' tokens, the model is trained by
minimizing the negative log-likelihood of the central word in a given context window of [

words:

T
1
£(8) =~ Y logp(w® | w12, 00,4y, (411/2D)
t=1
(2.42)

The CBOW model stores two matrices Ei, € RIVI*¥d and E,, € R V1, where E,, is
the input and Fy, is the output embedding matrix. The input embedding v® of the t-th

word is obtained by averaging the embeddings of the context words:

1 L/2]

l_il Z Evocab(w(t+i))’; (243)
i=—[1/2],i7#0

o) —

where vocab is a mapping from words to indices in the vocabulary, as defined in Equa-
tion (2.1). The input embedding is then compared to all output embeddings to obtain a
probability distribution over the vocabulary”, that is used to predict the central word:

p(w(t) | w2 7w(t—l)’w(t-i-l)7 o w(t+U/2J)) = softmax(Eoy - ,U(t))
(2.44)
After training, the word embeddings in Ej, can be used for nearest neighbor searches to
obtain similar words, e.g., retrieving identifier db for identifier database . Interestingly,
the embeddings capture notions of semantic similarity, and certain relations manifest as
vector offsets (Mikolov et al. 2013c).

One key problem with word embeddings is that the embeddings are static and do not
consider the context in which the word is used. Hence, static word embeddings can not
distinguish between words that have different meanings, such as homonyms. For example,

the words bow (bend forward) and bow (a weapon) will have the same embedding.

SUBWORD EMBEDDINGS

Another disadvantage of word embeddings—as described above—is that they cannot

represent words that are not in the vocabulary. This is especially problematic for source

7Note that for large vocabularies, computing the softmax over the vocabulary is computationally expensive
or infeasible. Mikolov et al. (2013a) propose to use a hierarchical softmax implementation or negative
sampling to approximate the softmax. This is not further discussed here.

40

2.4. SELF-SUPERVISED LEARNING AND LANGUAGE MODELS

code identifiers, which are often domain-specific and contain compound words, such
as databaseConnection . For example, during training time when building the vocabulary,
one may only encounter the identifiers database and connection , but not the compound
word. During inference no embedding is available for the compound word, and one would
need to perform manual post-processing and use the average of the embeddings of the

individual words.

Subword embeddings, such as the FASTTEXT embeddings proposed by Bojanowski et al.
(2017), aim to solve this problem by building the embedding for a word from its subword
information automatically. Specifically, the authors propose to encode multiple character
n-grams of the word and compute Equation (2.44) for each n-gram individually. The
embeddings of the subwords are summed to form the embedding of the word. This has
the advantage that the amount of possible subwords is much smaller than the amount
of words, and the model can create embeddings for unseen words at inference time by

combining the embeddings of the subwords.

2.4.2 Contextualized Language Models

Compared to static word embeddings, contextualized language models generate word
representations that depend on the context in which the word appears. For example,
when building a representation for the word bow in the sentence “He took a bow after
the performance”, the model can use the context to distinguish that bow has a different
meaning and thus should get a different representation than in the sentence “He used a
bow to shoot the arrow”. While some language models are built with n-grams (Liu et al.
2024) or with Long-Short-Term-Memory Networks (LSTM:s) (Peters et al. 2018), the
main driver and most successful architecture for contextualized language models has been
the transformer architecture (see Section 2.3). The transformer architecture serves as
the foundation for many widely used LMs in NLP and IR, such as BERT (Devlin et al.
2019), GPT (Radford et al. 2018), and T (Raffel et al. 2020). Vaswani et al. (2017)
proposed an encoder-decoder transformer architecture, as detailed in Section 2.3, but the
individual components can also be used separately. For example, the BERT model uses
only the transformer encoder, while the GPT model uses only the decoder part. LMs
from this generation are typically pretrained on large text corpora using self-supervised
learning objectives, and then fine-tuned on specific downstream tasks, with much smaller
labeled datasets.

MASKED LANGUAGE MODELING

One popular self-supervised learning objective is Masked Language Modeling (MLM),
as used in the BERT, CODEBERT, and ROBERTA models (Feng et al. 2020; Liu et
al. 2019). It is designed for the transformer encoder, and allows learning bidirectional

contextual representations for the input sequence (i.e., modeling p(x)), since the self-

41

FUNDAMENTALS

attention mechanism in the encoder considers both left and right contexts. This makes
MLM powerful for applications that need to build a representation for a complete input

sequence, such as text classification or IR.

The model is trained to predict masked tokens in the input sequence. Formally, a cor-
rupted input sequence is created from & = (1), 23 ... (")) by modifying a set
of positions M C {1,2,...,n}. In 80% of the cases, the tokens at these positions are
replaced with a special mask token 2(Mask) (see Section 2.1.1). In 10% of the cases, the
tokens are replaced with a random token from the vocabulary, and in 10% of the cases, the
tokens are left unchanged (Jurafsky and Martin 2009, p. 248). The transformer encoder
maps & to a sequence of hidden states 2z, as detailed in Section 2.3. The model is then

trained to predict the original tokens at the masked positions:

1 . .
'CMLM(G) = *M Zlogpmodel(x(z) ‘ z(l)) (245)
€M

The first token of the sequence is always a special classification token 2(%) which is used
to generate a representation for the complete sequence. This representation is used for

downstream tasks, such as text classification or IR.

AUTOREGRESSIVE LANGUAGE MODELING

Another self-supervised learning objective is autoregressive language modeling, as used in
the GPT, INCODER, and STARCODER models (Radford et al. 2018; Fried et al. 2023;
Li et al. 2023). In this setting, the model predicts each token in the sequence given the
previous tokens. This model uses the transformer decoder, which is designed to generate
sequences autoregressively, hence, the input is denoted as y = (y(, ..., y™). The
model is trained to maximize the likelihood of the sequence (i.c., modeling p(y)) by

predicting the next token given the previous tokens:
1 & ‘ .
0) = —= logpmoder(y® | y(<V 2.46
Lam(0) - ; 08 Pmodel (¥ | Y'=") (2.46)

Note that this loss corresponds to Equation (2.16) without the conditioning on the input
sequence &, as the model generates the output sequence from scratch. An autoregressive

language model is typically used for text or code completion tasks (GitHub 2024).

However, the autoregressive nature makes using the available context more difhicult. Con-
sider for example code completion, where the cursor marks the position at which the
completion should be inserted. The model has to generate the completion based on what
comes before in the file, which may miss some important methods that are defined later in

the file (e.g., a helper function). The INCODER model addresses this issue by inserting

42

2.4. SELF-SUPERVISED LEARNING AND LANGUAGE MODELS

marker tokens at the position of the cursor, and using another token to indicate the end of

the context.

SEQUENCE-TO-SEQUENCE LANGUAGE MODELING

Finally, encoder-decoder models, such as T5, CODET's, and BART (Raffel et al. 2020;
Wang et al. 2021b; Lewis et al. 2020b), extend the above ideas by using a sequence-
to-sequence framework, where the model is trained to map a noised input sequence
Z to an output sequence Y. Typically, the input sequence is corrupted by deleting, shuf-
fling, or replacing tokens or spans of tokens, and predicting either the original sequence or
the missing parts. This setup allows using the regular sequence prediction loss for training,
as detailed in Section 2.2.2 and Equation (2.16). Such an encoder-decoder LM for code is
developed in Chapter 4, which also provides additional details on the training process,

model architecture, and pretraining tasks.

2.4.3 Large Language Models

Recently, LLMs—mostly from the decoder-only category—have been scaled up to mul-
tiple billions of parameters, resulting in the development of Large Language Models
(LLMs), such as GPT-3, GPT-4,and LLAMA3 (Brown et al. 2020; OpenAI 2023; Dubey
et al. 2024), has shifted the focus from fine-tuning to prompting. LLMs are scaled-up
autoregressive transformer decoder models, and their amount of parameters ranges from 7
billion (smaller LLAMA variants), over 175 billion in GPT-3, to an estimated 400 billion
in GPT-4. These models are capable of performing a wide range of tasks through i7-context
learning, where the model learns to perform a task based on examples provided in the
input prompt, or is able to do so without any examples at all. LLMs are trained with
Equation (2.46) on massive amounts of data and compute. After pretraining, they are
capable of generating coherent text, but are mainly still autocompletion models predicting
the next token, which is not always the output desired by the user. For code completion
tasks, however, this setting is particularly useful, as the model simply continues writing
the program, conditioned on the input code. Hence, tools such as CodeX (Chen et al.
2021), Tabnine (Tabnine 2024), and GitHub Copilot (GitHub 2024) have been devel-
oped based on these models, and have shown impressive capabilities in code generation
tasks. Moreover, to improve the ability of LLM:s to follow user instructions, instruction
tuning (Ouyang et al. 2022) has been found to be effective. Models like ChatGPT (Ope-
nAl 2024a) fine-tune the LLM once using reinforcement learning with human feedback
to follow user instructions. After this training step, the instruction-tuned LLM can be
applied to a wide range of tasks, all based on the prompt given to the model. This marks a
shift in the development of LMs, moving away from fine-tuning on downstream tasks and

towards LLMs as “general problem solvers” with prompt-based learning.

43

FUNDAMENTALS

While LLMs have recently demonstrated impressive capabilities, they have been developed
concurrently with (or after) the work presented in this thesis, and are not the focus of
this thesis. Nevertheless, the advancements in LLMs present exciting opportunities for
future research, particularly in enhancing the models and techniques discussed in this
thesis. For instance, in Chapter 5, the code search embeddings are compared with those
from OpenAT’s LLMs. Additionally, the conclusion in Chapter 8 explores how LLMs can
be integrated with the proposed approaches and tools to further improve performance in

code-related tasks.

2.5 INFORMATION RETRIEVAL

This section has been largely influenced by the excellent books Introduction to Informa-
tion Retrieval (Manning et al. 2008) and An Introduction to Neural Information Retrieval
(Mitra and Craswell 2018). It provides a brief overview of the development of Infor-
mation Retrieval (IR) techniques and introduces the ones used in this work. It starts with

traditional keyword-based retrieval, followed by distributional semantics and neural IR.

IR is the process of finding relevant documents or passages in a collection of unstructured
documents that satisfy a user’s information need (Manning et al. 2008, p. 1). In this
thesis, documents and queries are sequences of tokens from a vocabulary V, produced by a
tokenization process (see Section 2.1.1). The goal is to rank the documents based on their

relevance to the query.

2.5.1 Keyword-Based Information Retrieval

Traditional IR systems employed probabilistic keyword-based retrieval techniques and
have been used in many code search systems, e.g., (Sindhgatta 2006; Grechanik et al. 20075
Grechanik and Poshyvanyk 2008; Chatterjee et al. 2009; Bajracharya et al. 2010; Lv et al.
2015). Sparse vector space models that encode a piece of text as a high-dimensional vector
v € RVl have been used for decades (Manning et al. 2008, p. 120). Based on these
vectors, the similarity between two texts can be calculated using cosine similarity as in
Equation (2.18). Ranking is then performed by comparing the similarity of the query to all
documents or passages in the corpus. The vectors v are called bag-of-words vectors, since
they do not consider the order of the words in the text. Several weighting schemes for v’s
entries have been proposed to improve retrieval quality compared to a one-hot encoding,
starting with term frequency, TF-IDF (Term Frequency-Inverse Document Frequency)
(Sparck Jones 1972), and later BM2 5 (Robertson et al. 1994; Robertson and Zaragoza

2009). The following sections provide a brief overview of these weighting schemes.

44

2.5. INFORMATION RETRIEVAL

TF-IDF

Let tf(D, t) denote the frequency of token t € V in a tokenized document D, and df(t)
the number of documents in the corpus that contain ¢. The Inverse Document Frequency
(IDF) is subsequently defined as idf(t) = log; dfi(t)’ where NN is the total number of
documents in the corpus (Jurafsky and Martin 2009, p. 296). Intuitively, the IDF gives a
high score to “informative” terms appearing in few documents, and a low score to terms
appearing in many documents and thus having a low entropy. Terms appearing in every

document, such as stopwords, have an IDF of zero.

Then the TF-IDF weight of term ¢ in document D is calculated as follows:
tfidf(D, t) = f(D, t) - idf(¢) (2.47)

One can think of the TF-IDF weight as a measure of how important a term is in a document
relative to the corpus. This allows to define the aforementioned sparse vector v for a
document D (or a query) so that v; = tf-idf(D, V) for all terms in the vocabulary V
(see Section 2.1.1).

BMzs

BM25 proposed by Robertson et al. (1994) is an extension to TF-IDF, which can be
considered the industry standard for enterprise IR, and is used by many practical search
engines such as ElasticSearch. Hence, it is used as a baseline in Chapter 5. Jurafsky and
Martin (2009, p.298) define the BM2 5 ranking function as follows for a query Q =
(q(l), ¢, ...,¢") and a document D:

= ; (D, ¢
BM25(D, Q) =) _idf(q"") - leﬁgth (g)) . (2.48)
i=1 k (1 —b+b(m) +tf(D,q('L))>

where k and b are free parameters, and length(Dg,) are the average document length in
the corpus. The higher the score, the more relevant the document is to the query. One
can see that BM2 5 is similar to TF-IDF, but with an additional term in the denominator
that introduces term frequency saturation and document length normalization (Jurafsky
and Martin 2009, p. 298). The parameters k and b adjust how strongly term frequency
influences relevance and account for document length, which is more flexible compared

to TF-IDF.

2.5.2 Distributional Semantics

The high-dimensional vector space models have the drawback that the representation does
not convey that apple and pear are more similar than apple and communism. “But when

items have distributed or feature based representations, then the similarity between two

45

FUNDAMENTALS

items is determined based on the similarity between their features” (Mitra and Craswell
2018, p. 29). This is the foundation of modern neural-based retrieval models, which
represent tokens by dense embeddings. Earlier approaches factorized the term-feature
matrix to obtain embeddings, such as LSA (Deerwester et al. 1990) or PLSA (Hofmann
1999). Nowadays, embeddings are learned with neural networks by setting up a feature
prediction task (Mitra and Craswell 2018, p. 38). This is also referred to as learning to
rank. For example, by using the contrastive learning objective detailed in Section 2.2.2 to

train a model to assign similar embeddings to a related query and document.

SUPERVISED NEURAL INFORMATION RETRIEVAL

Supervised approaches use human relevance assessments, i.c., query-result pairs, to optimize
a neural model for a ranking task. Earlier versions of these models were trained end-
to-end with a loss function that directly optimizes the ranking quality (Huang et al. 2013;
Gillick et al. 2018). Due to their simplicity and fast retrieval, the aforementioned models
and most others use bi-encoders, as described in Section 2.2.2. These approaches were
boosted by the development of LMs (see also Section 4.2), such as BERT, which have
been used as a basis for many IR models (Nogueira et al. 2019; Humeau et al. 2020).
However, bi-encoders have been found to be outperformed by supervised cross-encoders
that encode the query and the document together (Nogueira et al. 2019; Humeau et
al. 2020). Allowing the model to combine every word in the query with every word in
the document is surely more expressive than the bi-encoder approach, but also requires
encoding the query together with every document in the corpus with the model at inference
time. This is computationally much more expensive, if not infeasible, for large corpora. To
this end, Nogueira et al. (2019) proposed a multi-stage ranking approach that combines
the best of both worlds by first retrieving a large set of candidates with BM2 5 and then

reranking them with a cross-encoder.

The DPR model (Karpukhin et al. 2020) was one of the first models to successfully
use bi-encoders for supervised IR. It has been shown to outperform BM2 5 on the MS
MARCO dataset (Nguyen et al. 2016) by using in-batch negative samples along with
a hard-negative sample with high keyword overlap that does not contain the answer
(retrieved with BM25). Also, contrastive learning with bi-encoders has been successfully
applied to learn sentence similarity with aligned sentence pairs (Reimers and Gurevych
2019). Luan et al. (2021) compare different neural ranking architectures and find that,
while cross-encoders outperform bi-encoders (which in turn outperform Bm25), hybrid

models can combine the strengths of both approaches.

SELF-SUPERVISED LEARNING FOR INFORMATION RETRIEVAL

One of the main challenges in supervised IR is the lack of labeled data, as it is expensive

to obtain relevance assessments for query-document pairs, which is why self-supervised

46

2.5. INFORMATION RETRIEVAL

strategies for IR have been proposed. This thesis explores such an approach for an IR
task in the context of code search, and develops a self-supervised contrastive learning
framework for CCS. This section provides an overview of self-supervised learning for IR

and related work.

Distributed representations for words or documents have been developed over the years
and have been used in IR to learn semantic similarities between words or documents.
From Bengio et al. (2000) to word embedding models such as WorD2 VEC (Mikolov et al.
2013b) and GLOVE (Pennington et al. 2014) to BERT, (contextualized) embeddings
have become a standard in NLP. Self-supervised embeddings can be used for IR tasks by
aggregating the embeddings of the words in a document or query to obtain a represen-
tation. However, while this representation encodes some aspects of similarity, they are not
optimized for retrieval. To this end, Lee et al. (2019) train a bi-encoder retriever with an
inverse cloze task. Another line of research has explored joint training of retrievers and
generators, particularly for open-domain question answering. For instance, REALM (Guu
et al. 2020) employs joint training of an encoder LM with a bi-encoder retriever, while
Lewis et al. (2020a) train both a retriever and a generator with an unsupervised multilin-
gual multi-document paraphrasing objective. Similarly, Izacard and Grave (2021) propose
using cross-attention scores from a sequence-to-sequence model as a training signal for
the retriever. Another relevant approach is SIMCSE (Gao et al. 2021b), which train a
contrastive model by feeding the same sentence twice through the model and assume that
dropout adds sufficient noise to the input to learn a good representation. In CCS, the
input sequences are different (context and target), but both are encoded independently
with dropout by the transformer. This setup is similar to SIMCSE but more challenging

because it involves paired data.

47

FUNDAMENTALS

48

PArRT I

MODELS AND TECHNIQUES

49

If you have a good name for a method you don’t need to look at the body.
— Fowler (1999, p. 64)

Relative Structural Transformers

3.1 INTRODUCTION AND MOTIVATION

THE INCREASING INTEREST in using machine learning algorithms to semantically
understand source code has opened up many possibilities, including identifying code
clones (Yu et al. 2019), generating automated summaries (Fan et al. 2018), detecting
defects (Zhou et al. 2019), querying databases using natural language (Xu et al. 2017),
assigning bugs (Mani et al. 2019), and performing semantic searches of code (Gu et al.
2018). At the time of this research—which took place in 2018 and 2019—the transformer
architecture (Vaswani et al. 2017) has been successful in many sequence-to-sequence tasks,
such as machine translation and abstractive summarization. However, at the time of this
research the transformer has not been widely used for source code understanding. This
chapter focuses specifically on evaluating the effectiveness of a transformer-based model
for encoding source code. To accurately measure the model’s understanding of source code,
itis trained end-to-end without pretraining on tasks that encode source code and generate

natural language descriptionsl.

This chapter is adapted from Johannes Villmow, Adrian Ulges, and Ulrich Schwanecke (2021b). A
Structural Transformer with Relative Positions in Trees for Code-to-Sequence Tasks. In International Joint
Conference on Neural Networks, [CNN 2021, Shenzhen, China, July 18-22, 2021. IEEE, pp. 1-10, previously
published by ©2021 IEEE.

"Training a model end-to-end on a dataset has been common in 2018, however, since then Artificial
Intelligence (AI) research has shifted to pretraining models on large datasets before fine-tuning them on
specific tasks. This is the focus of the next chapter.

51

https://doi.org/10.1109/IJCNN52387.2021.9533717
https://doi.org/10.1109/IJCNN52387.2021.9533717

RELATIVE STRUCTURAL TRANSFORMERS

An important aspect of understanding source code is capturing its hierarchical structure.
Hence, the most successful code models, such as Cope2vEC (Alon et al. 2019b) and
CoDpE2SEQ (Alon et al. 2019a), rely on abstract representations of syntactic elements,
such as AST or data flow graphs (Guo et al. 2021). The authors find that syntactic rep-
resentations provide a richer representation of the code’s semantics to the model than
a linear sequence of tokens. Obviously, the model does not need to learn the structure,
when it is provided with a syntactic prior. The model can focus on the actual task and—
hypothetically—requires less training data to achieve the same performance. In 2019,
transformers have become the state-of-the-art for modeling all kinds of tasks in NLP,
for example with BERT. However, the transformer architecture is designed to efficiently
process sequences of tokens, and fails with structural inputs such as trees, primarily due to
its inherent limitation in recognizing hierarchical structures. Overall, self-attention, the
transformer’s main component, is based on a pairwise comparison between all tokens in
the input, whereas “structure” (i.c., the linear order of tokens) is only encoded by adding
positional embeddings to the input. The overall research goal of this chapter is to investi-
gate how to encode structural information from trees with transformers to improve their

performance on sequence prediciting code understanding tasks.

Integrating trees into transformers can be achieved through three general strategies: (1)
aggregation (Nguyen et al. 2020), (2) the use of positional embeddings (Shiv and Quirk
2019), and (3) a structure-aware loss function (a novel contribution of this chapter). Ag-
gregation is proposed by Nguyen et al. (2020), who modify the attention mechanism to
hierarchically aggregate node embeddings. However, this approach suffers from high mem-
ory consumption and slow training. It requires quite drastic architectural modifications of
the attention mechanism, which might not be necessary. The second approach enhances
positional embeddings to encode the structure of trees. As mentioned above, positional
embeddings are used to encode the order of tokens in the input sequence. As detailed
in Section 2.3.2, they come in two variants in regular transformers: absolute (Vaswani
ctal. 2017) and relative (Shaw et al. 2018). Shiv and Quirk (2019) have extended abso-
lute positional embeddings to trees. They convert trees into binary trees and introduce a
static encoding for binary tree structures, similar to sinusoidal positional embeddings for
sequences. However, to the best of the author’s knowledge, relative positional embeddings
have not yet been used to encode tree structures. The third approach, a structure-aware

loss function, is introduced in this chapter.

3.1.1 Contributions

This chapter addresses the aforementioned research gap by introducing a novel approach
to integrate structural information from trees into transformers. The approach consists of
two main contributions: (1) relative positional embeddings for trees and (2) a structure-

aware loss function and is visualized in Figure 3.1. The first extends relative positional

52

3.1. INTRODUCTION AND MOTIVATION

embeddings to encode the structural relationship between tree nodes, which adds an
inductive bias for tree hierarchies to transformers. We investigate two different relative
positional patterns: the path length between nodes and the upwards and downwards steps
in the tree that are required to move from one node to another. Additionally, this chapter
demonstrates how these relative positional patterns can be computed efficiently during
training. The second contribution is a novel loss function, that predicts the LCA of nodes
in the tree from the encoder’s output embeddings., which forces the model to preserve
structural information within its hidden states. This chapter validates the effectiveness of
this approach on three sequence-to-sequence tasks: method naming, code summarization,

and machine translation.

e The method naming task aims to predict the name of a method based on its body
and signature. It can be seen as an extreme abstractive summarization task and is

used to evaluate the model’s ability to understand code (Alon et al. 2019a).

o The code summarization task predicts a natural language description of a code
snippet. This is also an abstractive summarization task—although with longer
output sequences than method naming—that is frequently used for evaluating code

understanding models (Alon et al. 2019a).

e The machine translation task translates a natural language text from one language
to another. This task is used to evaluate the model’s ability to process natural
language and is a common benchmark for sequence-to-sequence models in the
NLP community (Vaswani et al. 2017).

Since this chapter focuses on sequence-to-sequence tasks, the contributions are integrated
into an encoder-decoder transformer model, which is called Relative Structural Trans-
former (RsT). The results show that RST outperforms the state-of-the-art on the method
naming task by 6 percentage points (p.p.) F1-score and achieves competitive results on
the other tasks, while improving over a regular token-based transformer baseline on all

tasks. In summary, the key contributions of this chapter are:

o The demonstration that code-to-sequence tasks can be approached end-to-end with

self-attention based transformers with relative positional embeddings.

o The introduction of new relative positional tree patterns for self-attention with
relative positional embeddings that represent movements in the tree structure,
exploring two positional patterns: the path length between nodes and explicitly

encoding the upwards and downwards steps in the tree.

o Anewloss function that predicts the LCA of nodes in trees for training transformers

on tree-structured data.

o Outperforming the state-of-the-art on the method naming task by 6 p.p. F1-score.

53

RELATIVE STRUCTURAL TRANSFORMERS

3.2 RELATED WORK

This chapter intersects the fields of software engineering and NLP (we encode code and
generate natural language). Relevant preliminary work in these areas is outlined separately
below. These fields are currently an area of intensive research and aim to replace manual
feature engineering with fully automated representation learning, which is called deep
learning (LeCun et al. 2015). The increasing availability of large datasets, combined with
advancements in hardware—particularly GPUs—has enabled the training of large Als
models for complex, domain-specific problems. To support the development of these
models, powerful libraries such as TensorFlow and PyTorch (Paszke et al. 2019) are widely

used in practice.

3.2.1 Natural Language Processing

The field of NLP has made significant progress in recent years, driven by increasing data
volumes® and new representation learning approaches. Early representation learning ap-
proaches, such as WorD2VEC and GLOVE (Mikolov et al. 2013a; Pennington et al. 2014),
proposed vector representations (embeddings) for words in a latent space, where semanti-
cally similar words are placed close to each other, and syntactic and semantic relationships
are captured as translations (Mikolov et al. 2013c). Typically, these static embeddings
were used as inputs to more complex, task-specific neural network architectures, including
Convolutional Neural Networks (CNNs) (Kim 2014), RNNs with LSTM units (Hochre-
iter and Schmidhuber 1997), graph convolutional networks (Kipf and Welling 2017),
and recursive neural networks (Socher et al. 2013; Tai et al. 2015). However, RNNs and
recursive neural networks are slow to train due to their sequential nature. CNN-based
models, such as the one by Dauphin et al. (2017), offer better scalability but were initially
found to underperform compared to RNNs on NLP tasks, although later architectures
improved their performance (Gehring et al. 2017; Dauphin et al. 2017).

These statistical models based on embeddings achieved significant progress over manual
feature engineering approaches across a large field of application areas (Goldberg 2016),
including document search (Huang et al. 2016), machine translation (Sutskever et al.
2014), question answering (McCann et al. 2018), text summarization (McCann et al.
2018), relation extraction (McCann et al. 2018; Zhang and Wang 2015), and sentiment
analysis (Tai etal. 2015). Some models also generalize to new terms outside the vocabulary
(Mikolov et al. 2018).

At the time of this research, the focus in NLP has shifted from approaching the aforemen-

tioned tasks with static word embeddings and specialized architectures to attention-based

2For example, the open source platform GitHub offers access to over 10 million repositories with freely
accessible source code, large text corpora are freely available (Wikipedia, News-Corpora), and also collab-
oratively maintained knowledge graphs such as DBPedia are a useful data source.

54

3.2. RELATED WORK

transformer models (Vaswani et al. 2017) that learn embeddings and the task simulta-
neously. As detailed in Section 2.3, transformer models offer a parallelizable attention
mechanism that shortens training time and contextualizes embeddings by aggregating
information from surrounding words. This architecture has been successful in a wide
range of NLP tasks, including machine translation (Vaswani et al. 2017) and question
answering (Devlin et al. 2019). Earlier summarization approaches employed pointer
networks (Vinyals et al. 2015) to mitigate the OOV problem by copying words directly
from the input sequence (See et al. 2017). However, recent attention has shifted towards
using BPE (Sennrich et al. 2016), which addresses the OOV problem by splitting words
into a fixed set of subword units (see Section 2.1.1). BPE is utilized in nearly all modern
transformer architectures and language models, and therefore used for every approach
in this thesis. Note that related work on pretrained models, such as BERT (Devlin et al.
2019), CopEBERT (Feng et al. 2020), ROBERTA (Liu et al. 2019), and GPT (Radford
et al. 2018), is not covered in this chapter, as the focus is on training models end-to-end

on specific tasks. Pretrained models are the focus of the next chapter.

SEQUENCE-TO-SEQUENCE TASKS

Sequence-to-sequence tasks, such as machine translation and abstractive summarization,
involve transforming a source sequence into a target sequence, and are often approached
with encoder-decoder model architectures (Sutskever et al. 2014). In particular, abstractive
summarization condenses a source sequence into a concise, descriptive target sequence
while preserving its semantic meaning (Fan et al. 2018). This task has been approached
using various architectures, including RNNs with optional attention mechanisms (Bah-
danau et al. 2015), convolutional networks (Gehring et al. 2017; Fan et al. 2018), and
attention-based transformers (Vaswani et al. 2017). However, this chapter follows the
aforementioned most recent trends in NLP and uses an encoder-decoder transformer

architecture for the experiments.

3.2.2 Mauachine Learning in S()ﬁwﬂre Engineering

Modeling the semantics of source code using representation learning approaches—such as
predicting precise natural language summaries or missing identifiers—has emerged as a
research topic in recent years (Allamanis et al. 2018), with applications in clone detection
(Baxter et al. 1998), code summarization (Alon et al. 2019a), natural language database
querying (Xu et al. 2017), bug triage (Mani et al. 2019), and semantic code retrieval
(Gu etal. 2018). Some approaches develop probabilistic models for source code (Bielik
etal. 2016; Raychev et al. 2016), which are then used for the deobfuscation of packed
Android applications (Bichsel et al. 2016), automated renaming of variables with more
meaningful identifiers within JavaScript applications (Raychev et al. 2019), and code
completion (Raychev et al. 2014). Similarly, Allamanis et al. (2015) predict identifiers

55

RELATIVE STRUCTURAL TRANSFORMERS

in source code using a log-bilinear context model. Allamanis et al. (2016) introduce the
CONVATTENTION model that uses a convolutional attention network over the tokens
in a method to predict sub-tokens in method names. Recently, the BERT model has been
adapted to the source code domain; for example, Feng et al. (2020) train CODEBERT on

pairs of natural language and methods.

STRUCTURAL PROPERTIES OF SOURCE CODE

Most approaches treat source code as a token sequence and do not exploit additional
structural information provided by existing syntax parsers (Allamanis et al. 2014; Hellen-
doorn and Devanbu 2017). However, source code is inherently structural—unlike natural
language—due to the design of programming languages. A programming language is
built on a specific context-free grammar that defines keywords, identifiers, and structure.
This grammar is used during syntax analysis to verify the correctness of a program and to
represent the program as a tree structure. Several successful approaches in the source code
domain utilize that structural information. Tai et al. (2015) propose the TREELSTM
network, which recursively encodes a tree by computing a node’s representation based
on its children using an LSTM. However, compared to the approach in this chapter the
model is not parallelizable and thus slow. Yin and Neubig (2017) propose a model that
generates code from natural language descriptions by following a rule-based approach
over ASTs. Hu et al. (2018) linearize an AST and use a longer structure-based traversal
as input for a regular sequence-to-sequence model to predict comments. LeClair et al.
(2019) summarize source code by using two encoder networks, one that encodes the
structure-based traversal of the AST and another that encodes the textual information
in the sequence. Structure-based traversals have the major drawback, that they produce
longer input sequences than the approach presented in this chapter (that only encodes
the pre-order node sequence), which increases runtime. For the same purpose, Alon et al.
(2019a)’s CoDE2SEQ model encodes paths between terminal tokens in an AST usinga
dedicated encoder-decoder architecture with attention. In contrast to CODE2SEQ, our
model encodes the full AST with all relative positions at once and additionally implicitly
models the path between any two nodes. LeClair et al. (2020) and Fernandes et al. (2019)
propose a structured summarization approach for code and natural language by adding
a graph neural network on top of a sequence-to-sequence encoder. These approaches,
however, utilize neither transformer networks nor structural losses or relative position

representations.

Closest to the work in this chapter are is related work that study transformer models that
encode syntax trees. Shiv and Quirk (2019) define absolute positional embeddings for
regular trees and show that these can be used to leverage syntactic information. For this
approach, the tree needs to be converted into a binary tree. This model is referred to

as ABSOLUTE TREE TRANSFORMER. Concurrent to the work in this chapter, Kim

56

3.3. APPROACH

Lowest Common Ancestor (LCA) H H

Prediction Text Prediction

?

Transformer
Decoder

Relative Tree
Positional
Embedding

Transformer
Encoder

Multi-Head
Attention

Absolute
Positional
Embedding

Embedding

Tree (pre-order traversal) Q QOO OO0 Text (shifted right)

<~ rg = —1124

Embedding

Figure 3.1: The Relative Structural Transformer (RST) architecture. The input to the transformer encoder (middle) is
the pre-order traversal of the tree (left). Structural information about the tree is encoded with relative positional
embeddings (red) that encode movements between nodes. The transformer decoder (right) is not altered and operates
on sequences using a standard architecture. This figure is adapted from Villmow et al. (2021b) ©2021 IEEE.

ctal. (2021) propose a similar approach to the one presented in this chapter, but utilize
precomputed relative node positions and only apply them for scalar boosting of attention
weights during self-attention. The HTERARCHICAL TRANSFORMER (Nguyen etal. 2020)
uses aggregation, masking, and hierarchical embeddings during self-attention to incorpo-
rate structure into transformers. Thereby, the authors change the attention mechanism,
which negatively impacts performance (what will be show in Section 3.5.1 and Figure 3.4).
In contrast, our method uses the widely adapted relative positional embeddings and other-
wise follows a standard architecture. Also, none of these approaches use a structure-aware

loss function to enforce the model to learn the structure of the tree.

3.3 APPROACH

As shown in Figure 3.1 this chapter aims to add a structural prior to transformers, specif-
ically by encoding trees. Due to the focus on encoding trees and generating sequences,
only the encoder is altered (middle), while the decoder remains unchanged. The approach
starts with converting the tree into a pre-order traversed node sequence, including both
terminal and nonterminal nodes. This turns the tree into a token sequence, making it

compatible with the transformer encoder. Two key modifications are proposed:

1. In Section 3.3.1 relative positional embeddings (red in Figure 3.1) are defined that
encode structural information with tree patterns (gray dashed arrow). This allows

the transformer to recognize tree hierarchies.

57

RELATIVE STRUCTURAL TRANSFORMERS

S e --Ten =271)

(a) Movement Embeddings (b) Distance Embeddings

(6)

the LCAis node m(3) (blueish). Left side: Toreach :1:(4) from x(ﬁ), two upward traversals are required (red, 27), followed

Figure 3.2: Hierarchical node relationships in a tree structure. In the context of nodes x(4) (yellow) and ™’ (purple),

by one downward traversal (green, 1]). Thus the movement pattern is 764 = —271 1. Right side: The distance

(6) (4)

between x'°/ and '™ is three steps (orange arrows). This is encoded in the distance pattern as 7g4 = —3<>. In

both methods going backwards in the pre-order traversal is indicated by a minus. Other patterns are shown in light gray.

2. The model is designed to encode structural information in its hidden states. To
ensure this, in Section 3.3.3 a new loss function is introduced, forcing the model
to identify the LCA of two nodes (top). This loss function is integrated with the

regular translation loss as a weighted sum.

Also, please note that this approach could directly be used in encoder-only architectures,
that aim to encode trees, and also in tree-generating decoders. However, both of these

studies are left for future work.

3.3.1 Relative Position Representations for Trees

The approach developed in this thesis builds upon relative positional embeddings for
sequences as introduced by Shaw et al. (2018), detailed in Section 2.3.2. The authors
introduced the concept of relative position representations and distinguished between key
1’{]{ and value 7’¥ embeddings. Their findings indicated that utilizing only key embeddings
in the compatibility calculation in Equation (2.41) proved sufficient. Following this insight,
this work implements the attention mechanism using Equation (2.41) from Shaw et al.
(2018) and Equation (2.34) from Vaswani et al. (2017) (instead of using Equation (2.40)
from Shaw et al. (2018)). Consequently, a single embedding 7;; = Tg € R% is used to
encode the relative tree position between nodes ¢ and j. Here, dj, represents the hidden
dimension of the transformer attention head. The positional embedding is shared across
all attention heads, but not across layers. The key difference to the work of Shaw et al.
(2018) is that here, 7;; is based on the relative position of i and j in a tree, and notin a

flat sequence.

58

3.3. APPROACH

The relationship between nodes in a tree is characterized by the number of upward and
downward steps required to move from node ¢ to node j, as illustrated in Figure 3.2. A
matrix M € R™ "™, where n is the number of nodes in the tree, is used to record these
steps. Starting from node 7, one needs to ascend M;; steps to reach the LCA lca(i, j)
of nodes ¢ and j, and then descend Mj; steps to arrive at node j. Similar to Shaw et al.

(2018), the distances in the movement matrix are clipped to a maximum path length &:
M = min(M , k) (3.1)

Two methods are examined for encoding positions of nodes in the tree into 7;;. Both are

derived from M, but differ in the way the path is encoded.

PaTH LENGTH In the first method, the path from i to j vialca(i, j) is represented by its
length [(7, j) = min(M;; + Mj;, k), ranging from 0, . . ., k. The positional embedding
7;; is derived from an embedding table R € Rnx(k+1)x2 The embeddingis determined
byrij := R. (i j),1,., For example, in the relation between parent node () and child
2®3) shown in Figure 3.2b, the path length pattern 1 <+ indicates a parent-child step, while
— 14+ denotes a child-parent step. Note that the sign (—) indicates the order of the nodes

in the pre-order traversal.

MOVEMENT PATTERN The second method provides more granularity by separately
encoding the upward (M;;) and downward (M;) steps between the nodes. Here, the
embedding table R € R Xk DX(-+1)X2 onains twice as many embeddings as in
the path length method, to account for both upward and downward steps. The encoding
is defined by 7i; := R, 1,5 M1, For instance, in the relationship between nodes
(%) and ¥, shown in Figure 3.2a, the movement includes two upward steps (27) to the
LCA z®), followed by one downward step (1) to the left (—) to reach @), represented

as —271].

While both methods model parent-child relationships explicitly, the movement pattern
method offers greater expressive power than the path length method. For example, in
the path length method (Figure 3.2b), 724 = 76, = 3 ¢+ as both paths have the same
number of steps and the same direction. In contrast, in the movement pattern method
(Figure 3.2a), 194 is encoded as 112, while 7¢,, is 271].

3.3.2 Efficient Computation

Since the relative position representations are part of the forward pass, they need to be
efficiently computable. The computation of tree position representations becomes straight-
forward given the matrix M, since it is then only a matter of indexing into the embedding

table R. However, precomputing and storing M is not feasible for large datasets, as it has

59

RELATIVE STRUCTURAL TRANSFORMERS

1000000 1111111 0000000
1100000 1211111 1011111
1010000 1122222 1100000
1011000 1123222 2210111
1010100 1122332 2211001
1010110 1122342 332210 2
1010001 |[1122223] [221111 0,

(a) Node incidence matrix IN, defined (b) Ancestral matrix A, defined in (c) Movements matrix M, defined in
in Equation (3.2) Equation (3.4) Equation (3.5)

Figure 3.3: Matrices used to compute the movement matrix M for the tree from Figure 3.2.

a quadratic space complexity of O(n?). Instead, in the following it is demonstrated that
M, and thus 7;;, can be efhciently computed through matrix operations from a linear
sequence of the number of descendants of each node. For the tree in Figure 3.2, the stored
descendant count sequence s (6, 0,4, 0, 1, 0, 0). This count can be precomputed in linear

time and space.

The goal is to represent the tree with n nodes by a binary node incidence matrix N =
{0,1}™*™, which denotes for each node its path to the root in the tree?. In the node
incidence matrix, the element V;; is set to 1 if node ¢ is an ancestor of node j, and 0
otherwise. Note that V;; = 1, because Section 2.1.2 defined each node as an ancestor of
itself. An example of the node incidence matrix for the tree from Figure 3.2 is shown in

Figure 3.3a. The matrix is formally defined as:

Nij =

{1 if j € ancestors(7) (32)

0 otherwise.

Since, the tree is represented as a pre-order sequence of nodes, IN can be easily derived
from the stored descendant count sequence (the size of each node’s subtree) by populating

| descendants(j)| + 1 rows in the j-th column of N with 1 starting from the diagonal:

{1, if i€ {jj+1,...,7+ |descendants(j)|}
ij =

0, otherwise.

This can be done with native tensor operations in libraries like PyTorch or NumPy. The
node incidence matrix has interesting properties that can easily be computed with tensor

operations in these libraries. For instance, a vector with the depths of all nodes d € N™

3The node incidence matrix is analogous to the incidence matrix used in graph theory, albeit representing
node-node connections instead of node-edge relationships.

60

3.3. APPROACH

can be computed by summing the rows of IV:
d=N-1, (3.3)

Additionally, the symmetrical ancestral matrix A can be derived from IN (Andriantiana et
al. 2018), which contains the depth of the LCA of a node pair A;; = depth(lca(i, j)) =
dica(i,j)- Since the depth of the LCA is equal to the number of shared ancestors, the
ancestral matrix can be computed by multiplying the node incidence matrix with its

transpose:

A=NN' (3.4)

With A, the movement matrix M € N™*" (Figure 3.3¢) can be computed as follows:
M=N-1,,— A (3.5)

After precomputing an array with the number of descendants of each node in linear
time and space, M can be computed with parallel matrix multiplications efficiently on a
standard GPU—which are optimized for these operations. These operations are executed
with a cubic time complexity, O(n3), which is practical for input sizes common in NLP,

such as sequences up to 1024 in length. This will be demonstrated in the experiments.

3.3.3 Structural Loss

Relative positional representations for trees, as introduced in the last section, provide the
model with the ability to capture the structural relationships between nodes in a tree.
However, the model is not explicitly trained to utilize the structural information encoded
in the relative positional representations. This gap is addressed by introducing a structural
loss, which encourages the model to retain the structural information within its hidden
states in a useful manner. It operates on the principle of node similarity. Nodes in the same
syntactical unit, like expressions in the block of an 1fStatement , are considered similar,
while those in different units are deemed dissimilar. The key element connecting the
two nodes is their LCA, lca(i, j), e.g., the Ifstatement in the example. For the model
to reflect this node similarity in its embeddings, it is trained to predict a node pair’s
LCA. Successfully predicting the Ica(7, j) indicates the model’s understanding of syntactic

dependencies, and thus the tree structure.

LCA prediction starts with the concatenation of 2 and zU), the transformers output
embeddings of nodes 7 and j. This concatenated vector is processed through a linear layer
with ReLU activation, producing an output vector v;;. The aim is to align v;; closely with
the LCA’s output vector 2(1%(%)), Next, v;; is compared with the output embeddings
from the transformer encoder, using the dot product as a similarity measure. A softmax

layer then transforms these similarity scores into a probability distribution over all tree

61

RELATIVE STRUCTURAL TRANSFORMERS

nodes. The process is formally described as follows:

vij = ReLU([z(i) ® z@} W +b) (3.6)

plca(a“?j) = softmax (,U’Lj . Z) (37)

a
In these equations, W € R24*4 and b € R? are the weight matrix and bias vector of the
linear layer. The dimensionality of the transformer encoder’s hidden layer is denoted by d,

and Z € R4 holds the stacked output embeddings z of the transformer encoder.

The softmax vector contains the probability pic,(a|?, 7), representing the likelihood of
each node @ being the LCA of nodes i and j. The loss is computed as the negative log-

likelihood across these node pairs.

n

Elca(e) = - Z logplca(lca(iaj)’i>j’ Z) (38)
i=1 j=1

INTEGRATION INTO TRAINING

Sequence-to-sequence training occurs on input-output pairs (€, y). Here, & denotes the
input sequence of a pre-order linearized tree, such as an AST or constituency parse tree.
Correspondingly, y represents the desired output sequence, which may be a method name
or documentation. In the context of training transformer sequence-to-sequence models
end-to-end, a common approach is to use the label-smoothed cross-entropy translation
loss, as detailed in Equation (2.17). This loss is combined with the structural loss, so
that both losses are optimized simultaneously, where Aj¢, controls the influence of the

structural loss on the overall loss*:

'C(e) = ﬁseq—smooth(e) +)\lca : ﬁlca(o) (3-9)

SAMPLING FOR LOWEST COMMON ANCESTOR PREDICTION

The structural loss calculation for the LCA prediction in Equation (3.8) is based on all
node pairs in a tree. As the number of node pairs exhibits a quadratic relationship with
the tree’s node count, this method becomes computationally demanding. To mitigate this,
the loss is calculated on a subset of ¢c, node pairs (4, j) and their LCAs, sampled from
the tree. Computing the loss only on a subset of node pairs is inspired by the negative

sampling approach used in word embeddings (Mikolov et al. 2013b).

“Note that one could also combine the structural loss with other losses, e.g., for encoder-only models, but
the focus of the experiments is on encoder-decoder models, hence the translation loss.

62

3.3. APPROACH

Algorithm 1: Efficient sampling of node pairs (i, j) and their LCA a for the
structural loss calculation.

Result: Sampled node pairs (¢, j) with their LCA a

Input: Tree 7 with node count n, number of samples ¢y, to draw

form < 1to ¢, do
Sample node a from T" with probability proportional to | descendants(a)
if |children(a)| > 2 then
Draw two distinct children ¢1, ¢o of a;

5

Sample 7 from ¢; and descendants(c;) uniformly;

Sample j from ¢ and descendants(c2) descendants uniformly;
else

14— a;

Sample j from a’s descendants;

end
Return node pair (¢, j) and their LCA a;

end

A straightforward method would be to randomly select nodes ¢ and j from the tree and
calculate their LCA a=lca(i, j). However, this approach can become computationally
demanding as the calculation of the LCA requires a traversal of the tree for each node pair.
For large trees and many pairs, this becomes a bottleneck during training. To overcome
these challenges this chapter proposes a sampling strategy shown in Algorithm 1 that
first samples ancestor @ and then nodes ¢ and j from its descendants. The ancestor a is
sampled from the nodes with a probability proportional to the number of its descendants
| descendants(a)|. This method biases the sampling towards nodes with a larger descen-
dant count, which are more likely to be common ancestors of two randomly chosen nodes,
and leaf nodes, that have no descendants, are never sampled. This ensures that the selected

node @ will always have at least one child®.

Nodes ¢ and j are subsequently sampled from a’s descendants. To ensure that ¢ and j
indeed have a as their LCA, the procedure varies depending on whether a has at least two

children or only one:

1. If a has at least two children, two distinct children, ¢1 and ¢g, are first selected from
a@’s children. Nodes ¢ and j are then sampled from ¢ and ¢3 and their descendants,

respectively, guaranteeing that a is their LCA.

>Note that consequently, this algorithm will never sample @ = 4 = j where a is terminal. However, we
found that this is not a problem in practice.

63

RELATIVE STRUCTURAL TRANSFORMERS

2. If a has only one child, 7 is assigned as a, and j is chosen from a’s descendants. Se-
lectingboth 7 and j from a’s descendants would result in a LCA that is a descendant
of a, rather than a itself.

Note that due to the pre-order linearization of the node sequence, the descendants of @ are
positioned between a and @ + | descendants(a)|. This sequence is already precomputed,

since it is required for the computation of the movement matrix M (see Section 3.3.2).

3.4 EXPERIMENTAL SETUP

This section describes the experimental setup used to assess the effectiveness of the proposed
RsT model. This section first outlines the research questions that guide the experiments,
the approach of this chapter to pre-process trees including the tokenization strategy, the

tasks and datasets used for evaluation, and the hyperparameters and model configurations.

3.4.1 Research Questions

With the experiments the following research questions are addressed:

Research Question 3.1: Does the approach described in this chapter improve the perfor-
mance of transformer models compared to a sequential transformer baseline that is not aware

of the tree structure?

This question aims to assess whether the structural prior is beneficial compared to a
standard transformer. To this end, the RsT model is compared to a strong standard
sequential transformer baseline on three evaluation tasks and six standard datasets: method
naming, code summarization, and machine translation. These are detailed in Section 3.4.3.
Both models are built with the same architecture and hyperparameter setup, and trained
on the respective task end-to-end. This chapter denotes the sequential transformer baseline

as TRANSFORMER (no tree), which processes regular code tokens instead of trees.

Research Question 3.2: How do the models trained in this chapter compare to the

state-of-the-art on the method naming, code summarization, and machine translation tasks?

To this end, both the RsT and the TRANSFORMER models are compared to the state-of-
the-art on the respective tasks. The state-of-the-art models are selected based on the best
reported results in the literature for each task. This includes a comparison of our sequential
transformer baseline to other reported transformer baselines (Alon et al. 2019a), which
allows comparing the impact of the proposed tokenization strategy (which is detailed in
the next section). Additionally, this chapter compares on the method naming task against
the absolute positional embeddings for trees as proposed by Shiv and Quirk (2019) for
transformer models. This model is denoted as ABSOLUTE TREE TRANSFORMER, and

for a fair comparison we will use the same model architecture and hyperparameter setup

64

3.4. EXPERIMENTAL SETUP

as for the other models. Following Shiv and Quirk (2019) the maximum depth of the tree

encoding is set to 64.

Research Question 3.3: How much do the learned relative positional representations
and the structural loss contribute to the performance?

To this end this chapter conducts an ablation study to investigate the impact of both of
our contributions—the relative positional representations and the structural loss—on the

model’s performance.

3.4.2 Pre-Processing Trees

As detailed in Section 2.1.1 it is common practice in NLP to use bottom-up tokenization
algorithms such as BPE to minimize the vocabulary size and improve generalization.
This had at the time of this work started to be used on code as well (Babii et al. 2019).
However, BPE is not directly compatible with tree structures. This chapter proposes a novel
approach and uses a combination of top-down and bottom-up tokenization strategies to
preprocess trees. First, source code is converted into an AST using the tree-sitter library,
see Section 2.1.2. After parsing the tree, this chapter uses the following code-specific BPE

tokenization strategy on the tree’s terminal nodes:

o First, tokens are split on camel case or snake case into the individual parts. This is a
common practice in machine learning for code (Alon et al. 2019a). For example,

the identifier get50th_Percentile is Segmented into (get, 50, th, Percentile).

o Then the BPE algorithm from Sennrich et al. (2016) is applied to each token
individually, resulting in further segmented tokens like get, 50, th, Percentee,

ile.

e During the BPE procedure numbers are segmented into individual digits, which
transforms the token sequence into get, 5@, 0, th, Percent@e, ile. This modi-
fication enables the representation of all numbers with just 20 tokens, and, hypo-

thetically, allows the model to generalize better to unseen numbers.
e Finally, all string literals are standardized to a single token (<STRING>).

This tokenization process modifies the structure of the AST by breaking identifiers and
other terminal nodes into several sub-tokens. When a terminal node (%) is divided
into sub-tokens (¢1,...,%y), it is replaced by a new subtree. This subtree arranges
the sub-tokens in a sequential chain, so that each sub-token ;11 is a child of ¢; for
j € {1,...,m — 1}. The parent of 2(9) becomes the parent of t; and () is re-
moved. For instance, the identifier of the example is represented as a linear chain of
nodes get <— 50 <— th <— Percent@@ <— ile.

65

RELATIVE STRUCTURAL TRANSFORMERS

3.4.3 Tuasks and Datasets

The model is evaluated end-to-end on three distinct tasks—method naming, code summa-

rization, and neural machine translation—without using any pretrained models.

METHOD NAMING

The prediction of a method’s name from its body and signature is addressed in this task. It
is commonly applied to three distinct datasets: JAVA-SMALL, JAVA-MED, and JAVA-LARGE,
which were introduced by Alon et al. (2019a). These datasets are comprised of Java files
sourced from open-source projects on GitHub, divided into training, validation, and test

sets at the project level.

The Java-smALL dataset includes approximately 700,000 methods from 11 projects,
allocating 9 projects for training, one for validation, and one for testing. JAVA-MED
contains around 4 million methods from 1,000 projects, while JAVA-LARGE encompasses
about 16 million methods from 9,550 projects. For validation and testing, JAvA-MED
designates 100 projects each, and JAVA-LARGE allocates 250 projects for validation and
300 for testing. The methodology for predicting method names follows the approach of
Alon etal. (2019a) and Allamanis et al. (2016) and treats the prediction as a sequence of
sub-tokens, split based on camel case and underscores. As Alon et al. (2019a), we report

case-insensitive micro—averaged precision, recall, and F1-score over the target sequence.

CODE SUMMARIZATION

The code summarization task is focused on generating natural language descriptions for
code snippets, typically derived from the first line of the code’s documentation. The
Javadoc format, for instance, defines the first sentence of the docstring as a concise and
comprehensive description of a method’s functionality (Oracle 2024). Evaluation of this

task is performed using two primary datasets: FUNCoM and CODESEARCHNET.

Introduced by LeClair and McMillan (2019), the FUNCoMm dataset was curated from
a vast corpus of 51 million Java methods (Lopes et al. 2010), undergoing a cleaning
process to ensure the comments were in English and to filter out samples based on token
count constraints in both the description and the method body. Specifically, samples
were excluded if the description contained fewer than 3 or more than 13 tokens, or the
method body exceeded 100 tokens. The refined FUNCoM dataset comprises 2.1 million
Java method/documentation pairs, divided into training, validation, and test splits at the
project level. Given that descriptions in the FUNCoM dataset are considerably longer
than method names, averaging 7.6 tokens compared to 3, the BLEU score is employed
to assess the accuracy of the predicted comment against the reference comment. For the

FunCowm dataset, both the overall BLEU score and individual n-gram precisions are

66

3.4. EXPERIMENTAL SETUP

reported, computed using the same script as LeClair and McMillan (2019) for a consistent

evaluation methodology.

The CODESEARCHNET dataset, introduced by Husain et al. (2019), includes method-
documentation pairs across six programming languages, focusing on code search as its
primary task. This chapter uses a version of the CODESEARCHNET dataset, specifically
curated for code summarization by Feng et al. (2020). The evaluation makes use of the
script provided by the authors of the filtered dataset, and reports smoothed BLEU score.
To maintain consistency with CODEBERT, splitting on camel or snake case is omitted
which preserves the tokenization of Feng et al. (2020) after the removal of BPE. This
chapter trains a joint model for all six programming languages, to promote knowledge

transfer and improving model performance across languages.

NEURAL MACHINE TRANSLATION

To assess the model’s capabilities beyond source code-related tasks, this chapter evaluates
the model on neural machine translation in translating sentences between English and
German. Subsequently, contrary to the source code-specific models evaluated in previous
tasks, the model is compared with natural language processing models that have been used
for this task. Specifically, comparisons are made with sequence-based baseline models
such as CONV-SEQ2SEQ (Gehring et al. 2017), TRANSFORMER (Vaswani et al. 2017),
and DyNaMic CONVOLUTION (Wu et al. 2019), which process inputs as sequences
of tokens to produce output sequences. Additionally, tree-based models that have been
shown to outperform sequence-based models, including TREE2SEQ (Shi et al. 2018) and
the more recent HIERARCHICAL TRANSFORMER (Nguyen et al. 2020), which encode
constituency parse trees to generate sequences of tokens, are also compared using the

tokenized BLEU-score. Further details on these approaches can be found in Section 3.2.

The IwsLT 14 dataset, consisting of 160k English-German sentence pairs, is utilized
for training the models in an end-to-end manner without pretrained models (Cettolo
ct al. 2014). Following the methodology of Nguyen et al. (2020), 5% of the dataset is
reserved for validation, and the combined datasets (IWSLT14.TED.dev2010, dev2012, tst2016-
tst2012) are used for testing; and the Stanford CoreNLP parser (Stanford NLP Group
2018; Manning et al. 2014) is used to generate tree representations for the input data;
model performance is assessed by averaging the 5 checkpoints that yielded the highest
validation BLEU scores from the run with the highest overall validation BLEU. The Byte
Pair Encoding (BPE) technique was applied to the terminal nodes of constituency parse
trees using the same approach as outlined for source code in Section 3.4.2, albeit without

splitting tokens on camel case and underscores.

67

RELATIVE STRUCTURAL TRANSFORMERS

3.4.4 Hyperparameters and Setup

The implementation builds on top of PyTorch (Paszke et al. 2019) and the fairseq library
(Ottetal. 2019). The transformer architecture consists of 6 encoder and 6 decoder lay-
ers, 4 attention heads, d=512 dimensional hidden states/token embeddings, and 1024
dimensional feed-forward layers, with shared input and output matrices in the decoder.
This setting has been widely used in the literature and is closely aligned with the work of
Nguyen et al. (2020) (HIERARCHICAL TRANSFORMER). It allows adopting most hyper-
parameters from Nguyen et al. (2020) and optimizing only those specific to infrastructure,

the structural loss and relative positional representations.

The Adam optimizer (Kingma and Ba 2015) is configured with 51=0.9, £2=0.98, and
a weight decay of 0.0001. An inverse square root learning rate schedule (Vaswani et al.
2017) is employed, with a warm-up phase of 4000 steps leading to a peak learning rate of
5e—4. A dropout rate of 0.3 is applied to the model. The label-smoothed cross-entropy
translation loss from Equation (2.17) is used with a smoothing factor of e=0.1. Beam
search is used for sequence generation, with a beam size of 5. Thereby, repeating n-grams

longer than two tokens are prohibited.

The BPE models are trained individually for each task on the respective training set and
consist of 16k sub-tokens for all code-related tasks. For the neural machine translation
task, the vocabulary is limited to 10k sub-tokens. For the transformer token baseline, the
same BPE preprocessing steps are applied to the tokens. The LCA loss, as described in
Equation (3.6) in Section 3.3.3, samples ¢, = min(n, 50) pairs per sample. A grid search
is conducted on the validation set to optimize hyperparameters, such as the batch size,
the weight of the structural loss A\, = {0.05,0.3, 0.6, 1} in Equation (3.9), the choice
between path length or movement pattern for relative positional representations along
with the clamping value k, and the decision to train the model with a joined vocabulary
for the encoder and decoder. For the path length and movement pattern, values & =
{2,3,8,16} and k = {4, 6,8, 16, 32}, respectively, are explored. Three runs with the
best hyperparameters are performed and the model with the highest validation score is

reported. A comprehensive list of all hyperparameters is provided in Table A.1.

3.5 RESULTS
This section presents the results of the experiments conducted to evaluate the RST model.

It first compares the RsT model against the sequential transformer baseline and the state-

of-the-art models, and then conducts an ablation study.

68

3.5. RESULTS

Model JAVA-SMALL JAVA-MED JAVA-LARGE
P R F1 P R F1 P R F1
CODEZVECT 18.5 18.7 18.6 38.1 28.3 325 48.2 384 42.7
TREELSTM1L 40.0 31.8 35.5 53.1 41.7 46.7 60.3 48.3 53.6
CONVATTENTIONT 50.3 24.6 33.1 60.8 26.8 37.2 60.7 27.6 38.0
TRANSFORMER (no tree)T 381 267 314 501 350 412 59.1 40.6 481
CODEZSEQT 506 374 43.0 612 471 532 640 550 59.2
TRANSFORMER (no tree) 485 459 459 575 571 562 66.2 63.8 639
ABSOLUTE TREE TRANSFORMER 472 456 450 593 579 573 66.6 642 643

Relative Structural Transformer (RsT) 52.7 47.6 486 613 600 594 66.6 64.6 64.5

Table 3.1: F1-score for method naming. Results marked with t have been reported by Alon et al. (2019a). Adapted from
Villmow et al. (2021b) ©2021 IEEE.

3.5.1 Comparison against State-of-the-Art

Does the approach described in this chapter improve the performance of trans-
former models compared to a sequential transformer baseline that is not aware
of the tree structure? — RQ 3.1

How do the models trained in this chapter compare to the state-of-the-art on

the method naming, code summarization, and machine translation tasks? -

RQ3.2

This section aims to answer the research questions RQ 3.1 and RQ 3.2 by comparing the
RsT and the baseline models against the state-of-the-art models on the method naming,

code summarization, and machine translation tasks, which are discussed one by one.

MEeTHOD NAMING

In the task of method naming, the model demonstrates superior performance across all
three datasets, as shown in Table 3.1. It consistently outperforms the state-of-the-art
models, CONVATTENTION and CODE2SEQ, by more than 6 p.p. in Fl-score. No-
tably, even the sequential transformer baseline exceeds these models and other reported
sequential transformers in F1-score and recall across all datasets, with variable precision
outcomes that improve on larger datasets. This significant improvement can be attributed
to the specific preprocessing and BPE tokenization approach (refer to Section 3.4.2). The
CoNVATTENTION and CODE2SEQ models lack BPE, resulting in lower recall due to
their inability to predict unknown tokens. This showcases the effectiveness of the proposed

preprocessing pipeline and the use of BPE for tokenization in source code.

Furthermore, our method also outperforms a transformer that uses absolute tree embed-
dings (Shiv and Quirk 2019) to add a structural prior to the transformer, indicating the

advantages of relative positional representations over absolute ones. This is discussed in

69

RELATIVE STRUCTURAL TRANSFORMERS

Model B1 Bs Bs B4 BLEU
ATTENDGRU | - - - - 17.4
AST-ATTENDGRU i 37.1 21.1 14.3 10.9 18.7
GRAPHZSEQit 37.6 21.3 14.1 10.6 18.6
cope2seq’ 375 214 144 110 18.8
BILSTM+GNN—LSTM¢ 37.7 215 14.6 111 19.1
CODE+GNN+BILST|\/I-2HOPS:t 39.1 225 15.3 11.7 19.9
TRANSFORMER (no tree) 40.3 236 164 126 21.1
Relative Structural Transformer (RsT) 423 244 16.8 129 21.7

Table 3.2: Code summarization on the FUNCOM dataset (java). We report cumulative BLEU-4 score, together with single
n-gram scores up to 4 n-grams (B1, . . ., B4), evaluated with the script released along with the dataset. Results marked
with t have been reported by LeClair and McMillan (2019), results marked with ¥ by LeClair et al. (2020). Previously
published in Villmow et al. (2021b) ©2021 IEEE.

Model Ruby IS Go Python Java PHP Al
TRANSFORMERJr (no tree) 11.2 12.0 16.4 15.8 16.3 22.1 15.6
ROBERTAJr 11.2 11.9 17.7 18.1 16.5 24.0 16.6
CODEBERT'r 12.2 14.9 18.1 19.1 17.7 25.2 17.8
TRANSFORMER (no tree) 139 146 181 18.2 182 231 17.7
Relative Structural Transformer (RsT) 14.8 15.0 18.6 179 18.6 23.8 18.1

Table 3.3: Code summarization results on the CODESEARCHNET dataset. As Feng et al. (2020) we report smoothed
cumulative BLEU-4 scores. Results marked with | have been reported by Feng et al. (2020). Previously published in
Villmow et al. (2021b) ©2021 IEEE.

more detail in Section 3.5.2. It is worth noting, that the gap between our model and
the sequential transformer baseline narrows on larger datasets, suggesting that structural
information becomes less important as more data becomes available. This observation
highlights the influence of structural information in scenarios with limited data. It can

significantly improve model performance.

CODE SUMMARIZATION

The experiments on code summarization further confirm the advantages of incorporating
structural information. The model performs better than state-of-the-art models on the
FunCom dataset by 1.8 p.p., and exceeds the sequential transformer baseline by 0.6 p.p.
in BLEU score, as shown in Table 3.2. This confirms that the contributions allow the
transformer to utilize structural information to its benefit. Similar improvements were
observed in Table 3.3 on the CODESEARCHNET dataset. The RsT model outperformed
the sequential transformer baseline by 0.44 p.p. in BLEU score, while the sequential
transformer baseline also exceeded the performance of reported transformer baselines. It
is worth noting that the reported transformer baselines on this dataset use a non-source
code specific BPE from the ROBERTA model (Feng et al. 2020; Liu et al. 2019). The

70

3.5. RESULTS

results indicate that the BPE from the ROBERTA model may not be the best choice for

source code.

When compared to the pretrained state-of-the-art CODEBERT and ROBERTA models
on this task, it is evident that the RsT, which is trained end-to-end without pretraining,
outperforms the state-of-the-art on most programming languages, except for Python and

PHP. This finding highlights the effectiveness of structural information and the approach.

MACHINE TRANSLATION

In the domain of machine translation, the

Model En-De De-En
model performs better than the sequential .

. TREE2SEQ 24.0 30.0

transformer by up to 1.1 p.p. in BLEU score, i
CONV-SEQ2SEQ 248 303
as shown in Table 3.4. Although the model 1p5ysrormen® (no tree) 284 344
outperforms other recent strong models, it Dvnamic convorution! 284 347

. T

falls behmd the HIERARCHICAL TRANS— HIERARCHICAL TRANSFORMER 29.5 36.0
FORMER. Nevertheless, it is worth noting that ~ TransFormEr (no tree) 283 346
RsT 294 353

the model achieves competitive results with

significantly lower runtime and memory con- , , ,
Table 3.4: Machine translation on the IwsLT’14 dataset.
sumption than the HIERARCHICAL TRANS- we report the tokenized cumulative BLEU-4 score. Re-
FORMER, as shown in Figure 34 EPﬁciency is sults marked with 1‘ have been reported by Nguyen
o etal. (2020).
especially important for code datasets, where
the HIERARCHICAL TRANSFORMER model
struggles with memory limitations due to the typically longer length of source code com-
pared to natural language sentences, preventing the application of the model with reason-
able batch sizes on the code tasks. The RST model, on the other hand, performs similarly
to the original sequential transformer (TRANSFORMER), while adding only a negligible
overhead. Overall, the results indicate, that the model is applicable to various types of
trees ranging from natural language to source code. It is able to utilize the structural prior

from the data to improve over a sequential transformer baseline.

3.5.2 Ablation Study

How much do the learned relative positional representations and the structural
loss contribute to the performance? — RQ 3.3

This section presents a discussion of the performance of various model variants on the
Java-MED dataset, as illustrated in Table 3.5. Models are compared based on including or
excluding structural information by using relative positional representations and applying
structural loss. The results validate the design choices of the final model by showing the

importance of both contributions to model performance on the method naming task. In

71

RELATIVE STRUCTURAL TRANSFORMERS

—— Transformer (bsz=2) 4 —— Transformer (bsz=2)
—— Hierarchical Transformer (bsz=2) —— Hierarchical Transformer (bsz=2)
—— Relative Structural Transformer (bsz=2) —— Relative Structural Transformer (bsz=2)

-—+- Transformer (bsz=8) -—- Transformer (bsz=8)
o, | -~ Hierarchical Transformer (bsz=8) -~- Hierarchical Transformer (bsz=8)
10%3 -+~ Relative Structural Transformer (bsz=8) 101 | ~=- Relative Structural Transformer (bsz=8)

Seconds / Update

T T T T T T T T T T T T 10° ™ ™ ™ ™ ™ ™ ™ ™ ™ ™ ™ ™
100 200 300 400 500 600 700 800 900 100011001200 100 200 300 400 500 600 700 800 900 100011001200

Sample length Sample length
(a) Speed comparison. (b) Memory usage.

Figure 3.4: The figure illustrates comparisons of memory usage (measured in GiB) and speed (seconds per iteration)
relative to sequence length, while keeping the batch-size (bzs — samples per batch) constant. It compares a sequential
transformer, applicable as well to the ABSOLUTE TREE TRANSFORMER (Shiv and Quirk 2019) (due to pre-computable
absolute positional representations), with the HIERARCHICAL TRANSFORMER (Nguyen et al. 2020) using its reference
implementation, and the RsT that integrates all enhancements. These comparisons were made under uniform conditions:
same model architecture (layers, dimensions, and vocabulary), datasets with uniform sample lengths, all executed on a
single Quadro RTX 8000 (48GiB) GPU.

this ablation study, the model is trained with sinusoidal absolute positional representations

for the input sequence when relative positional representations are excluded.

No STRUCTURAL INFORMATION Linearizing the AST without incorporating any
structural information significantly reduces the effectiveness of the model. There was a
4.3 p.p. decrease in F1-score compared to the best-performing model. This approach
requires the model to infer the structure of the AST without explicit information. This
is not always possible, because of ambiguous situations where multiple valid trees exist.
Additionally, since the model is not required to learn the tree structure, it may take
suboptimal shortcuts to predict the method name, potentially resulting in overfitting.
Opverall, using a sequential transformer model is more effective than linearizingan AST

without any structural information.

ONLY STRUCTURAL Loss Incorporating structural loss as an auxiliary task, without
directly providing structural information, results in a slight reduction of 0.7 p.p. in F1-
score compared to the best model. When no structural information is provided as input,
but the model is trained with the structural loss, the model is trained to infer potential tree
structures through its understanding of the generating grammar and to retain the structural
details in the output representations z to predict the LCA. However, similar to when no
structural information is available, this method may encounter difficulties in situations
where there are multiple valid tree structures, which could lead to inaccurate predictions
of the true tree. The fact that the sequential transformer baseline was outperformed

suggests that the structural loss is a promising approach to guide the model in learning the

72

3.5. RESULTS

Relationship Type / Model k Yica Precision Recall Fl-score
TRANSFORMER - - 57.5 57.1 56.2
ABSOLUTE TREE TRANSFORMER - - 59.3 57.9 57.3
- - - 56.2 56.2 55.1
- - 0.3 60.8 59.3 58.7
Movements 2 - 60.5 58.8 58.4
Movements 2 0.05 61.1 59.2 58.9
Movements 2 0.3 61.3 60.0 59.4
Path-Length 8 0.3 60.6 59.4 58.8

Table 3.5: Ablation study on JAVA-MED. All models are trained on linearized ASTs. Adding a structural loss or relative
positions improves performance. Adding both gives best results. Previously published in Villmow et al. (2021b) ©2021
IEEE.

tree structure. However, it may not be sufficient on its own due to the aforementioned

ambiguities.

ONLY RELATIVE POSITIONAL REPRESENTATIONS When a structural prior is pro-
vided to the model in the form of relative positional representations, the model performs
slightly worse than when using structural loss alone, with a 1.0 p.p. decrease in F1-score
compared to the best model. In this variant, the model can use the structural prior to
predict the method name, but it is not required to learn and retain the tree structure since
it is provided in the form of relative positional representations. Furthermore, there is
no need to reason about the tree structure, which may help prevent underfitting. This
approach outperforms both the sequential transformer baseline and absolute tree embed-
dings (ABSOLUTE TREE TRANSFORMER). This indicates that the relative tree patterns

are more expressive than the absolute tree embeddings.

BoTH CONTRIBUTIONS The combination of both structural loss and relative posi-
tional representations results in the highest performance, achieving an F1-score of 59.4%.
Also, increasing the share of structural loss further improves the performance. Although
this model is not required to learn the tree structure from scratch, it must incorporate the

structural prior into its output representations to predict the LCA effectively.

This is visualized in Figure 3.5, where Figure 3.5b shows that using the structural loss
leads to transformer output representations that are more closely aligned with the tree
structure, e.g., the representation of an Ifstatement with child-expressions. The model
trained without structural loss tends to group similar tokens, such as multiple 1fStatement
nodes, regardless of their hierarchical relationships in the tree (see Figure 3.5a). This
highlights the effectiveness of incorporating structural loss to capture the essence of node

similarity, as explained in Section 3.3.3.

73

RELATIVE STRUCTURAL TRANSFORMERS

(a) Without structural loss. (b) With structural loss.

Figure 3.5: Visualization of z, the transformer encoder’s output representations, projected to lower-dimensional space
using t-SNE for the same input. Both models are trained with relative positional representations for trees, the model on
the right additionally includes the structural loss. It can be seen, that the model trained with the structural loss in (b)
reflects the tree structure much stronger in its output representations. In contrast, the model on the left in (a) groups
similar tokens, such as nonterminal tokens (dark gray) in the lower right corner, regardless of their position in the tree.
Figure adapted from Villmow et al. (2021b) ©2021 IEEE.

3.6 CONCLUSION AND FUTURE WORK

This chapter introduced the Relative Structural Transformer (RST), a novel approach
to integrate structural information from trees into transformer models. It provided the
transformer with an inductive bias for tree structures, by extending relative positional
embeddings to encode the hierarchical relationships between nodes in trees. This was
complemented by a novel structural loss function that predicts the LCA of node pairs,
which encourages the model to retain and also utilize the structural information within
its hidden states. Also, the chapter demonstrated efficient computation methods for these

relative positional embeddings.

The approach was validated on three sequence-to-sequence tasks: method naming, code
summarization, and machine translation. The experimental results showed that RsT
model outperforms state-of-the-art models on the method naming task by 6 p.p. in F1-
score and achieves competitive results on the other tasks, while always outperforming the
sequential transformer baseline. An ablation study confirmed the individual contributions
of the relative positional embeddings and the structural loss to the model’s performance.
Specifically, this chapter demonstrated that the combination of both contributions led to
the best results. The findings of this chapter suggest that integrating structural information
directly into the model architecture can significantly enhance performance on tasks that
involve hierarchical structures. Also, this is not limited to source code, but can be applied
to various types of trees, including natural language. Moreover, the efficiency of RST in
terms of memory and computational resources makes it a viable alternative compared to

other models such as the HIERARCHICAL TRANSFORMER.

74

3.6. CONCLUSION AND FUTURE WORK

A possible direction of future work could be to investigate the benefit of the proposed
relative tree positional embeddings and the structural loss in transformer decoder models,
for example in the context of autoregressive prediction of trees, such as in syntactic parsing
or program synthesis. However, it is important to note that the impact of structural infor-
mation decreases as the dataset size increases. This observation indicates that structural
information can be useful in situations with limited data, but may become less necessary
when models are pretrained on large datasets. The next chapter will study how to include

structural information during pretraining.

75

RELATIVE STRUCTURAL TRANSFORMERS

76

1 accept chaos, I'm not sure whether it accepts me.

— Bob Dylan, 1965

Structural Pretraining Tasks for Generative

Transformer Models

STRUCTURAL INFORMATION can increase transformer model’s code understanding
capabilities. This has been demonstrated in the last chapter, which introduced the RsT
model. RsT directly encodes code as an AST, and thus adds a structural prior to the
model. To do so, the last chapter demonstrated that the transformer architecture is able to
encode trees, when provided with appropriate positional encodings and a novel structural
loss to enforce the model to represent code’s syntactical structure in the latent space. This
tree-based encoding led to improved performance over a regular token-based transformer
model (on method naming and code summarization), an effect that was strongest in
situations with limited data. The model was trained end-to-end on supervised tasks.
However, the experiments showed that the additional benefits decreased when trained on

larger datasets (more than 16M samples). This indicated that RST’s structural prior may

Work on this chapter has been done in 2021 as preliminary work to Johannes Villmow et al. (2022).
Addressing Leakage in Self-Supervised Contextualized Code Retrieval. In Proceedings of the 29th International
Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea, October 12-17, 2022.
International Committee on Computational Linguistics, pp. 1006-1013 and Johannes Villmow", Viola
Campos”, Jean Petry, Amine Abbad Andaloussi, Adrian Ulges, and Barbara Weber (2023b). How Well Can
Masked Language Models Spot Identifiers That Violate Naming Guidelines? In 237d IEEE International
Working Conference on Source Code Analysis and Manipulation, SCAM 2023, Bogotd, Colombia, October 2-3,
2023. IEEE, pp. 131-142.

Even though the model found application, the approach has been only briefly outlined in the above works.
This chapter contains a more detailed description of the model and the pretraining tasks and provides plenty
of additional experiments that have not been included in the above works.

77

https://aclanthology.org/2022.coling-1.84
https://doi.org/10.1109/SCAM59687.2023.00023
https://doi.org/10.1109/SCAM59687.2023.00023

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

be less important when large-scale data is available and also a token-level model will learn

the structure from the data, given enough data.

Since the work on RsT (which took place in 2018/2019), NLP research has moved
on to even larger datasets, and pretraining approaches have become a stronger focus of
research. This holds for code too: Situations in which large amounts of data are available
are common in pretraining, where models are trained on extensive corpora of data before
being fine-tuned for specific tasks. This chapter aims to investigate how the structural
aspects of code can be used in the pretraining of transformer LMs, without the need
for architectural modifications. It discusses how pretraining can be used to incorporate
structural information into the transformer model. Compared to the previous chapter the
ASTs are not directly used as an input to the model, but rather to construct challenging
input/output examples for self-supervised pretraining. This makes it possible to train a

regular transformer encoder-decoder model without any architectural modifications.

4.1 INTRODUCTION AND MOTIVATION

Since, 2018 pretraining has become a standard practice in NLP (Radford et al. 2018;
Devlin et al. 2019; Lewis et al. 2020b). Contextualized transformer models are pretrained
on extensive corpora of unlabeled data before being fine-tuned for specific tasks. This
approach has proven effective across a broad spectrum of NLP tasks, and pretrained
models are now the state-of-the-art on many NLP benchmarks (Wang et al. 2019). The
alternative is to train a supervised model end-to-end on a task (as in Chapter 3), which
requires a substantial amount of annotated data to achieve a sufficient performance, because
of the complex nature of language. Typically, in NLP, generative pretraining tasks are
used to teach a statistical langnage model general language understanding capabilities by
learning the structure and grammar of the language, and capturing word interactions,
as detailed in Section 2.4. This holds until 2024, at the time of writing this thesis, the
size of the transformer models as steadily increased and the largest instruction-based
models, such as ChatGPT, are initially trained with a self-supervised pretraining. After
pretraining, much smaller annotated fine-tuning datasets can be used to achieve a better
task-specific performance (Devlin et al. 2019). Thereby, pretrained transformer models
remain architecturally mostly the same, often only a new task-specific output layer is trained.
What makes the transformer architecture intriguing for pretraining is that the model can
process all tokens in parallel (compared to LSTMs that process tokens sequentially). This
allows to use much larger models and much larger pretraining datasets. Throughout this

thesis all pretrained transformer language models will be referred to as Language Models
(LMs)!.

"The architectures utilized in this thesis have sometimes been called Large Language Models (LLMs)
(Shanahan 2024), sometimes Pretrained Language Models (PLMs) (Zhao et al. 2023).

78

4.1. INTRODUCTION AND MOTIVATION

LMs are often trained by denoising a corrupted or partial input sequence. Section 2.4
describes the most common pretraining tasks used in NLP and how they are applied
to transformer models. This section provides a brief summary. The specific pretraining
task chosen for a model depends on its architecture. For encoder models like BERT and
ROBERTA (Liu et al. 2019), tasks such as MLM combined with next sentence prediction
are used. MLM masks and replaces random tokens in the input sequence and trains
the encoder to recover the original tokens. Devlin et al. (2019) utilizes this task along
with next sentence prediction as an auxiliary task, in which the input is constructed of
two sequences, for which the model must predict whether these sequences follow each
other in real-world training text. However, Liu et al. (2019) found this auxiliary task
negligible or even deteriorating for downstream performance. Another option for encoder
models is to use a discriminative training objective, as in Electra (Clark et al. 2020) or
CoDEBERT (Fengetal. 2020), where a discriminator is trained to predict whether a token
has been replaced by a generator model. For decoder models such as the GPT variants
(Radford et al. 2018; Radford et al. 2019; Brown et al. 2020), causal/autoregressive
language modeling is used, i.c., the model is trained to predict the next word, given all
previous words. For generative encoder-decoder models like Ts, short span prediction has
been found to be an effective pretraining task (Raffel et al. 2020). This task replaces short
spans between 3 and 5 tokens with sentinel tokens, which are concatenated in an output
sequence, i.c., MARKER1 SPAN1 MARKER2 SPAN2 . It is essentially a combination of a masking
task in the encoder and an autoregressive prediction of a task-specific output sequence
in the decoder. Raffel et al. (2020) demonstrated that span prediction leads to a good

performance on a wide range of NLP tasks with relatively short output sequences.

All the above pretraining strategies have been applied on natural language. Pretrained
models for source code have been developed similarly to those in NLP, with tasks such as
MLM, span prediction, but also discriminative objectives (Feng ct al. 2020; Wang et al.
2021b). Despite the effectiveness of these pretraining objectives in NLP, it is arguable
whether they exploit the structural and semantic information present in code to its full
potential. Moreover, Lachaux et al. (2021) were the first to claim that MLM is ineffective
for code, as many tokens can be easily predicted without understanding the semantics of
the code. For instance, many programming language keywords, syntax, and whitespace
tokens only require that the model learned the simplest patterns of its underlying grammar
(think of keyword import , which appears at the beginning of many Java/Python files’
headers). No semantic understanding is necessary, which is less frequent in NLP. This
effect is visualized in Figures 4.1a and 4.1b: one can see that most of the masked tokens
are not particularly challenging to predict. Also, even when MLM eventually masks
identifiers or function names, another occurrence of the identifier often remains unmasked
in the surrounding context. Then the LM simply copies the most likely identifier from the

context. This is a drastically easier task than predicting a viable name altogether, which

79

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

would require an understanding of the semantic role of an identifier. We hypothesize that
this weakens the learning signal for the LM. This raises the overall research question of
this chapter, whether LMs benefit from pretraining tasks that better address the unique

characteristics of source code.

Therefore, this thesis investigates the use of Abstract Syntax Trees (ASTs) to construct
input/output examples for denoising. This chapter refers to pretraining tasks that use the
AST to construct input/output examples as structural pretraining tasks, while the tasks
that mask random tokens or spans of a sequence are referred to as regular pretraining tasks.
Some related work has proposed such tasks. For instance, the task identifier deobfuscation
proposed by Lachaux et al. (2021), utilizes the AST to pick some random identifiers and
mask a// occurrences of an identifier with the same sentinel token. A sequence-to-sequence
model aims to recover the original identifier names from the obfuscated code. This isa chal-
lenging task, not only for LMs but also for humans: just imagine yourself comprehending
obfuscated source code. Research has confirmed that identifiers play an important role in
comprehending code, as they enable reading the code top-down, during which identifiers
provide semantic cues for the developer (Brooks 1983). This process can be severely hin-
dered by obfuscated code, as shown by Fakhoury et al. (2020). Hence, inferring the original
identifier names from obfuscated code is a challenging task that requires understanding
the semantics of the program (Lachaux et al. 2021), because—opposed to MLM, causal
language modeling, and span prediction—a// occurrences of an identifier are hidden. This
has the benefit, that since the identifier is only predicted once for all occurrences, the
output sequences are short, which speeds up training. However, while the experiments of
Lachaux et al. (2021) suggest that identifier deobfuscation trains an effective code encoder,

its performance on code generation tasks leaves room for improvement?.

Parallel to the work presented in this chapter, the CODET's model was proposed (Wang
ctal. 2021b). Wang et al. (2021b) adopt the Ts methodology from Raffel et al. (2020)
and propose to train a multi-task encoder-decoder transformer on five tasks: identifier
deobfuscation, code summarization (code to text), code generation (text to code), identifier
tagging (binary classifier for identifiers), and short span masking. Thereby, the authors
use not only unimodal, but also bimodal supervised data in form of comment-function
pairs and frame all tasks as a sequence-to-sequence problem, allowing them to train one
model for all tasks with the same loss. This is a combination of structural pretraining
tasks (identifier deobfuscation and tagging) with regular pretraining tasks (short span
masking) and also supervised bimodal data. While the combination of these tasks shows
more variety than single-token masking, it can be argued that their suitability to instill

semantic code understanding into a model is still limited: First, we argue that short span

>The authors try to address this problem by training the model together with a denoising auto-encoding
task in which random tokens are removed and/or shuffled and the model is tasked to recover the original
sequence. However, this task has the same limitations as regular MLM.

80

4.1. INTRODUCTION AND MOTIVATION

masking with an average span length between 3 and 5 tokens suffers from the same pitfalls
as MLM, which—as described above—often creates “easy” targets. This is visualized in
Figures 4.1c and 4.1d. Additionally, we find that identifier tagging is not challenging for
an LM, it simply needs to learn the grammar rules for identifier positions, which does not
require semantic code understanding. Furthermore, even though leveraging bimodal data
for better alignment of natural language and code has been proven to be effective for many
code-LMs (Fenget al. 2020; Wang et al. 2021b), it requires manual or semi-supervised data
acquisition. Therefore, this chapter combines/extends the above approaches to investigate

structural pretraining of code transformers further.

4.1.1 Contributions

This work continues the line of research on structural pretraining tasks for source code
by introducing a novel structural pretraining task for encoder-decoder models called zree-
based span selection, which selects spans for masking based on the code’s AST. We argue
that this task is much better suited for code than the short span masking used in CopeT's
and other models. The task samples one or more nodes from the AST and replaces the
tokens in the input sequence that belong to the nodes with sentinel tokens. The decoder
predicts the combined output sequence—as in the T5 model described above. Using the
AST to select small sub-blocks of code leads to the removal of syntactic segments, such as
comments, the conditions of if-statements, loops, or even full methods. Compared to reg-
ular random span masking, this approach is much more likely to produce challenging and
contextually rich training examples. The task can be seen as a generalization of many code
understanding tasks, such as code summarization and method naming (for task descrip-
tions see Section 3.4.3). For example, in code summarization, the code-documentation
pairs are typically bootstrapped from a method’s docstring. This task is emulated with
tree-based span selection when a comment node (containing a docstring) in the AST is

selected. Note that this is self-supervised.

Additionally, since the input length of the transformer model is limited, code files need
to be truncated, but traditional truncating methods are not particularly well suited for
source code. This chapter will present a technique called tree-based file truncation that
makes use of tree-based span selection to truncate code files to a maximum length by
extracting large subtrees. This is similar to the folding feature available in code editors,
where a developer can hide details within the code (e.g., the body of a method) to focus
on the overall structure (e.g., to see which methods are available in a class). The technique
outputs a context-rich code file in which parts are folded, along with the extracted parts as

individual samples.

The main contribution of this chapter is a novel multi-task pretraining strategy for encoder-

decoder transformer models. It combines the novel tree-based span selection task with

81

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

other (structural and regular) pretraining tasks from the above works, focusing on those
that supposedly foster a strong semantic code understanding. The resulting model is called
SYNTAXPT. Thereby, the tasks are implemented in a dynamic pipeline, that allows to
extend and improve identifier deobfuscation from Lachaux et al. (2021) by probabilistically
sampling a corruption rate instead of using a fixed rate, obfuscating also method calls,
uncovering some occurrences to facilitate more reasoning, and randomize the masking
order. To this end, this chapter introduces and open-sources the TENSORTREE library
(Villmow 2021), that has been specifically implemented to work with pretokenized trees
as working with PyTorch tensors (Paszke et al. 2019).

This chapter specifically wants to investigate whether the structural tasks improve the
resulting models’ code understanding capabilities even when large-scale training data is
available. To this end, training is conducted on a large dataset of 30 million code files in 16
different programming languages from GitHub. SYNTAXPT is to the best of the author’s
knowledge, the first LM trained with identifier deobfuscation on that many programming
languages. The chapter compares this model to a baseline trained with regular pretraining
tasks on several code understanding downstream tasks from CODEXGLUE (Lu et al.
2021). The results demonstrate that structural pretraining significantly outperforms

regular pretraining on most tasks.
In summary, the key contributions of this chapter are:

o Introduction of a novel self-supervised structural pretraining task called zree-based
span selection, which selects appropriate spans for masking based on the program’s

AST to produce more challenging examples than short span masking.

e Extension and improvement of the structural pretraining task of identifier deobfus-
cation proposed by Lachaux et al. (2021), and training the first LM with this task

on 16 different programming languages.

e Introduce a novel technique called tree-based file truncation that truncates code

files to a maximum length by extracting large subtrees.

o Present the TENSORTREE library that enables developers to work with trees in

PyTorch. It is used to implement the structural pretraining tasks (Villmow 2021).

o Introduction of a novel multi-task pretraining approach for encoder-decoder LMs
that combines structural with regular pretraining tasks and is trained only on

unimodal data (i.e., code files) in a self-supervised fashion.

e Demonstration that structural pretraining leads to better code understanding capa-
bilities compared to regular pretraining tasks, as evaluated on five CODEXGLUE
tasks.

82

4.2. RELATED WORK

o Outperforming the state of the art on four out of five CODEXGLUE tasks by a

significant margin.

4.2 RELATED WORK

An overview over the most common pretraining tasks for transformer models in NLP
has been given in Section 2.4. This section will only briefly focus on related work that has
been covered before, and mostly discusses work that addresses pretraining for code-LMs,

until the end of the experiments in beginning of 2022.

4.2.1 Pretraining Strategies in Natural Language Processing

In the field of NLP, pretraining transformer models has become a standard practice
to enhance performance on various downstream tasks. Early approaches like ELMo
(Peters et al. 2018) pretrained an LSTMs on causal language modeling and used the
hidden states as features for downstream tasks. The most common language models
have already been detailed in Section 2.4, such as the transformer decoder-based GPT
model, and the encoder-based BERT model. Liu et al. (2019) demonstrate that with
BPE, masking single independent tokens often keeps parts of the word uncovered, which
has been found to render training less challenging (which is similar to identifiers in code
as discussed above). Subsequent research focused on optimizing hyperparameters and
training strategies. ROBERTA (Liu et al. 2019) improved upon BERT by adjusting model
depth and learning rates and also employ full-word masking to always mask complete
words. ALBERT (Lan et al. 2020) reduced the number of parameters through parameter
sharing, and ELECTRA (Clark et al. 2020) introduced a more sample-efficient pretraining
task by replacing the MLM objective with replaced token detection using a discriminator.

Even though some approaches, such as Ciniselli et al. (2022) investigate utilizing BERT
as a generative model, mostly encoder-decoder architectures and training strategies have
been proposed for sequence-to-sequence tasks. Dong et al. (2019) proposed Unil M,
a unified transformer model that supports unidirectional, bidirectional, and sequence-
to-sequence pretraining through specific masking schemes. BART (Lewis et al. 2020b)
introduced a denoising autoencoder that reconstructs the original text from corrupted
input using arbitrary noising functions. While BART’s setup provides freedom in the
choice of the noising function, it requires generating the full input sequence, which
is computationally demanding. Raffel et al. (2020) proposed Ts, which uses a single
encoder-decoder transformer for multiple sequence-to-sequence tasks, such as small span
prediction. This reduces the size of the output sequence and speeds up training, compared
to the approach of BART. T's has been shown to achieve state-of-the-art performance on a

wide range of NLP tasks. Similarly, PEGASUS (Zhanget al. 2020) proposed Gap Sentences

83

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

Generation (GSG) for abstractive summarization, where full sentences are masked, and

the model is tasked with generating the missing sentences.

These pretraining strategies have significantly advanced the capabilities of NLP models,
but the datasets of this generation of models are typically limited to natural language
text and the tokenizer does not consider unique characteristics of source code, such as an

extensive use of whitespace, which restricts their application to source code.

4.2.2 Language Models for Source Code

The application of language models to source code has gained considerable attention,
aiming to improve tasks like code completion, summarization, and translation. Early
efforts in code completion utilized statistical models such as n-grams (Hindle et al. 2012;
Allamanis and Sutton 2013), and cached n-grams for improved localization (Franks et al.
2015; Tu et al. 2014; Hellendoorn and Devanbu 2017). Graph-based statistical language
models were also explored (Nguyen and Nguyen 2015). With the rise of deep learning,
neural network models were applied to code, including RNNs (White etal. 2015; Raychev
2016; Lietal. 2018) and LSTMs (Dam et al. 2016). These models captured longer-range

dependencies than n-grams models, and improved code completion performance.

With the introduction of the transformer architecture and pretraining strategies in NLP,
these models and strategies were adapted to source code. Kanade et al. (2020) introduced
CUBERT, and pretrained a BERT model on a large corpus of 7.4 million Python files
from GitHub. The model was evaluated on code understanding tasks but focused on a
single programming language. Feng et al. (2020) investigated adapting the ROBERTA
model to code, by further pretraining it on functions from CODESEARCHNET using the
MLM objective. The authors show that the model outperforms the original ROBERTA
model on the CODEXGLUE benchmark, which is why it is used as a strong baseline in
this thesis. The model is referred to as ROBERTA-coDE. However, the authors did
improve the model by adding a discriminative replaced token detection objective to MLM,
as in the ELECTRA model. Their proposed CODEBERT model is jointly pretrained on
bimodal code and natural language comment pairs, to learn the alignment between code

and natural language.

Decoder-only models have also been explored for code. CODEGPT (Svyatkovskiy et al.
2020) used the GPT-2 architecture and trained on 1.2 billion lines of code in multiple pro-
gramming languages. It targeted code completion and synthesis tasks and was integrated
in a tool called IntelliCode Compose within Visual Studio. CUGLM (Liu et al. 2020)
built upon UNILM’s architecture, with a variety of pretraining tasks, including MLM,

next code segment prediction, and causal language modeling.

84

4.2. RELATED WORK

Encoder-decoder models have shown promise in capturing both the understanding and
generative aspects required for code-related tasks. PLBART (Ahmad et al. 2021) adapted
the BART approach to source code pretrained the model on a large-scale dataset comprising
470M Python and 210M Java functions, and 47M natural language posts from StackOver-
flow. The model is pretrained with a denoising autoencoder objective, that reconstructs
the original code snippet from a corrupted version. The authors employ single token
masking, token deletion, and span masking with span lengths sampled from Pois(3.5)
as corruption strategies. COTEXT (Phan et al. 2021) fine-tuned the Ts model on both
unimodal (code-only) and bimodal (code and text) data and investigated a multi-task

fine-tuning on the CODEXGLUE benchmarks.

Contrary to the approach in this chapter, most of these models use bimodal data to
learn an alignment between code and natural language. This requires supervised data
or reling on large-scale code-comment pairs. Moreover, they may not fully exploit the
structural properties inherent in source code. All the aforementioned strategies often
target easy targets, which may result in less effective pretraining on code, as outlined in the
introduction. For code understanding tasks that do not require generation, such as defect
detection or code retrieval, encoder architectures are especially useful due to their ability
to bidirectionally compare input tokens during attention. Decoder models, on the other
hand, such as GPT-2, are limited to attending to previously processed tokens, while their
ability to produce sequences of unknown length is necessary for sequence generation tasks,
such as code summarization. The encoder-decoder architecture combines the advantages
of both and has been shown to be versatile across a wide range of tasks (Raffel et al. 2020).

Thats why this chapter focuses on a encoder-decoder model.

4.2.3 Structural Pretraining for Source Code

The idea that the structural properties of source code can be leveraged for pretraining
has been an active area of research at the time of the experiments for this chapter. Jiang
ctal. (2021) introduced TREEBERT, which represented the AST as a set of composition
paths—similar to CODE2SEQ—and introduced a tree-based MLM and node order pre-
diction tasks on the structural input, but also generated the original code sequence in the
decoder. However, these paths lead to longer input sequences and increased training times.
GRAPHCODEBERT (Guo et al. 2021) improved upon CODEBERT by incorporating
two structural pretraining tasks that utilize the AST to (1) predict data flow connections
between variables, i.e., from which variable is another variable derived, and (2) align the
representations of data flow nodes with variables in the code. GRAPHCODEBERT is
pretrained on bimodal data. SYNCOBERT (Wang et al. 2021a) incorporated multi-modal
data, including code, comments, and AST representations. Pretraining tasks included
binary identifier tagging (is there an identifier at this position?), edge prediction in the

AST, and multi-modal contrastive learning to obtain code representations that feature

85

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

both symbolic and syntactic properties. UNIXCODER (Guo et al. 2022) employed an
encoder architecture adaptable for code generation tasks, with masking strategies that
considered the AST and code tokens. It focused on cross-modal pretraining with code
comments and AST information. The most similar work to the one in this chapter is

CoDpETs, which has been detailed in the Introduction.

However, contrary to the approach in this chapter, many of these models have the drawback
that they require ASTs as input to the model at inference time, which is not always
available (e.g., when the code is incomplete or syntactically incorrect). Moreover, the
approach in this chapter remains architecturally standard, and uses a standard encoder-
decoder transformer without any modifications. Also, unlike many of the aforementioned
approaches that utilize bimodal data, the approach of this chapter pretrains solely on
unimodal code data. This makes the training and input simpler and more scalable, as it

does not require manual or semi-supervised data acquisition.

4.3 BACKGROUND

As detailed in Section 2.4 common self-supervised pretraining strategies include denoising
tasks, which corrupt the original input by masking words (Devlin et al. 2019), identifiers
(Lachaux et al. 2021), or sentences (Raffel et al. 2020; Wang et al. 2021b). The following
sections discuss the aforementioned strategies and their effect when applied to source

code.

4.3.1 Masked Language Modeling

Masked Language Modeling (MLM) introduces noise to the input by replacing words with
mask tokens. Even though the task has proven to be successful on natural language, MLM
is rather ineffective when used on source code, as previously argued. This is visualized in
Figures 4.1a and 4.1b, where it can be seen that (tokenized) source code contains many
tokens that are easy to predict when hidden. For instance whitespace and syntax tokens,
such as MASK1, MASK4 , MASKS , MASK6 , MASKS in the figure, are easy wins for the model. Also,

to recover that MASK2 must be called n is trivial, since no other variable is in scope.

4.3.2 Regular Span Masking

Regular span masking is a denoising sequence-to-sequence task for pretraining LMs. Raffel
et al. (2020) proposed this method for NLP, and it is also used for code in various models
(Phan etal. 2021; Ahmad et al. 2021; Wang et al. 2021b). In this task, instead of replacing

single words or tokens, multiple relatively short spans (mean of three tokens each) are

86

4.3. BACKGROUND

p
def
:
e =
Compute the Fibonacci number. [
if n <= 1 return
n Il ib
return ((n-l) + fib(n-Z))

L . J

(a) Noised input for masked language modeling (MLM). (b) Output for MLM.

def fibjiiNek

(['\Y'¢A-th Fibonacci number. MASK1 NEDE

if n <= 1: MASK2 # Compute the n

MASK3 Wl MASK3 return
return fib(n- 1Y CH(n-2) ey) + fib

(c) Noised input for regular span masking. (d) Output for regular span masking.

Figure 4.1: Input/output examples for the masked language modeling and regular span masking tasks, as used in
CODEBERT and CODETS5, respectively. The tasks are ineffective for code since many tokens can be predicted without
reasoning about the code. For instance, predicting that the function parameter (MASK2) must be called n in (a) is trivial
since no other variable is in scope. Additionally, many masked tokens are syntactical elements that do not require an
understanding of the code’s semantics, but only its syntax. For example, with MASK3 in (c), only spaces and a syntactical
keyword are masked. This leads to a less challenging training.

replaced by sentinel tokens in the input sequence, with an overall corruption rate of Prask.

>y length (V)
length(c)

Pmask = ~ 15%. (41)
The decoder predicts the hidden spans, separated and preceded by their specific sentinel

tokens, in a single output sequence:

Y = MASK1 the first masked span MASK2 the second masked span EOS (4.2)

However, similar to MLM, when regular span masking is applied to source code, it does
not always produce challenging examples. This is illustrated in Figures 4.1c and 4.1d,
where the spans often consist of syntactical elements or whitespace, such as mask3 that
masks only whitespace and the keyword return, but misses the returned variable n . Even
though this task is more challenging than MLM, it could be even more challenging. For
instance when the full return statement including the variable would be masked, the model

would have to reason what to return.

87

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

Y R

Compute the n-th Fibonacci number.
if BN <= 1:

return fib
return | R - » + YR - » :

(a) Noised input. (b) Output.

Figure 4.2: Input/output example for the identifier deobfuscation task. Masking identifiers does not affect the code’s
functionality but makes it harder to comprehend. In order to predict the original variable names, the model must
comprehend the code’s semantics, which can be a challenging task. Note that in this example, the mask tokens are used
multiple times for each occurrence of the identifier.

4.3.3 Identifier Deobfuscation

Identifier deobfuscation is a structural sequence-to-sequence pretraining task for encoder-
decoder models, introduced by Lachaux et al. (2021). The goal of identifier deobfuscation,
as shown in Figure 4.2, is to restore the original names of identifiers in obfuscated code.
Identifiers include variable and function names, but not method calls. Lachaux et al.
(2021) replaced 50% of variable, function, and class names—but not method names—
with distinct special tokens (e.g., VARL, FUNC1, CLASS1) in the order they appear in code

and trained the model to predict the original names.

Unlike regular span masking, the sentinel tokens are used multiple times in the input
sequence, once for each occurrence of an identifier. The output sequence is constructed in
the same way as in regular span masking. It should be noted that due to the construction
of the output sequence, identifiers predicted at the end of the output sequence can see the

deobfuscated identifiers that appear earlier in the sequence.

4.4 APPROACH

The approach in this chapter is to pretrain a encoder-decoder transformer model on a
large corpus of source code using multiple sequence-to-sequence tasks. As detailed in
Section 2.3, the transformer model encodes an input sequence of tokens @ to generate
an output sequence of tokens y. For self-supervised learning, both the input and output
sequence are constructed from a code token sequence ¢ = (¢!, ..., ¢)). The noised
input @ is derived by replacing one or more subsequences Y7, . .., Y}, of ¢ with special
mask tokens z(Mask1) - g(maskk) also known as sentinel tokens (Raffel et al. 2020).
Form € 1,..., k the subsequences Y, are defined as Y;,, = (c(im), ey c(jm)), where
im < Jm < imt1 < jmy1forallm e {1,... k —1}.

88

4.4. APPROACH

= (29 (V) i) glmask) (G+1)

°

(1) gmask) (G0 (4.3)

2 (lang)

is a special token that indicates the programming language of the code, similar to
the [cLS] token in BERT, see Section 2.1.1. The output sequence ¥y is then constructed

by concatenating (denoted by @) the masked subsequences with the mask tokens:

y= (M) oy, @... @ (@mR)) o Y, @ (26))

= (g(masky) o) Q) glmaske)) gleos)) (44)
The model is subsequently trained to reconstruct the hidden subsequences in y from the
noised input sequence . Formulatingall pretraining task using this masking scheme allows
training all models and tasks with the regular cross-entropy loss from Equation (2.16) using
teacher forcing. With this formulation no specific weighting of separate losses has to be
done, instead the amount of samples each task contributes to the training data determines
its weight. Each pretraining task defines only the input and output sequences, by defining

the selection of the subsequences to be masked.

4.4.1 Pretraining Tasks

The goal is to create challenging tasks that require the model to reason about the semantic
aspects of the code in order to detect useful patterns. As shown in Figure 4.1, regular tasks
like MLM employed by CODEBERT and span masking used in CODET's do not consis-
tently satisfy the above criteria. This section introduces tge novel structural pretraining
task tree-based span selection and extebds the identifier deobfuscation task. The approach
consists of a structural training pipeline that mixes multiple pretraining tasks. As shown
in Figure 4.3, input/output examples are constructed dynamically by probabilistically

selecting one of the following tasks for each sample:

1. Tree-based span selection, a novel structural task, where random subtrees are

selected and masked is used in 33% of the samples (see Figure 4.4a).

2. Identifier deobfuscation, a structural pretraining task, where identifiers in the
code (e.g., variable names, method names, etc.) need to be predicted. This task is

used in 33% of the samples (see Figure 4.2a).

3. Large span masking, in which a single but sufliciently large span is masked is
used in 30% of the samples. Generating large pieces of code aims to improve code

generation capabilities of the model’s decoder.

89

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

33 0 Tree-based
f °7"| span Masking
Folded File Deobfuscation

—
Tree-based Sample o Large Span
| —» —
File Truncation Removed | Task 30% Masking o
| —

Segments

——
30, RT\imT; Span »
asine Model

_>

"
Token Mask-
ing (MLM)

C

—1 %>

Figure 4.3: The training pipeline for the structural pretraining. First, complete code files are truncated into smaller
samples by iteratively sampling subtrees and replacing the segment with a fold token (analogous to folding in an IDE).
Both the folded file and all removed segments are used as individual samples to construct the input/output pairs
according to one of the pretraining tasks. For each sample a pretraining tasks is sampled, which transforms it into a pair
of a noisy input and the corresponding output sequence. In a final step, both sequences are truncated to a maximum
length of 512 tokens before being fed into the model.

4. Finally, two regularization tasks enable the model to predict arbitrary spans at
inference time: 3% of samples use the non-structural regular span masking task

(see Figure 4.1¢).

5. In 1% of the samples masked language modeling is used (sce Figure 4.1a). This

task is framed as a sequence-to-sequence task.

Please note that the pipeline is fully dynamic, and the model is exposed to new samples of
various tasks at each epoch. First the code file is probabilistically truncated into smaller
samples, then a pretraining task is drawn for each sample, which itself probabilistically

constructs the input/output pairs. The tasks will be detailed in the following sections.

TREE-BASED SPAN SELECTION

Tree-based span selection masks entire syntactic segments, such as comments, statements,
or conditions. Figure 4.4 provides an illustrative example, where mask1 hides a method’s
docstring, which is a distinct node within the syntax tree. This produces without any
supervision a setting similar to common evaluation tasks code summarization or code
search. Another difficult challenge is achieved by Mask2 that masks the condition of an
Ifstatement . Predicting the hidden segment requires analyzing the code’s functionality
and context. This way of masking leads to samples that more often require a deeper
understanding of the code’s functionality compared to masking individual regular spans.
Additionally, tree-based span selection not only presents more challenging examples but
also more closely mirrors a developer’s workflow, for example when fixing a bug or adding

new features.

920

4.4. APPROACH

def fib(n):

Compute the n-th Fibonacci
if : number.

return n n<=1
return fib(n - 1) + fib(n - 2)

(a) Noised input. (b) Output.

Figure 4.4: Input/output example for the tree-based span selection task. Here the masked spans are complete syntactic
segments, producing challenging examples by design. For example, selecting the docstring of the method (MASK1)
creates a task similar to code summarization and code search, two common code comprehension tasks.

To implement tree-based span selection, subtrees from the syntax tree are sampled and the
corresponding code regions masked. This ensures that the targets represent syntactically
complete code fragments. However, masking singular subtrees has a drawback: Adjacent
statements or siblings in the syntax tree, such as multiple statements in a method body
(e.g., the Ifstatement and ReturnStatement in Figure 2.3), can’t be masked together, as
they do not share the same subtree and selecting the parent unit would mask the entire
method body. To enable the combined masking of multiple, yet not all adjacent subtrees
in the parent unit, the selection process may include direct siblings of the initially selected

subtree where feasible.

Following Raffel et al. (2020) and Lewis et al. (2020b) multiple short subtrees are sampled
until the corruption rate of approximately pmask & 15% is reached, as in Equation (4.1).
This work adopts sampling the individual span lengths from a Poisson distributions as in
Lewis et al. (2020b). However, we use slightly longer spans than both of the aforemen-
tioned works of mean 8 tokens instead of 3, to create more realistic examples (such as the

aforementioned comment). Formally, length(Y;) ~ Pois(8).

IDENTIFIER DEOBFUSCATION

Building upon the work of Lachaux et al. (2021) described in Section 4.3.3, this thesis
proposes some key refinements to the identifier deobfuscation task, which are discussed
below. Let I be the set of all identifiers in the code ¢, including method calls. To provide
context for the model, a random percentage pops ~ N (60, 25%) of the identifiers in I
are selected for masking and a subset of the identifiers (denoted as Iyask) is drawn from I,
so that |Imask| = round(peps - [I]). The order of the identifiers in Ipmagk is shuffled, and
the identifiers are then masked in the order in which they appear in the shuffled sequence.
To mask identifier I; € I,k each of its occurrences in ¢ is replaced by the mask token

.,L.(maski)

with a probability of 95%. Note that here Y; = I; so that in the output sequence
vy, the identifier I; is only predicted once, even if it occurs multiple times in the input

sequence . This thesis does not use distinct mask tokens for different types of identifiers

91

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

(e.g., vart for variable names and FuNci for method names). Instead, all identifiers are

replaced with the shared mask tokens, i.e., MASK1, MASK2 , etc.

Some of the design choices outlined above differ from the approach taken by Lachaux
etal. (2021). The authors use a fixed percentage of masked identifiers and do not mention
if the samples are pre-computed or constructed dynamically during training. Randomly
selecting a percentage of identifiers to mask requires the model to adapt to varying levels
of obfuscation across different samples (which we will do in Chapter 7). It introduces
complexity and variability that is expected to more accurately reflects real-world coding
practices. This approach allows using the model in different scenarios, where the level of
obfuscation can vary. Additionally, extending masking to all types of identifiers, including
method calls, is a notable improvement over prior work. Method calls shape the func-
tionality of a piece of code. Predicting them not only increases the complexity of the task
but also its practical relevance. Another design choice is the partial masking of identifiers,
where each occurrence of an identifier within the code is masked with a probability of
95%. This approach can result in rare visible instances of an obfuscated identifier. We
hypothesize that this allows the model to consider contextual clues for identification and
reconstruction, but without overly relying on it in a blanket fashion (compare dropout).
Moreover, the decision to randomize the order of masked identifiers in the input sequence
differs from the method proposed by Lachaux et al. (2021), who masked identifiers in the
order they appeared in the code. When the decoder predicts a specific identifier I3, it can
refer to deobfuscated identifiers Iy, . . ., I;_1 that appeared earlier in the output sequence.
However, any subsequent identifiers I; 11, . . ., I}, remain hidden. Randomizing the order

aims to prevent the model from relying on the positional order of identifiers.

LARGE SPAN MASKING

With the aforementioned structural pretraining tasks identifier deobfuscation and tree-
based span selection, the model is mostly tasked to generate short sequences. This is a
discrepancy to many fine-tuning tasks, such as code translation or bug fixing, that re-
quire the model to generate longer pieces of code. CODET s approaches this problem
by using bimodal supervised data (pairs of code and natural language descriptions from
the CODESEARCHNET dataset) in addition to unsupervised pretraining (Wang et al.
2021b). In a second stage, the authors train the model to translate between code and
natural language and vice versa. This trains the decoder to generate longer sequences of

code, but has the drawback that it requires supervised data.

In this work, supervised data is avoided in favor of a purely self-supervised approach. To
train the model to generate longer sequences, we employ the large span masking task.
Here, only a single span Y7 is masked, whereas length(Y7) ~ N (50, 20%), which masks

approximately 10% of the code given that the maximum length of the input sequence is

92

4.4. APPROACH

512 tokens. Large span masking does not share the same pitfalls as regular MLM and
short span masking, since it will always contain challenging code, given that the span is

sufhciently large.

REGULAR SPAN MASKING AND MASKED LANGUAGE MODELING

In a small percentage of samples (<4%), one of the regular pretraining tasks regular span
masking (<3%) or masked language modeling (<1%) is used. Although these tasks may
not always present strong challenges, they enable the LM to process arbitrary spans during
inference. Therefore, these tasks are mixed in at a low percentage of samples to ensure the

model learns to predict all types of gaps.

The implementation of regular span masking closely follows the implementation in the
original Ts model (Raffel et al. 2020). Span lengths are sampled from a Poisson distribu-
tion, whereas length(Y;) ~ Pois(4). For masked language modeling individual tokens
are masked, but the output sequence is constructed in the same way. The total corruption

rate by these two tasks is approximately 15%.

4.4.2 Tree-based File Truncation

During the training phase, both the and ¥y are constrained to a maximum of 512 to-
kens®. In the pretraining dataset, the average number of tokens per file is approximately
1890. Consequently, it becomes necessary to truncate large code files into smaller units.

Truncation for code is usually approached by one of the following strategies:

1. Files are segmented into blocks of code. This method, however, results in the code
at the end of the file being isolated from the code at the beginning. Both segments

are never seen together, which is suboptimal for training.

2. Many approaches use method-level segments, which even stronger restricts the
visibility of the full context (Wang et al. 2021b).

However, truncating code files in a way that allows the model to reason over inter-file
contexts could be beneficial. For instance, in the context of software development, under-
standing a class’ signature and its method definitions is often enough to get an overview
of the code’s functionality, even without full access to the method contents. To address
these limitations, this thesis proposes an alternative truncation strategy, called #ree-based
file truncation, that utilizes tree-based span selection (see Section 4.4.1). It is inspired by
code folding in an Integrated Development Environment (IDE), which most software de-
velopers use to navigate large code files by focussing on specific parts and hiding segments

such as comments or method contents.

3The T5 model is capable of encoding and generating sequences of arbitrary length at inference time, due
to its bucketed relative positional embeddings (refer to Section 2.3.2).

93

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

With tree-based file truncation large code files are truncated by randomly collapsing large
code segments. Such a collapsed region could be the content of a method, so that only the
definition remains, or multiple methods altogether. As shown in the training pipeline in
Figure 4.3, not only the folded code file is used as a sample, but also the removed segments
are treated as individual samples. This method produces short to medium-sized pieces
of code with varying levels of context. It is implemented using tree-based span selection,
where instead of sampling small segments for masking, larger segments of 150 to 800
tokens are randomly selected. Here, subtrees are sampled proportionally to their size, so
that larger segments are more likely to be selected. All removed segments are replaced
with the same [FoLd] token, which signals the model that some code is missing at this

position, but it does not need to be predicted.

Note that this is an initial step in the training pipeline shown in Figure 4.3 that produces
smaller samples ¢1, €2, . .. from the full code file €. Each sample is then used individually
to construct the input/output pairs according to one of the pretraining tasks. In this step
segments up to 800 tokens are selected, even though the final input and output sequences
are limited to 512 tokens. However, each task further shortens the segment by masking
parts of it. At the end, if either of the input and output example remains longer than 512

tokens, it is as a final step truncated to the maximum length on a token basis.

4.5 EXPERIMENTAL SETUP

The goal of the experiments conducted in this chapter is to evaluate the effectiveness
of the structural pretraining tasks introduced in the previous section. The overarching
research problem is whether the structural tasks provide a more effective way to pretrain
code understanding models than regular pretraining tasks. To this end, SYNTAXPT is
compared against a baseline trained with regular pretraining tasks on the same dataset
and setup. This ensures that the only variable between the models is the pretraining tasks.
To accurately measure the code understanding capabilities of the models, the performance

is evaluated on benchmark datasets that aim to measure code understanding capabilities.

Code understanding encompasses a broad spectrum of application scenarios, including
code summarization, generation, translation, retrieval, and bug detection. All these appli-
cations require the model to reason about the code’s functionality, structure, and semantics.
The CODEXGLUE benchmark proposed by Lu et al. (2021) is a collection of such tasks
and accompanying datasets specifically designed to accurately evaluate the performance
of code LMs across a wide range of code understanding tasks. It has been adopted as the
evaluation benchmark for this work, as it provides a fair comparison to the state-of-the-art

models®. In this work, five evaluation tasks from the CODEXGLUE collection are selected.

“To clarify, the evaluation benchmark datasets used in this chapter differ from those used in Chapter 3
because the CODEXGLUE benchmark is a more recent, difficult, and comprehensive collection of code

94

4.5. EXPERIMENTAL SETUP

To assess the performance of the models, each model is fine-tuned on the task’s respective
training data and subsequently evaluated according to the task’s evaluation metric. Since
CoDEXGLUE provides evaluation scripts for each task, this ensures a fair comparison

between the models and the state-of-the-art.

In addition to the comparison of the structural model to the baseline model which is
trained only on regular pretraining tasks, the benefit of pretraining is also evaluated by
comparing the models to an end-to-end model. The end-to-end model is trained without
any pretraining, directly on the fine-tuning tasks. It allows not only to measure the overall
benefit of pretraining by comparing it to the pretrained models, but also to measure the
effectiveness of the proposed preprocessing pipeline, since it is compared to other recently
proposed models, that are also trained end-to-end. To summarize, in the experiments of

this chapter three models are trained and evaluated on the CoDEXGLUE benchmark:

1. A model which is trained end-to-end on each task, without any pretraining. This

model is referred to as TRANSFORMER (no PT).

2. The baseline model is trained with regular pretraining tasks, excluding the struc-

tural tasks. This model is referred to as REGULARPT.

3. The structural model is trained with the structural pretraining pipeline introduced

in this chapter. This model is referred to as SYNTAXPT.

The experiments demonstrate that the structural model outperforms both baseline models
and also many state-of-the-art models on most tasks and that structural pretraining leads

to a much more consistent fine-tuning performance across all tasks.

This section details the experimental setup, including the model architecture, the regular
pretraining tasks for the baseline model, the tokenizer, the pretraining dataset, implemen-

tation details, and the evaluation benchmarks.

4.5.1 Research Questions

The aforementioned experimental setup aims to answer the following research questions:

Research Question 4.1: Does structural pretraining provide a stronger learning signal
than regular pretraining, with respect to code understanding capabilities?

This question investigates whether incorporating structural pretraining tasks enhances the
model’s ability to understand code more effectively than traditional pretraining methods.
To this end, the structurally pretrained model (SYNTAXPT) is compared to the model
pretrained on regular tasks (REGULARPT) on the CODEXGLUE benchmark, as outlined

above.

understanding tasks. However, one task, the code summarization task from the CODESEARCHNET dataset,
remains the same as in Chapter 3.

95

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

Research Question 4.2: What is the benefit of pretraining on code compared to training
Sfrom scratch?

This question aims to measure the advantages of pretraining for the code understanding ca-
pabilities of the model. To this end, the non-pretrained model (TRANSFORMER (no PT))
with both the regular pretrained model (REGULARPT) and the structurally pretrained
model (SyNTAXPT) on the CODEXGLUE benchmark.

Research Question 4.3: How does the structural pretraining compare to the RST model
Sfrom Chapter 3?

This question aims to assess the effectiveness of the structural pretraining approach in
comparison to the structural transformer model of Chapter 3. Both models are evaluated
on code summarization task from the CODESEARCHNET dataset (which is part of the
CoDEXGLUE benchmark).

Research Question 4.4: How do the proposed models perform compared to other state-
of-the-art models?

This question evaluates the performance of the proposed models against existing state-of-
the-art code-LMs. This will provide insights about the effectiveness of the preprocessing

pipeline and the structural pretraining tasks.

4.5.2 Model Architecture

Instead of using the original transformer architecture proposed by Vaswani et al. (2017),
like in Chapter 3, the more recent Ts architecture from Raffel et al. (2020) is used (see
Section 2.3 for a description of the transformer architecture). The T's architecture contains
various small improvements over the original transformer model. Specifically, Raffel et al.
(2020) remove the layer norm bias, place the layer normalization outside the residual path,

and use relative positional embeddings instead of absolute (see Section 2.3.2).

In particular, this chapter uses the T5-base configuration, in which both the encoder and
decoder sub-models consist of 12 layers, with a hidden size of d = 768 and 12 attention
heads operating on key and value vectors of dimensionality dj, = 64. The feed-forward
layer has a dimensionality of dg = 2048. The relative positional embeddings do not learn
a separate embedding for each possible relative position—as the model in Chapter 3—but
instead use 32 logarithmically increasing buckets for the positions (compare Section 2.3.2).
A dropout rate of 0.1 is applied throughout the model, and word embeddings are not
shared between the encoder and decoder. Differing to the original Ts model, the Gated
Gaussian Error Linear Unit (GEGLU) activation function (Shazeer 2020) that is used in
newer versions of the model is also used in this chapter. The model used in our experiments
has the same architecture as CODET's. This chapter trains a custom BPE tokenizer so
that the vocabulary of the model contains 32k tokens (described in Section 4.5.4), and

96

4.5. EXPERIMENTAL SETUP

the model has approximately 247 million parameters. This architecture with the same

tokenizer is used for all models in the experiments.

4.5.3 Baseline

To evaluate the impact of the structural pretraining tasks on the model’s performance, the
model is compared to a baseline model trained exclusively with regular pretraining tasks.
For a fair comparison, the baseline model is kept as similar as possible to the structural
model. Only the structural pretraining tasks—identifier deobfuscation and tree-based
span selection—are replaced by utilizing regular pretraining tasks with higher frequency:
token span masking and large span masking. The baseline pretraining tasks are configured

as follows:

1. Regular span masking is applied to 49% instead of 33% of the training samples. In
this task, spans of length length(Y;) ~ Pois(8) are masked, with a total corruption
rate of 15%. This configuration is similar to that in the structural model for the

tree-based span selection task.

2. Large span masking masks a single, sufficiently large span and is also used in the
structural model. In the baseline it is applied to 47% of the training data (opposed

to 30%), with the same configuration as in the structural model.

3. The structural model uses two regular pretraining tasks to ensure that the model
can predict arbitrary spans at inference time. Both are kept in the baseline model.
Hence, 3% of the samples use regular span masking with a span length of 4 tokens.
Note that this task is used twice in the baseline with different sample lengths (8

and 4), to have a fair comparison.
4. In the remaining 1% of the samples, masked language modeling is used.

Please note that tasks (3) and (4) of the baseline model are exactly the same as tasks (4)
and (5) of the structural model defined in Section 4.4.1.

4.5.4 Tokenizer

The transformer model operates on an input sequence of integers, which are obtained by
tokenizing the input text. The tokenizer significantly influences model performance and
the kind of possible outputs. A generative LM should be able to produce all types of code
and text. The tokenization process can be seen as a function tokenize : String — N that
maps a string (the code) to a sequence of integers. If tokenize is bijective the tokenization
is reversible and the original input can be restored. This is shown in Figure 4.5a. In the
last chapter relatively short natural language output sequences were generated. Thus, the
tokenization process from Chapter 3—that tokenized code by splitting on camel case

and subsequently applied BPE to the split identifiers—ignored whitespace. This makes a

97

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

Integer

String . Sequence String
Tokenization/BPE Detokenization]—»(Code]

(a) Regular-tokenization process.

String i7at
Code Parser Tokenization/BPE
of Leaves
Integer
String
Select Leaves Detokenization Code

Sequence
(b) Tree-tokenization process.
Figure 4.5: Comparison of regular- and tree-tokenization. Both processes are reversible, but the tree tokenization

Tree of
Strings

Tree of
Integers

process allows for direct structural manipulation of the tree in its tokenized form.

reversible detokenization impossible. Consider the example foo(a, b) , which would be
tokenized into foo, (, a, ,, b,). The detokenizer can never recover the information
that there existed a space before parameter b, i.c., this information is lost. However, in
this chapter the LM should (1) be able to produce any kind of code/natural language
sequences, with any type of formatting or whitespace. Thus, the tokenization process

should be reversible.

In addition to a reversible tokenization the tokenized code should (2) be able to be stored
as a tree of integers for fast and dynamic structural manipulations in the training pipeline,
since the tokenization process that turns strings into integer sequences is an expensive
operation. Therefore, common practice is to BPE tokenize the data and store it as integer
sequences. This enables fast loading and training on large datasets. Constructing the
training examples using one of the regular pretraining tasks, such as masking words or
spans, is straightforward and done directly on the tokenized data. However, for the
structural pretraining tasks it is necessary to have structural information, which is lost in
this process. It can’t be recovered from the tokenized data, since the BPE tokenizer may
merge tokens that belong to separate syntactical structures into a single token (e.g., if().

First parsing and then tokenizing the leaves of the tree is the solution.

The tree tokenization process proposed in this chapter is shown in Figure 4.5b. It allows for
direct structural manipulation of code in its tokenized form as a tree of integers. It starts
with parsing code into a Concrete Syntax Tree (CST) using the tree-sitter syntax parser
(Brunsfeld 2023). Thereby, tree-sitter is modified so that the syntax tree also includes
whitespace, which it usually discards. An example Concrete Syntax Tree (CST) for the

Fibonacci function is shown in Figure 2.3. It arranges all code and whitespace tokens in a

98

4.5. EXPERIMENTAL SETUP

tree structure, so that the leaves are the actual tokens that appear in the code. Concatenating

all leaves gives back the original code file.

To transform the CST—which still contains the tokens as strings—into a tree of integers,
first all non-terminal nodes are added to the vocabulary. These can be directly encoded.
However, expressive terminal nodes—such as identifiers, or even the complete docstring
of a method—need to be further tokenized, for which BPE is used. Each leaf is encoded
separately, which splits the leaf-node into multiple tokens. To arrange the split tokens in
the tree, a new node [BPE] is introduced. The node replaces the leaf-node and the split
tokens are arranged as children of the artificial node. This preserves the property of a
CST, in which the code can be reconstructed from the leaves of the tree, as mentioned
above. Note however, that this method differs slightly from the approach described in
Section 3.4.2, where the new nodes were arranged in a sequential chain. With this tree of
integers, many manipulations such as replacing identifiers can be done easily, and at the
same time a tokenized form of the original code can always be obtained by selecting the

leaves.

Now the question remains whether an existing tokenizer should be reused or if it is better
to have a separate tokenizer more tailored on the unique characteristics of source code. For
example, CODEBERT uses the reversible ROBERTA tokenizer (Liu etal. 2019). However,

this tokenizer is made for natural language, and using it for code has a few drawbacks:

e It uses a large vocabulary of 50k tokens, many of which are rarely found in pre-
tokenized code. For example a lot of tokens start with whitespace, e.g., " return" .
Such a token is rare in a CST, in which whitespace is a separate leaf in the syntax

tree. It only appears in comments or strings.

e Whitespace is handled expressively. Each space is a separate token, which is not

optimal for code in which whitespace is used to format the code.

In order to approach these issues and keep the size of the vocabulary at a minimum, while
still using the more expressive tree-tokenization approach, a custom BPE model is trained
on files from 16 different programming languages. Following the line of research of Liu
et al. (2019) a byte-level base vocabulary is used, which allows for the encoding of every
Unicode character from the byte-level units (Radford et al. 2019). Based on these 256
base units, 30k merges, or subwords, are learned, which keeps the vocabulary and the
model size at a manageable dimensionality. Additionally, space for 100 special tokens,
such as language identifier and mask tokens, is reserved. Furthermore, given that code
consists of significant amounts of whitespace, specific whitespace tokens (e.g., 4 spaces, 8
spaces) are added to the tokenizer. This effectively reduces the total number of tokens in

the tokenized code compared to the ROBERTA tokenizer. In total the vocabulary of the

99

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

tokenizer consists of 31,914 tokens, which includes all nonterminal nodes of the CST for

all languages (see Table 2.1), the subword-tokens, and the added special tokens.

THE TENSORTREE LIBRARY

Neural networks, their training routine, but also data processing are implemented using
PyTorch (Paszke et al. 2019) or TensorFlow (Abadi et al. 2016), which provide fast and
effective tensor operations, and automatic differentiation. This thesis focuses on PyTorch,
which is used for all experiments. In this chapter the training pipeline consists of code
that is initially transformed into a tree structure of integers, as shown in Figure 4.5b.
This structure is then used to generate input and output examples based on the specific
pretraining task. For instance, in the identifier deobfuscation task, variables need to
be identified within the syntax tree and subsequently replaced with mask tokens. After
manipulation, the leaves of the tree are concatenated to form the input vector x for the

transformer model.

To enable the fast processing of trees of integers within the PyTorch framework, the
TENSORTREE library was developed in this thesis (Villmow 2021). The library stores
trees in PyTorch tensors, which allows the user to use common PyTorch operations on
the tree. Specifically, the tree is flattened and stored as a pre-order node sequence in a
tensor, while the tree’s structure is maintained in two separate distinct arrays. In these

arrays, TENSORTREE stores for each node
1. the index of the parent node, and
2. the number of descendants.

It should be noted that these structural representations can be converted into one another
in O(n) time, where n is the number of nodes in the tree. Storing an array of parent
pointers is a common practice, but also having pre-computed access to the number of
descendants for tensor-based tree-manipulations is, to the author’s knowledge, a novel
approach in the deep learning domain. Even though two structural representations require
storage of 31 integers, the benefits of having both representations outweigh the additional
storage cost. The library also provides functions to convert between the two represen-
tations, as well as to sample subtrees, and to identify nodes based on their properties.
These operations make use of PyTorch’s tensor operations, which are optimized for fast

and efficient computation:

® tree.nodes[tree.descendants == 0] to create a mask for all leaf nodes and subse-

quently select them to form the input sequence x,

® tree.nodes[tree.parents[idx]] to access the data of a specific node’s parent,

100

4.5. EXPERIMENTAL SETUP

® tree.nodes[1dx: idx + tree.descendants[idx] + 1] to extract the subtree at index

idx ,

® (tree.nodes == identifier).nonzero() computes the indices of identifier nodes, as-

suming that identifier represents the id of an identifier node.

Additionally, the library can be used to compute characteristic tree matrices such as the
node incidence matrix from Equation (3.2), to identify nodes with PyTorch native compar-
ison and mask operations, as demonstrated above, and to sample subtrees by its size using
the descendants array. However, TENSORTREE has been designed to efficiently analyze,
identify, and select nodes, but not to iteratively modify or build trees. Modifications to
the tree structure are resource-intensive, as the three tensors must be recomputed and
reallocated. Nevertheless, this is a common use case and with performance in mind, tree
modifications like insertion, deletion, and replacement are still supported in TENSORTREE.
To do so, bulk operations can be used that improve performance over iterative operations.
A typical workflow would be to first identify the indices of identifier nodes by computing
a mask over the nodes, as shown above. Once the identifier indices have been determined,
a bulk operation can be employed to replace every subtree simultaneously, resulting in a
new tree with the identifiers replaced. Exemplary code for this is provided in Figure A.3
in the appendix. The TENSORTREE library has been made available as an open-source
project on PyPi (Villmow 2021).

4.5.5 Pretraining Dataset

Language Tokens Files Tokens per File Julia 0.04B 0.03M 1175
| 1B 0.06M 22
C 658 2.2M 2904 ocam 0 0.06 0o
PHP 348 22M 1550
c# 428 2.8M 1479 oo c3n soM aors
Co+ 878 3.7M 2317 Ryb on s 11v 10de
css 058 0.4M 1498 ey : :
Rust 098 04M 2419
Go 418 1.8M 2351 o 038 0aM 112
Haskell 028 0.IM 1854 Tca as - ven 2o 1oot
Java 1258 7.3M 1702 ypescrip : :
JavaScript 6.9B 4.5M 1550 Total/Average 58B 32M 1890

Table 4.1: The dataset used for pretraining the model. It consists of code from 237k repositories sourced from GitHub.
The table shows the number of tokens (in billions), files (in millions), and the average number of tokens per file for each
programming language.

GitHub is the largest platform for hosting code repositories in the current software de-
velopment landscape. In this work it is used to collect a large and diverse dataset of open
source code for pretraining the model. It should be noted that not all repositories that
can be found on GitHub are suitable for pretraining, as GitHub also contains personal

projects, low-quality code, or code that is not actively developed. In this thesis two criteria

101

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

are used to select high-quality repositories for the pretraining dataset: the number of

GitHub stars and the activity of the repository (Borges and Valente 2018).

With GitHub stars users can favor repositories and many use it to bookmark repositories.
The amount of stars a repository receives can be used as a proxy for its popularity. Given
the assumption that popular repositories are more likely to contain high-quality code, the
amount of stars a repository has is used as a criterion to select repositories for the pretraining
dataset. Another measure for the quality of a software project is the activity of its repository.
Since open source software development is a collaborative process, developers contribute to
aproject by creating pull requests that resolve issues or add features. Therefore, repositories
with active pull requests are more likely to be actively developed, maintained, and of higher

quality. These two criteria are employed to include only repositories with
1. more than 10 GitHub stars,

2. active development, measured by havinga pull request between April and September
2021.

It is not possible to identify repositories that meet these criteria using the free GitHub
API, because of the API’s low rate limits. However, an alternative is the Google BigQuery
dataset GitHub Activity Data (GitHub Inc. 2024), which contains a monthly snapshot of
all public events on GitHub. It was used in this work to identify active repositories with
more than 10 stars®. After cloning the repositories, only files from programming languages
for which a tree-sitter parser is available were kept. On GitHub, forking is a common
practice whereby developers copy a repository to their account and make changes to it, for
example to fix bugs or add features. Many forks become popular and are starred by users,
which can lead to numerous duplicate files in the dataset. To account for forks, duplicates

were removed on a file level.

Ultimately, the pretraining dataset consists of 32 million files in 16 programming lan-
guages from 237k repositories, with a total of 58 billion tokens after tokenization. Precise
statistics of the dataset for each programming language are presented in Table 4.1. A
subset of 1000 repositories comprising 100k files was reserved for validation and testing.
Thereby, a language distribution of the validation set similar to that of the training data

was maintained.

4.5.6 Pretraining Hyperparameters and Setup

Optimizing the throughput is an important aspect when training LMs on large datasets.
To maximize the amount of tokens each GPU processes in a batch, the batch size is
dynamically adjusted, so that a maximum of 6000 input tokens are processed in a batch.

To do so, samples are grouped by their size, and batches are created with samples of similar

>The query used to collect the information is shown in Figure A.2 in the Appendix.

102

4.5. EXPERIMENTAL SETUP

sizes to minimize padding. On average and without padding tokens, each batch contained

approximately 5700 input tokens and 1100 target tokens.

For optimization, the AdamW optimizer with 31 = 0.9, B2 = 0.98,and € = 1le—6
was used with a peak learning rate of 2e—4. Following Liu et al. (2019), the learning
rate was warmed-up over the first 6% of the total training steps, which is 60,000 steps.
After the warm-up phase, the learning rate was annealed to 0 with a polynomial decay.
All experiments were conducted on a DGX system equipped with 8 A100 GPUs, each
with 40GB of memory. Mixed precision training with BFloat16 was used to reduce the
memory footprint and to increase the training speed. To further increase the batch size,
which has been shown to be effective in LM training (Liu et al. 2019), and mimic training
with 64 GPUs, gradients were accumulated over 8 steps, which results in an effective batch
size of approximately 384,000 tokens®. The models were implemented using PyTorch
(Paszke et al. 2019), making use of the PyTorch Lightning (Falcon and Team 2019) library

for multi-GPU and mixed-precision training.

The models wetr trained for a total of 1 million steps, and each training takes approximately
3 weeks using the above hardware and configuration. A training processes around 365
billion input tokens, and predicts approximately 70.4 billion tokens. Because of the long
training duration, extensive hyperparameter tuning was not feasible. The hyperparameters
were instead chosen based on previous work and the available computational resources
(Raffel et al. 2020; Wang et al. 2021b).

4.5.7 Fine-Tuning Tasks and Datasets

After pretraining the model it is fine-tuned on an evaluation task from CODEXGLUE to
assess its code understanding capabilities. In this chapter five tasks from the CODEXGLUE
benchmark (Lu et al. 2021) were selected for evaluation. CODEXGLUE provides a specific
version of each dataset and additionally an evaluation script for every task, so that a fair
comparison with other state-of-the-art models is possible. Each task comes with predefined
training, validation, and test splits. Table 4.2 shows the number of samples in each split
for each task and dataset. Metrics are reported using the provided evaluation scripts. The

tasks include three generation, one classification, and one retrieval task:

1. COdC Translation: Translates COdC snippets between programming languages

(generation).

2. Code Refinement: Removes bugs from code snippets (generation).

The authors of the ROBERTA model reported best results for an effective batch size of 1M tokens,
but achieved similar performance with 130k tokens (Liu et al. 2019). For performance reasons a setting in
between the two was chosen in this work.

103

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

Task Type Source Name Subset Train Valid Test
Code summarization Generation Husain et al. (2019) CODESEARCHNET Ruby 24,927 1,400 1,261
JavaScript 58,025 3,885 3,291
Go 167,288 7,325 8,122
Python 251,820 13,914 14,918
Java 164,923 5,183 10,955
PHP 241,241 12,982 14,014
Code translation Generation Lu etal. (2021) - - 10,295 499 1,000
Code refinement Generation Tufano et al. (2019) - Small 46,680 5,835 5,835
Medium 52,364 6,546 6,545
Defect detection Classification ~ Zhou et al. (2019) DEVIGN - 21,854 2,732 2,732
Clone detection Retrieval Mou et al. (2016) PoJ-104 - 32,000 8,000 12,000

Table 4.2: Number of samples in the training, validation, and test set for each task from the CODEXGLUE benchmark.

3. Code Summarization: Generates natural language descriptions for given code

snippets (generation).
4. Defect Detection: Detects vulnerabilities in the code snippets (classification).

5. Clone Detection: Retrieves similar code snippets that implement the same func-

tionality as the given one (retrieval).

FINE-TUNING HYPERPARAMETERS AND SETUP

As previously detailed three models are trained and evaluated in the experiments: (1)
a non-pretrained model that is trained end-to-end on the task, (2) the baseline model
trained only with regular pretraining tasks, and (3) the proposed structural model. Each
model is trained on the training dataset of the specific task. A separate hyperparameter
sweep is conducted for every model and the performance of each model on the validation
set is optimized. At the end of the sweep only the best performing run of every model is
evaluated once on the test set using the provided evaluation scripts. Generation tasks, such
as code translation and summarization, follow the same sequence-to-sequence training
paradigm described in Section 4.4. Thus, to fine-tune the model for generation tasks only
the input and output sequences need to be changed to the specific task. The classification
and retrieval tasks require architectural changes. These are described in the respective task

sections.

As for pretraining, the task-specific fine-tuning is implemented with PyTorch (Paszke et al.
2019), PyTorch Lightning (Falcon and Team 2019), and the models are trained with mixed
precision and a dropout rate of 0.1. Some general hyperparameters slightly differ from
the pretraining setup. For example for fine-tuning typically a smaller learning rate is used,
to avoid a phenomenon called catastrophic forgetting in which models forget previous

knowledge (Goodfellow et al. 2014, p. 194). Furthermore, since the focus is less on

104

4.5. EXPERIMENTAL SETUP

maximizing throughput, the batch size h, is fixed during fine-tuning and not dynamically
adjusted, as it was during pretraining. Similarly, the AdamW optimizer (Loshchilov and
Hutter 2019) is used with a learning rate schedule, in which the learning rate Ay, is warmed
up over the first 10% of the training steps and then decayed linearly until the maximum
number of training epochs is reached. Note that with this setup, the maximum amount of

training epochs h. influences the learning rate schedule.

These hyperparameters can have a strong influence on the model’s performance, especially
on the CODEXGLUE tasks, and thus to find the optimal set the Bayesian hyperparameter
optimization strategy from Weights and Biases (Biewald 2024) was used. The specific
values and ranges that have been swept over are mentioned in the respective task sections.
Early stopping is used, as described in Section 2.2.1, storing the best checkpoint of that
run, and stopping the run when performance does not improve over three consecutive
epochs. At the end of the sweep, only the best checkpoint according to the validation
performance across all runs is evaluated once on the test set. On generation tasks, the
predictions were generated greedily during validation, while at test-time a beam search

with beam size of S was used.

To construct input examples for the fine-tuning tasks, the same tree tokenization process
as in pretraining is used, and the leaves of the tree are concatenated to form the input or
output sequence. As in pretraining, a language identifier token is prepended to the input

sequence.

CODE TRANSLATION

Code translation is a sequence-to-sequence task that aims to translate code snippets from
one programming language to another. In the code translation dataset from CODEXGLUE,
the task is to translate code snippets from Java to C# and vice versa (Lu et al. 2021). As
shown in Figure 4.6 the code snippets are rather small, contain only a few lines of code, in

which mostly naming conventions and syntax differ between the two languages.

1 public int getCellsval() {
2 Iterator<Character> i1 = cells.keySet().iterator();
1 public int GetCellsVal(){ 3 int size = 0;
2 int size = 0; 4 for (; i.hasNext();){
3 foreach (char c in cells.Keys){ 5 Character ¢ = i.next();
4 Cell e = At(c); 6 Cell e = at(c);
5 if (e.cmd >= 0){size++;} 7 if (e.cnd >= 0){size++;}
6 } 8 }
7 return size; 9 return size;
8 } 10 1}
(a) Code snippet in C#. (b) Code snippet in Java.

Figure 4.6: Example of a code snippet in C# and Java from the code translation dataset (Lu et al. 2021).

105

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

Because the dataset contains relatively few samples—details are shown in Table 4.2—a
good understanding of the programming language is required to perform well on this
task. The models are evaluated using the Exact Match (EM) metric (which is the same as
accuracy). It measures the percentage of code snippets in which the complete translation

has been generated correctly. Additionally, the smoothed BLEU score is reported.

HyYPERPARAMETERS In the sweep the fine-tuning batch size hy, is drawn from the set
{8,12,16, 24, 32}, the learning rate hy,. is drawn from the interval [107°, 107%], and the
maximum number of epochs k. is drawn from {5, 8,10, 15} for the pretrained variants
and {10, 15, 20, 25} for the non-pretrained model to allow for more training. To combat
the small dataset size, code snippets are translated in both directions at the same time
during training; i.e., from Java to C# and from C# to Java. During validation and testing
each direction is evaluated separately, but the sweep optimizes the average accuracy of
both directions. Each pretrained run takes around 1.5h on a single A6000 GPU, so that
in a 7 days compute limit around 150 runs per model are conducted. The non-pretrained
model has the same compute limit, but had to be trained for more epochs, so that only

around 50 runs have been conducted.

CODE REFINEMENT

Code refinement is a sequence-to-sequence task that aims to automatically apply fixes
to a piece of Java code as shown in Figure 4.7. The fixes can be small bug fixes, such as
removing unused variables or statements, missing arguments, or more complex changes,
such as adding null checks. The dataset has been introduced by Tufano et al. (2019) and is
part of the CODEXGLUE benchmark (Lu et al. 2021). The authors created the dataset
by collecting commits from open-source projects that had keywords that indicated a bug
fix in their commit message (e.g., fix, bug, error, or issue). The authors fetched the code
snippets before and after the bug fix and subsequently extracted method-level pairs of
buggy and fixed code. An abstraction process was applied to the code snippets, which
included removing comments and annotations, normalizing identifiers such as method

and variable names, and replacing literals with placeholders.

The authors diveded the dataset into two subsets, SMALL and MEDIUM, based on the
length of the code snippet and included a train, validation, and test set for each subset.
During creation of the splits the authors used clone detection tools to avoid data leakage by
verifing that the code snippets in the test set were not present in the training or validation

set.

HyPERPARAMETERS The batch size hj is drawn from the set {8, 16, 32,64}, the

learning rate Ay, is drawn from the interval [5 x 1075, 10~%], and the maximum number

of epochs h is drawn from {5, 8, 10, 15} for the pretrained variantsand {10, 15, 20, 25}

106

private void METHOD_1(){
1f((VAR_1.length) > 1){
VAR_2 = (VAR_1.length) - 1;
METHOD_2(VAR_1[VAR_21);

4.5. EXPERIMENTAL SETUP

private void METHOD_1(){
1f((VAR_1) !'= null){
if ((VAR_1.length) > 1){
VAR_2 = (VAR_1.length) - 1;
METHOD_2(VAR_1[VAR_2]);

(a) Buggy code snippet with a missing null check.

(b) Corrected code snippet.

Figure 4.7: Example of a buggy and the fixed code snippet from the code refinement dataset (Tufano et al. 2019).

for the non-pretrained model to allow for more training. The model was trained jointly
on both subsets of the dataset, but validation accuracy is computed separately for each
subset. The sweep maximizes the average accuracy over both subsets. Each training takes
approximately 14h on a single A6000 GPU, and a compute limit of 15 days is set. In that

compute limit around 35 runs were conducted for all models.

CODE SUMMARIZATION

Code Summarization aims to generate a natural language description for a function. The
CoDESEARCHNET dataset (Husain et al. 2019) is used for this task, which contains code
snippets in six different programming languages: Ruby, JavaScript, Go, Python, Java, and
PHP. The same task and dataset was used to evaluate the structural transformer model
in Section 3.4.3. However, at the time of the experiments of the last chapter, it was not
part of the CODEXGLUE benchmark. A brief description of the task is given here for
completeness. Consider the example in Figure 4.8, where a Python function needs to be

summarized as return reverse complement of read.

def rev_c(read):
rc =[]

rc_nucs = {'A':'T', 'T':'AY, 'G'CY, 'CTG,

1

2

3

4 for base in read:
5 rc.extend(rc_nucs[base.upper()])
6

return rc[::-1]

Figure 4.8: Python function that reverses and complements a read.

As shown in Table 4.2, the size of this dataset is relatively large. In total the combined
training set contains over 900k samples. This dataset is an order of magnitude larger
than the other evaluation benchmarks, which range from 10k to at most 100k training

samples. Given the size of this dataset, many proposed code LMs, such as CODET s, use

107

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

this bimodal dataset during pretraining. Additionally, the dataset is slightly imbalanced,
with the majority of Python and PHP samples, closely followed by Go and Java.

HyYPERPARAMETERS On this task the input sequence @ is truncated to have at most
400 tokens and the output sequence Yy to 128 tokens. Given the large size of the dataset
the batch size is not optimized in the hyperparamter sweep. Instead, a fixed batch size
of 24 sequences is used, as is this is the largest batch size that fits on the GPUs. With
the hyperparameter sweep, the learning rate hy,. is drawn from the interval [107°, 1074,
and the maximum number of epochs k. is drawn from {5, 10}. The models are trained
on the combined training set of all programming languages, but the validation and test
accuracy is computed separately for each language. The sweep optimizes the average of the
smoothed BLEU scores over all languages. Each training takes approximately 12h-24h on
three A6000 GPUs, and a compute limit of 22 days is set. In that compute limit around

30 runs were conducted for all models.

DErFECT DETECTION

The defect detection task aims to identify vulnerabilities, such as memory leaks or use-after-
free vulnerabilities in C functions. The devign dataset—that is part of the CODEXGLUE
benchmark (Lu et al. 2021)—has been introduced by Zhou et al. (2019) and is used here.
The authors manually annotated vulnerability fixing commits from large open-source

projects, such as the Linux kernel and extracted functions with labels.

MoDEL Defectdetection isabinary classification task where the model predicts whether
agiven code snippet contains a defect or not. Differing to CODET's, this thesis does not
treat this task as a sequence-to-sequence task, where the decoder generates the class label.
Instead, only the encoder part of the model is used, and a classification head predicts the
binary label. Formally, the hidden state of the language identifier token of the encoder’s
last layer b € R? is fed into a classification head, to predict the logits for the binary label
g € {0, 1} (see Section 2.2.2):

r = tanh(W] dropout(h) + b;) (4.5)

~

y = Wadropout(r) + b

Where Wi € R4 b, € R Wy € R2X? and by € R2 are learnable parameters.
The model is trained by optimizing the regular cross-entropy classification loss from
Equation (2.13).

HYPERPARAMETERS In this task, the input sequences are truncated to a maximum
length of 800 tokens. During the sweep the batch size hy, is drawn from {5, 8, 10,
12,16}, the learning rate Ay, is drawn from the interval [107°,1074], and the maxi-

108

4.5. EXPERIMENTAL SETUP

1 static void vcl_inv_trans_8x8_dc_c(uint8_t *dest, int
— linesize, DCTELEM *block)

2 {

3 int i;

4 int dc = block[0];

5 const uint8_t *cm;

6 dc = (3 *dc + 1) > 1;

7 dc = (3 * dc + 16) >> 5;

8 cm = ff_cropTbl + MAX_NEG_CROP + dc;

9 for(i = 0; 1 < 8; i++){

10 dest[0] = cm[dest[0]];

11 dest[1] = cm[dest[1]];

12 dest[2] = cm[dest[2]];

13 dest[3] = cm[dest[3]];

14 dest[4] = cm[dest[4]];

15 dest[5] = cm[dest[5]];

16 dest[6] = cm[dest[6]];

17 dest[7] = cm[dest[7]];

18 dest += linesize;

19 }

20 }

Figure 4.9: Example of a code snippet with a vulnerability from the devign dataset (Zhou et al. 2019).

mum number of epochs h is drawn from {3, 5, 8, 10}. The sweep optimizes validation

accuracy.

CLONE DETECTION

The PoJ-104 dataset has been introduced by Mou et al. (2016). It consists of C and
C++ programs for 104 problems sourced from student submissions to a pedagogical
programming open judge system (Lu et al. 2021). For each problem 500 solutions are part
of the dataset, so that in total the dataset contains 52,000 samples. CODEXGLUE defines
the clone detection task for this dataset as a retrieval task, where the model is tasked to
retrieve other code snippets that belong to the same problem as the given code snippet.
Correspondingly, the task is evaluated using a retrieval metric: the MAP@499 metric,
which is the mean average precision obtained by analyzing the first 499 retrieved samples.
Definitions can be found in Equations (2.29) and (2.30). CODEXGLUE defines a train,
validation and test split for the dataset based on the problem level, which is important
since it ensures proper generalization to unseen problems. The training set consists of 64
problems, the validation set of 16 problems, and the test set of 24 problems. Examples of
the dataset are shown in Figure 4.10.

109

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

1 int main()
2 {
3 char a[105], * p, x;
4 int 1 = 0;
1 int main() 5 gets(a);
2 { 6 p = a;
3 char str[105]; 7 X = * p;
4 memset (str, 0, sizeof(str)); 8 for(1=0; * (p+ 1+ 1) !="'\0"; i++)
5 cin.getline(str, 105); 9 *(p+ 1) +=* (p+1i+1);
6 stristrlen(str)] = str[0]; 10 * (p+ 1) += x;
7 for (int 1 = 0; 1 < strlen(str) - 1; i++) 11 cout << a;
8 cout <<(char)(str[i] + str[i+1]); 12
9 return 0; 13 return 0;
10 } 14}
(a) Code snippet from problem 91. (b) Code snippet from problem 91.
1 int main()
2 {
3 int count(int facevalue,int sum,int n); 1 int main()
4 int n,sum=0; 2 {
5 cin>>n; 3 int i,er=0,ws=0,sh=0,wu=0,b=0,money;
6 int facevalue[6]={100,50,20,10,5,1},num[6]; 4 cin>>money;
7 for(int 1=0;1<6;1++) 5 for(;;)
8 { 6 {if(money/100>=1) {money=money-100;b=b+1;}
9 num[i]=count(facevalue[i],sum,n); 7 else break;}
10 cout<<num[i]<<endl; 8 for(;s)
11 sum+=num[i]*facevalue[i]; 9 {if(money/50>=1) {money=money-50;ws=ws+1;}
12 } 10 else break;}
13 return 0; 11 for(s;)
14 3} 12 {if(money/20>=1) {money=money-20;er=er+1;}
15 13 else break;}
16 1int count(int facevalue,int sum,int n) 14 for(;;)
17 { 15 {if(money/10>=1) {money=money-10;sh=sh+1;}
18 for(int 1=0;;) 16 else break;}
19 { 17 for(;;)
20 if((i+1)*facevalue+sum<=n) 18 {if(money/5>=1) {money=money-5;wu=wu+1;}
21 i++; 19 else break;}
22 else 20 cout<<b<<endl<<ws<<endl<<er<<endl<<
23 return i; < sh<<endl<<wu<<endl<<money<<endl;
24 } 21 return 0;
25)} 22}

Figure 4.10: Examples of code snippets from the clone detection dataset (Mou et al. 2016). The task is to retrieve code
snippets that belong to the same problem as the given code snippet. For example, given the code snippet in (a), the

(c) Code snippet from problem 97.

(d) Code snippet from problem 97.

model should retrieve the code snippet in (b) and not the code snippets in (c) and (d).

110

4.6. RESULTS

MoDEL Since the clone detection task is a retrieval task, the model architecture needs
to be adapted for contrastive learning. As for the defect detection task, the encoder-part
of the model is used to encode the code snippets into a fixed-size representation, by using
the hidden state of the language identifier token of the encoder’s last layer. The model is
trained using the InfoNCE loss from Equation (2.19) to maximize the similarity between
the query code snippet and other sequences from the same problem, while minimizing
the similarity to code snippets from other problems. The similarity between two code
snippets is computed using the cosine similarity between their embeddings. Please refer

to Section 2.2.2 for more details on contrastive learning.

HyYPERPARAMETERS With the sweep the validation MAP@499 is optimized. The in-
put sequences are truncated to a maximum length of 800 tokens. The batch size h,—which
has an influence to the number of negative samples during contrastive training, since in-
batch negatives are used—is drawn from {8, 12, 16, 20}, the learning rate ;. is drawn
from the interval [10~°,1074], and the maximum number of epochs k. is drawn from

{5, 8, 10}. The non-pretrained model has the additional option to train for 15 epochs.

4.6 RESULTS

This section presents the results of the experiments conducted on CODEXGLUE.

4.6.1 Comparison of Structural and Regular Pretraining

Does structural pretraining provide a stronger learning signal than regular

pretraining? — RQ 4.1

The results in Table 4.3 show that the models trained with structural pretraining either
outperform or match the performance of regular pretrained models consistently across all

evaluated tasks. In particular, it can be seen that

e in the code translation task, SYNTAXPT outperforms the regular model by 2.9 p.p.
in EM,

e in the code refinement task, structural pretraining results in a 0.7 p.p. improvement

in EM on the small subset and a 1.8 p.p. improvement for the medium subset,

e for code summarization, SYNTAXPT performs marginally better than the regular
model (+0.1 BLEU),

o for defect detection, SYNTAXPT matches the accuracy of the regular model,

e and for clone detection, SYNTAXPT outperforms the regular model by 5.7 p.p. in
MAP@499.

111

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

. Translation (EM) Refinement (EM) Summa- Defect Clone
Pretraining L. . .
rization Detection Detection
Java—C# CH—>Java Medium Small (BLEU) (Accuracy) (MAP)
REGULARPT 63.7 66.2 14.9 22.1 19.3 68.2 83.8
SYNTAXPT 66.8 68.9 16.7 22.8 194 68.2 89.5

Table 4.3: Comparison of the regular and structural pretrained models on the CODEXGLUE tasks. All metrics are provided
in percentages and the best result for each task is highlighted in bold.

On three out of five tasks SYNTAXPT outperforms the regular model by a significant
margin. The consistent improvements across all tasks indicate that the structural pretrain-
ing indeed provides a stronger learning signal than regular pretraining. However, on two
tasks SYNTAXPT performs equally well or marginally outperforms the regular model. For
code summarization the narrow margin can be attributed to the large size of the dataset,
which seems to provide a sufficient learning signal for both models itself. Similarly, the
defect detection task does not seem to benefit from structural pretraining. An explanation
could be that reasoning about identifier names may not be a strong indicator for detecting

defects.

Noteworthy is the large improvement in the clone detection task, where SYNTAXPT
outperforms the regular model by 5.7 p.p. in MAP@499. The improvement feels natural
since SYNTAXPT—which needed to learn a representation for code without the ability
to rely on identifier names—is good at identifying code clones, which are often similar
in structure but differ in identifier names. Also, another thing about the clone detection
task is particularly interesting: during validation the regular model performed better than
SYNTAXPT, but at test time it falls far behind. The regular model dropped from 89.6%
validation MAP to 83.8% test MAP, while SyNTAXPT achieved 88.4% MAP during
validation and 89.5% MAP during testing. This large drop in performance indicates that
the regular model overfits to the validation set. We analyzed the variance of the three best
runs of each hyperparameter sweep, and a similar pattern emerged: the regular model had
an average drop of 8.8 p.p. MAP (3.1 p.p. stddev), while SYNTAXPT had an average drop
of only 0.7 p.p. (stddev of 2.1 p.p.). This indicates that SYNTAXPT is better at generalizing

to unseen data, at least in the clone detection task.

The better performance of SYNTAXPT indicates that structural pretraining indeed creates
more challenging training samples from the same data. Another indicator about the
strength of the learning signal is the pretraining loss. Loss values near zero indicate that
the model can predict the masked tokens with high confidence, while higher loss values
indicate that the model struggles to predict the masked tokens. Not surprisingly, the
training loss of the structural pretrained models is on average 0.2 higher than the regular
pretrained models, as shown in Figure 4.11. This is due to the fact that regular masking

often targets simpler elements, such as whitespace or keywords.

112

4.6. RESULTS

10 T T T T T T
—— Regular Pre-Training

09 F — Structural Pre-Training

0.8 J

Training Loss
o
-~
T

0.6 J
0.5 J
04 1 1 1 1 1 1
0 200 400 600 800 1000
Step x1000

Figure 4.11: Comparison of the training losses of the structural (green) and regular pretrained models (red). The
structural pretraining leads to higher training losses, which indicates that the model struggles more to predict the
masked tokens.

Despite the lower difficulty of regular pretraining, models trained with structural pretrain-
ing achieve a higher test performance on fine-tuning tasks. Furthermore, not only the test
performance is higher, but also the training is more stable, as shown before on the clone
detection task. An alternative perspective on the stability of the training is visualized in
Figure 4.12 by plotting the validation performance of the models in the hyperparameter
sweeps. The average performance of the structural pretrained models is shown in green,
while the regular pretrained models are shown in red and the light area represents the
95% confidence interval. It can be seen that the structural pretraining on average has a
higher performance than the regular pretraining on all tasks. Additionally, the confidence
interval for the structural runs is much smaller than the one for the regular runs, which
indicates that structural pretraining leads to more stable fine-tuning performance and less

sensitivity with respect to hyperparameters.

These findings support the argument that structural tasks present more challenging prob-
lems, which require deeper reasoning about the code and thereby provides a stronger
learning signal. The model trained with structural pretraining is better at generalizing to

unseen data and is more stable during fine-tuning to downstream tasks.

4.6.2 Benefit of Pretraining on Code

What is the benefit of pretraining on code compared to training from scratch? —
RQ4.2

Following recent lines of research that demonstrate the benefits of pretraining on large

datasets (Devlin et al. 2019; Feng et al. 2020; Guo et al. 2021) the structural pretrained

113

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

T T T T T 20 F T T T
_ 60 - - _15F
s s
w w
50 | - ok
——— Regular (95 runs, 5.3 days) - Regular (35 runs, 17.8 days)
~—Structural (81 runs, 5.0 days) . — Structural (33 runs, 15.9 days)
T S S 5 U S B
0 10 20 30 4(0 50 100 150
Step x 1000 Step x 1000
(a) Code Translation (b) Code Refinement
r 1 T T 1 " T [T~ L L B R B R |
70 -
20
F L
> 65 -
g 3
g . o 18 |
< 60 - L
—— Regular (305 runs, 20.0 days) I —— Regular (33 runs, 22.1 days)
~—Structural (321 runs, 20.0 days) . r ——Structural (28 runs, 22.0 days)
55 I 1 1 1 L 16 1 1 1 1 1
0 10 20 30 20 40 60 80 100
Step x1000 Step x1000
(c) Defect Detection (d) Code Summarization

Figure 4.12: Comparison of the validation performance on the fine-tuning tasks for the structural and regular pretrained
models at each training step. The results of every run in the sweep are aggregated and the average performance is
shown as a solid line, while the light area represents the 95% confidence interval.

model is compared to a model which is trained end-to-end on the CODEXGLUE tasks in
Table 4.4. The clone detection task benefits strongly from pretraining, with a 69% relative
improvement in MAP@499. The subjective variability in identifier names makes keyword
matching difficult, and this variability seems to be difhicult to learn end-to-end from the

training data.

Additionally, it can be observed that the two generation tasks code translation and code
refinement benefit significantly from pretraining, with an average relative improvement of
146% in EM on the translation task and 86% on the refinement task. This is in line with
previous findings that pretraining can significantly improve the performance of models
on downstream tasks (Liu et al. 2019; Wang et al. 2021b).

Especially, the decoder part of the model benefits from pretraining, as the training datasets
may simply not be large enough to learn the complex patterns of code and natural language
needed to generate the correct output. But even for tasks with a large training set—such as

the code summarization task, that contains over 900k training samples—an absolute im-

114

4.6. RESULTS

- Translation (EM) Refinement (EM) Summa- Defect Clone
Pretraining e) .
rization Detection Detection
Java—C# C#—>rJava Medium Small (BLEU) (Accuracy) (MAP)
TRANSFORMER (no PT) 28.0 27.2 7.4 15.7 17.7 63.7 52.9
SYNTAXPT 66.8 68.9 16.7 22.8 194 68.2 89.5

Table 4.4: Comparison of the structural pretrained model to a model that is trained end-to-end on the CODEXGLUE tasks.
All metrics are provided in percentages and the best score for each task is highlighted in bold.

Model Ruby JS Go Python Java PHP Al
RsT 14.8 15.0 18.6 17.9 18.6 23.8 18.1
TRANSFORMER (no PT) 139 146 18.1 18.2 18.2 23.1 17.7
REGULARPT 15.9 15.8 19.3 19.2 20.0 255 19.3
SYNTAXPT 15.8 15.9 19.3 19.4 19.7 26.0 19.4

Table 4.5: Comparison of the RST model from Chapter 3 to the pretrained models on the CODESEARCHNET dataset.

provement of 1.7 p.p. BLEU can be observed. Overall, one can conclude that pretraining

on code provides a significant benefit for all code understanding benchmarks.

4.6.3 Structural Pretraining vs. Relative Structural Transformer

Houw does the structural pretraining compare to the RST model from Chapter 37
-RQ 43

The RsT model from Chapter 3 is compared to the pretrained models on the CODESEARCHNET
dataset. The results are shown in Table 4.5. The pretrained models outperform the RsT
model on all languages, but it is important to note, that the RsT model was trained end-
to-end on the CODESEARCHNET dataset. While the internal structural bias of the RsT
model is beneficial compared to no pretraining, any type of pretraining provides better
performance. During pretraining the model sees a variety of code snippets with their
documentations, and the model can internalize this information to generate better code

summaries.

4.6.4 Comparison with State-of-the-Art
How do the models perform compared to other state-of-the-art models? — RQ 4.4

Next, the models are compared to other state-of-the-art models on the CODEXGLUE
benchmark (Lu et al. 2021). The scores of related work are taken from the respective paper
or the CODEXGLUE leaderboard, unless otherwise stated”. Note that these experiments
have been performed in 2021, and comparisons in this section are based on state-of-the-art
models at that time, with a cutoff date of February 2022. Please refer to the CodeXGLUE

"The leaderboard can be accessed at https: //microsoft.github.io/CodeXGLUE/ (last accessed 09/2024).

115

https://microsoft.github.io/CodeXGLUE/
https://microsoft.github.io/CodeXGLUE/
https://microsoft.github.io/CodeXGLUE/
https://microsoft.github.io/CodeXGLUE/

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

Java—C# C#—>Java
Model
BLEU EM BLEU EM
Naive Copy 18.5 0 18.7 0
ROBERTA-CODE 77.5 56.1 72.0 57.9
CODEBERT 79.9 59.0 72.1 58.8
GRAPHCODEBERT 80.6 59.4 72.6 58.8
SYNCOBERT 80.8 60.4 76.5 61.3
PLBART 83.0 64.6 78.4 65.0
CODET5 84.0 65.9 79.9 66.9
2024 Leaderboard?® 85.0 66.6 80.7 67.7

TRANSFORMER (no PT) 48.7 28.0 41.0 27.2
REGULARPT 83.5 63.7 79.8 66.2
SYNTAXPT 85.4 66.8 81.2 68.9

Table 4.6: Comparison against the state-of-the-art on the code translation task.

leaderboard for the most recent results and models. As a reference, the best result from the
leaderboard at the time of the writing of the thesis is added to each table, without explicitly
mentioning it in the text. Many approaches propose different variants of their model.
For example, the CODET's model is evaluated with and without a multi-task fine-tuning
approach. In that case, the best performing variant is reported in the tables, which does
not necessarily have to be the same variant for all tasks. Please refer to the original paper

to obtain the exact variant.

CoODE TRANSLATION

When comparing the models to the state-of-the-art on the code translation task in Ta-
ble 4.6, it can be seen that the structural pretrained model outperforms all other mod-
els on both translation directions. Compared to the state-of-the -art CODET's model
SYNTAXPT achieves a +1.4 p.p. BLEU and a +0.9 p.p. EM improvement when translat-
ing from Java to C#, and +1.3 p.p. BLEU and +2 p.p. EM improvement when translating
from C# to Java. Interestingly, the regular model performs similar, but slightly worse than
the CopET's model, which is surprising, as the CODET s model has been trained on a
mixture of regular and structural tasks. Even though the models trained in this chapter
have been trained on more data, the regular trained model could not outperform the
same-sized CODET's model. This is another indicator that the structural pretraining may

provide a stronger learning signal than regular pretraining.

Now some qualitative examples of SYNTAXPT are shown. The model successfully trans-
lated the code shown in Figures 4.6 and 4.13. Thereby, the model correctly distinguishes

*Results belong to model proposed by Tipirneni et al. (2024).

116

https://microsoft.github.io/CodeXGLUE/
https://microsoft.github.io/CodeXGLUE/
https://microsoft.github.io/CodeXGLUE/

4.6. RESuLTS

1 public RuleTagToken(String ruleName, int

< bypassTokenType, String label){ 1 public RuleTagToken(string ruleName, int
2 if (ruleName == null || < bypassTokenType, string label){

— ruleName.isEmpty()){ 2 if (string.IsNullOrEmpty(ruleName)){
3 throw new IllegalArgumentException(3 throw new ArgumentException("ruleName
< "ruleName cannot be null or empty."); < cannot be null or empty.");
4} 4}
5 this.ruleName = ruleName; 5 this.ruleName = ruleName;
6 this.bypassTokenType = bypassTokenType; 6 this.bypassTokenType = bypassTokenType;
7 this.label = label; 7 this.label = label;
8 } 8 }
J
(a) Java code snippet. (b) C# code snippet.

Figure 4.13: This function was translated correctly in both directions.

1 public static SpatialStrategy <
< GetSpatialStrategy(int roundNumber){ 1 public static SpatialStrategy
2 SpatialStrategy result; < getSpatialStrategy(int roundNumber){
3 if (!spatialStrategyCache.TryGetValue(J 2 SpatialStrategy result =
< roundNumber, out result) || result == < spatialStrategyCache.get(roundNumber);
— null){ 3 if (result == null) {
4 throw new InvalidOperationException(4 throw new IllegalStateException("Strategy
< "Strategy should have been init'ed by < should have been init'ed by
< SpatialDocMaker by now"); < SpatialDocMaker by now")
5 } 5 }
6 return result; 6 return result;
7} 7}
J
(a) C# code snippet. (b) Correct predicted Java code snippet.

1 public static SpatialStrategy CetSpatialStrategy(int roundNumber){
2 SpatialStrategy result = spatialStrategyCache.Get(roundNumber);
3 if (result == null){

4 throw new InvalidOperationException("Strategy should have been init'ed by SpatialDocMaker by
— now");

5 1}

6 return result;

7}

(c) Incorrect predicted C# code snippet.

Figure 4.14: While this function was translated correctly from C# to Java (a)->(b), the translation from Java to C# (b)->(c)
did not use the C# specific TryGetValue method (see ground truth in (a)).

117

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

Refinement
Model -
Small Med

Naive Copy 0 0
75 15.3 4.1
ROBERTA-CODE 15.9 4.1
CODEBERT 16.4 5.2
GRAPHCODEBERT 17.3 9.1
PLBART 19.2 9.0
CODET5S 22.6 14.2
COTEXT 22.6 15.4
2024 Leaderboard 24.0° 154
TRANSFORMER (no PT) 15.7 7.4
REGULARPT 22.1 14.9
SYNTAXPT 22.8 16.7

Table 4.7: Exact Match for the code refinement task on the small and medium dataset.

between language specific idioms, such as the IsNullorempty check in C# in Figure 4.13
line 2, or rather uses the foreach loop in C# line 3 of Figure 4.6. In Figure 4.14, when
translating from C# to Java, the model correctly replaces the C#-specific TryGetvalue
method with the Java-specific get method, which returns nutt if the key is not present
in the map. However, when translating from Java to C# it tries to adapt the pattern from
Java to C#, which is incorrect, as a Get method does not exist in C#. Either using the

TryGetValue method oran itemized access witha Containskey check would be semantically
correct translations. Furthermore, the model sometimes adds unnecessary whitespace or
brackets in single line if-statements, which are not present in the reference translation. For
EM, these changes are considered errors, even though they do not change the semantics of
the code. Interestingly, when evaluating the predictions without considering whitespace
or brackets, the model achieves an accuracy of 74.5% (+5.6 p.p.) for C# to Java and 68.9%
(+2.1 p.p.) for Java to C#.

CODE REFINEMENT

The results for the code refinement task are shown in Table 4.7. The structural pretrained
model outperforms all other models on both the small and medium dataset. The strongest
improvement can be observed on the medium dataset, where the model achieves a 2.5
p.p. improvement in accuracy compared to the CODET's model. While there is still an
improvement on the small dataset, the difference to CODET's is less strong with only
0.2 p.p.. Interestingly, the non-pretrained baseline performs similar or even better on
the medium dataset than the pretrained ROBERTA-cODE and CODEBERT models.

An explanation could be that those encoder-only models still need to train the decoder

PResult belongs to model proposed by Hu et al. (2022).
“Result belongs to model proposed by Phan et al. (2021).

118

4.6. RESULTS

Model Ruby IS Go Python Java PHP All
ROBERTA-CODE 11.2 11.9 17.7 18.1 16.5 24.0 16.6
CODEBERT 122 149 181 191 177 252 178
RsT (Chapter 3) 14.8 15.0 18.6 17.9 18.6 23.8 18.1
75 14.2 14.6 19.2 19.3 18.4 24.6 18.4
COTEXT 140 150 189 19.7 191 246 186
PLBART 14.1 15.6 18.9 19.3 18.5 23.6 18.3
CODETS 15.7 16.2 19.8 204 20.5 26.1 19.8
2024 Leaderlooardd 17.2 18.2 21.6 23.1 22.6 28.8 21.9
TRANSFORMER (no PT) 13.9 14.6 18.1 18.2 18.2 231 17.7
REGULARPT 159 158 193 19.2 200 255 193
SYNTAXPT 15.8 15.9 19.3 19.4 19.7 26.0 19.4

Table 4.8: Code summarization results on the CODESEARCHNET dataset. As Feng et al. (2020) this table reports smoothed
cumulative BLEU-4 scores.

from scratch during fine-tuning. This gave the models trained in this chapter a head start,

because the pretrained decoder needed to be fine-tuned to the specific use-case.

Examples of correctly and incorrectly predicted fixes are shown in Figures 4.15 and 4.16.
The model correctly learns that unused variables, and unnecessary print or if statements
can be removed or replaced by simpler terms. It does not simply learn that unused variables
need to be removed, in the fourth example the model detects that an unused parameter
needs to be used inside a method and correctly applies that fix. It can also detect that it
should be first checked if an array has been initialized before item access is performed.
Additionally, it detects uncommon loop conditions (e.g., i != VAR_1) and uses the more
common and easier to understand syntax. On the other hand only about a fifth of the
examples were predicted correctly and Figure 4.16 shows three incorrectly predicted
fixes. In the first example the model correctly removes the off-by-one error, however,
it also retains the original behavior of returning null when i == o. This special case
logic can be intended and there is no way of figuring this out for the model, given the
limited information available. The same counts for the second example, where the model
incorrectly changes the access level modifier from protected to public instead of private .
In some examples, such as the third example, the fix may not be reasonably predicted. The
model removes the unnecessary print statement, however, the reference translation asks

for saving the parameter VAR_1 in a variable p .

CODE SUMMARIZATION

On code summarization the model was evaluated on the CODESEARCHNET dataset. The
detailed results are shown in Table 4.8. As already discussed in RQ 4.1 both pretraining
strategies perform similar, with SYNTAXPT slightly outperforming the regular model.

4Results belong to model proposed by Li et al. (2023).

119

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

1 boolean METHOD_1 (java.lang.String text) { java.util.regex.Matcher VAR_1 = VAR_2 . METHOD_2 (text
«s) ; if (VAR_1 . METHOD_3 ()) { return true ; } else { return false ; } }

2 boolean METHOD_1 (java.lang.String text) { java.util.regex.Matcher VAR_1 = VAR_2 . METHOD_2 (text
<) ; return VAR_1 . METHOD_3 () ; }

(a) Remove redundant if statement.

1 public java.util.List < TYPE_1 > METHOD_1 (int VAR_1) { return VAR_2 . METHOD_1 () ; }
2 public java.util.List < TYPE_1 > METHOD_1 (int VAR_1) { return VAR_2 . METHOD_1 (VAR_1) ; }

(b) Add missing argument.

1 private void METHOD_1 () { if ((VAR_1 . length) > 1) { VAR_2 = (VAR_1 . length) - 1 ;
<» METHOD_2 (VAR_1 [VAR.2 1) ; }}

2 private void METHOD_1 () { if ((VAR_1) != null) { if ((VAR_1 . length) > 1) { VAR_2 = (
< VAR_1 . length) - 1 ; METHOD_2 (VAR_1 [VAR.2 1) ; } } }

(c) Add check for null.

1 private void METHOD_1 (int VAR_1 , char ¢) { for (int 1 =0 ; 1 != VAR_1 ; 1 ++) { out .
— METHOD_2 (¢) ; } out . METHOD_3 () ; }

2 private void METHOD_1 (int VAR_1 , char ¢) { for (int 1 =0 ; 1 < VAR_1 ; i ++) { out . METHOD_2
— (c); }out . METHOD_3 () ; }

(d) Change comparison operator.

Figure 4.15: Correctly predicted fixes. The first line is the buggy code snippet, and the second line is the correct fix.

1 public TYPE_1 METHOD_1 (int 1) { if (1 == 0) return null ; return VAR_1 . get ((1 - 1));}
2 public TYPE_1 METHOD_1 (int 1) { return VAR_1 . get (1) ; }
3 public TYPE_1 METHOD_1 (int 1) { if (1 == 0) return null ; return VAR_1 . get (1) ; }

(a)

1 protected boolean METHOD_1 (java.lang.String name) { return VAR_1 . METHOD_2 (name) ; }
2 private boolean METHOD 1 (java.lang.String name) { return VAR_1 . METHOD_2 (name) ; }
3 public boolean METHOD_1 (java.lang.String name) { return VAR_1 . METHOD_2 (name) ; }

(b)
1 public void METHOD_1 (TYPE_1 VAR_1) { java.lang.System.out.println ((STRING_1 + (VAR_1 .
< getName ()))) ; VAR_2 . METHOD_1 (VAR_1) ; }
2 public void METHOD_1 (TYPE_1 VAR_1) { java.lang.System.out.println ((STRING_1 + (VAR_1 .
< getName ()))) ; p =VAR_1 ; VAR_2 . METHOD_1 (VAR_1) ; }
3 public void METHOD 1 (TYPE_1 VAR_1) { VAR_2 . METHOD_1 (VAR_1) ; }

(c)

Figure 4.16: Three incorrectly predicted bug fixes. The first line in each sub-figure is the buggy code snippet, the second
line the correct fix, and the third line is the predicted fix.

120

4.6. RESULTS

Model Accuracy

ROBERTA-CODE 61.1

TRANSFORMER (no PT) 61.6

5 61.9 Model MAP
CODEBERT 62.1 AROMA 55.1
CODE2VEC 62.5 ROBERTA-CODE 76.7
GRAPHCODEBERT 63.2 CODEBERT 82.7
PLBART 63.2 GRAPHCODEBERT 85.2
SYNCOBERT 64.5 PLBART 86.3
CODETS 65.8 SYNCOBERT 88.2
COTEXT 66.6 CODETS 88.7
2024 Leaderboard® 69.3 2024 Leaderboard® 90.5
TRANSFORMER (no PT) 63.7 TRANSFORMER (no PT) 52.9
REGULARPT 68.2 REGULARPT 83.8
SYNTAXPT 68.2 SYNTAXPT 89.5

Table 4.9: Accuracy of the models on the defect detection Table 4.10: Results of the code clone detection task. For
task. task descriptions please refer to Section 4.5.7.

In contrast to RQ 4.1, which considered only the overall BLEU score, Table 4.8 also
shows detailed results for each language. SYNTAXPT outperforms the regular model on
JavaScript, Python, and PHP, while the regular model outperforms SYNTAXPT on Ruby

and Java.

When comparing the models to the state-of-the-art it can be seen, that on Ruby both
models achieve a new state-of-the-art score. Furthermore, SYNTAXPT achieves the second-
best overall BLEU score, but is outperformed by the CODET s model, which achieves +0.4
p-p- BLEU. This can be explained by the fact that the CODET s model has been trained on
additional bimodal data®, which includes the code summarization task. Thereby, the model
has been explicitly trained to translate from both code to natural language descriptions
and vice versa, which may strengthen the connection between code and natural language.
However, one can conclude that the both pretraining strategies are competitive with the
state-of-the-art on the code summarization task, even though they have not explicitly been

pretrained on bimodal data.

“Results belong to model proposed by Guo et al. (2022).
fResults belong to model proposed by Liu et al. (2023).

8The CopETs model has been pretrained on 3.1M bimodal datapoints. The models trained in this
chapter have been fine-tuned only on the 900k bimodal examples from the CODESEARCHNET dataset, as
shown in Table 4.2.

121

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

DEerecT DETECTION

The comparison to the state-of-the-art on the defect detection tasks is shown in Table 4.9.
The regular and structural pretrained models both achieve an new state-of-the-art accuracy
of 68.2%. Thereby, all other models in this comparison are outperformed, including the
CopET's model and the previous state-of-the-art model COTEXT. This work achieves a
significant +2.4 p.p. improvement over the CODET's model and a +1.6 p.p. improvement
over the COTEXT model.

Also in comparison to other transformer-based LMs like GRAPHCODEBERT, PLBART,
and SYNCOBERT which achieve accuracies of 63.2%, 63.2% and 64.5% respectively, the
models developed in this chapter demonstrate a substantial improvement. Interestingly,
our non-pretrained baseline—that achieves a similar accuracy of 63.7%—is better than
previously reported transformer baselines (61.6%) and even outperforms many of the
aforementioned code-LMs. This indicates that the preprocessing and tokenization strategy

proposed in this chapter may be particularly well-suited for the defect detection task.

CLONE DETECTION

Table 4.10 presents the performance of the models on the clone detection task on the
Poj-104 dataset. The structural pretrained model outperforms all other models in the
comparison and achieves a new state-of-the-art MAP of 89.5%. Notably, SyYNTAXPT
outperforms the CODET's model by 0.8 p.p.. This indicates that the structural pretrain-
ing strategy produces not only a strong decoder, but also the encoder retains valuable
information for the clone detection task. It produces a representation that provides a
better semantic understanding of code and the relationships between code snippets than
dedicated encoder-only models like GRAPHCODEBERT or CODEBERT. Visualizing
qualitative results for the clone detection task is challenging, as most of the results are
correct and false positives are mainly on the lower end of the ranking. Instead of showing
examples, a confusion matrix is shown in Figure 4.17. The matrix shows the amount of
problems in the first 499 search results for each query problem. Ideally the diagonal should
be dark, indicating that all 499 other solutions of the same problem have been ranked
higher than the solutions of other problems. It can be seen, that some problems tend to get
confused more often with other problems, e.g., problem 83 is often confused with problem
99 (72,279 times) and problem 97 is often confused with problem 91 (49,007 times).
However, this visualization does not respect the order of the results, a false positive at the
first position is counted to the same field as a false positive at the 499th position. To visu-
alize also the order of the results, Figure 4.18 shows a heatmap that visualizes the relative
amount of correct samples at each position in the search results for each query problem. It
can be seen that some problems, such as 81, 85, and 95, are often correctly retrieved, while

others, such as 83, 97, and 104, are more often confused with other problems.

122

4.7. CONCLUSION AND FUTURE WORK

1 - 1.0
83 ||
& " '
85 200,000 |

86 - 08
87

88

89

%0 150,000

91

J - 06
100,000

- 0.4
99
100 50,000
101
102
0 4 BN
-0
Nz
EEE

Query Problem

Query Problem

- 0.2

Result Problem Rank

Figure 4.17: This confusion matrix visualizes the amount of ~Figure 4.18: Grouped by the query problem, the heatmap
problems in the first 499 search results for every problem shows the relative amount of correct samples at a specific
in the P0J-104 test set. Note that this visualization ignores position in the result list. White (1.0) indicates that every
the order of the results. result at this position has been correct, while dark red (0.0)
indicates that no result at this rank has been correct.

When looking at the examples for this task in Figures 4.10 and 4.19 it can be seen, that
similar programs often share similar inputs and outputs. This is expected as the output
format may be part of the task given to the students. Two of such shared sub-structures
are highlighted in Figure 4.19. Even though the programs are quite different in identifier
namingand structure, inputs follow a similar pattern: scanf("%s",VAR) , printf("No") ,and

printf("%c=%d\n",VAR,VAR) . Intuitively, the subtree-specific training strategy should be

well-suited to detect such patterns, and the results in Table 4.10 confirm this intuition.

4.7 CONCLUSION AND FUTURE WORK

This chapter investigated the effectiveness of structural pretraining tasks for encoder-
decoder transformer LMs in the domain of source code understanding. Building upon the
limitations of regular pretraining tasks like MLM and short span masking, a novel struc-
tural pretraining task called tree-based span selection was introduced. This task uses the
AST to select and mask syntactic segments, which produces challenging and contextually
rich training examples. This chapter also extended and improved the structural identifier
deobfuscation task proposed by Lachaux et al. (2021), by extending it to also hide method
calls and introducing probabilistic masking rates. By combining these structural tasks with
regular pretraining tasks in a dynamic multi-task pretraining pipeline, the SYNTAXPT

model was trained solely on unimodal code data in a self-supervised fashion.

The experimental results demonstrate that structural pretraining provides a stronger learn-
ing signal than regular pretraining, which results in improved code understanding ca-
pabilities. Specifically, the structural SYNTAXPT model consistently outperformed the
baseline model trained with regular pretraining tasks across multiple code understanding

benchmarks from the CODEXGLUE suite (Lu et al. 2021). The structural model also

123

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

1 int main(){ 12 if(m!=0){

2 int i,n,m=0,t=0; 13 printf("%c=%d\n",k,m);

3 char k,s[300]; 14 t++;

4 scanf("%s",s); 15

5 n=strlen(s); 16 m=0;

6 for(k="a';k<="z";k++){ 17 }

7 for(i=0;i<n;i++){ 18 if(t==0){

8 if(s[i]==k){ 19 printf("No");

9 mt++; 20 }

10 } 21 return 0;

11 } 22}

(a) Code snippet for problem 100.

1 int main () { 21 if(m>n){ 41 }
2 char as[300]; 22 y=sd[q]; 42 }
3 scanf("%s",as); 23 sd[q]=sd[q+1]; 43 if(a!=0){
4 int sz[300]={0}; 24 sd[q+1]=y; 44 sz[d]++;
5 int len=strlen(as); 25 } 45 Jelse {
6 char sd[300],df[300]; 26 } 46 tH+;
7 27 } 47 df[t]=r;
8 int e=0; 28 if(e!=0){ 48 sz[t]++;
9 for(int 1=0;i<len;i++){ 29 df[0]=sd[0];sz[0]=1; 49 }
10 int w=as[i]; 30 int t=0; 50 }
11 1 ((w<=122)88&(w>=97)){ 31 for(int k=1;k<e;k++){ 51
12 sd[e]=as[1i]; 32 char r=sd[k]; 52 for(int h=0;h<=t;h++){
13 e++; 33 int a=0; 53 printf("%c=%d\n",df[h],sz[h]);
14 } 34 int d; 54 }
15 } 35 for(int j=0;j<=t;j++){ 55 }
16 for(int s=1;s<=e;s++){ 36 f(r==df[i1){ 56 if(e==0){
17 for(int g=0;qg<e-s;q++){ 37 57 printf("No");
18 int m,n; 38 a++; 58 }
19 char y; 39 d=j; 59 return 0;
20 m=sd[q];n=sd[q+1]; 40 } 60 }

(b) Another code snippet for problem 100.

Figure 4.19: Similar problems can often be identified by matching sub-structures in the code snippets, as indicated by
the highlighted lines in (a) and (b), which is similar to tree-based span selection.

124

4.7. CONCLUSION AND FUTURE WORK

showed more stable and consistent fine-tuning performance, indicating better generaliza-
tion to unseen data. Furthermore, this chapter confirmed findings of related work that
pretraining on code offers significant benefits compared to training models from scratch
(Fenget al. 2020). SYNTAXPT not only outperformed the end-to-end trained model but
also achieved new state-of-the-art results at the time of the experiments on several tasks,

including code translation, code refinement, and defect detection.

While the approach developed in this chapter has demonstrated significant improvements,
it is not without limitations. Due to computational constraints, the author was unable
to explore the effects of larger model sizes, which could potentially amplify the benefits
of structural pretraining. Future work could investigate whether the improvements ob-
served with structural pretraining persist with larger model architectures. Additionally,
an ablation study to isolate the individual contributions of each structural task was not
feasible within our computational constraints (a pretraining run takes more than 3 weeks).
Understanding the specific impact of each task is left for future work. Moreover, the
identifier deobfuscation task, as extended in this chapter, has the potential to be applied
in practical applications such as variable renaming and estimating identifier quality. This

thesis will explore using the model’s likelihoods to estimate identifier quality in Chapter 7.

125

STRUCTURAL PRETRAINING TASKS FOR GENERATIVE TRANSFORMER MODELS

126

Knowledge is of two kinds. We know a subject ourselves, or we know

where we can find information upon it.

— Samuel Johnson, 1775

Contrastive Pretraining for Contextualized

Code Search

THE LAST TWO CHAPTERS focussed on improving the code understanding capabilities
of generative transformers by introducing a syntactical prior into the transformer model.
This chapter aims to further explore the retrieval capabilities of SYNTAXPT, by developing

a novel approach for training a code retrieval model in a self-supervised manner.

5.1 INTRODUCTION AND MOTIVATION

The strong semantic understanding of code by LMs trained on source code—such as
the one introduced in the last chapter—has started to influence software development
(Lu et al. 2021). Models and tools for code generation, such as GitHub’s Copilot and
ChatGPT (Svyatkovskiy et al. 2020; Chen et al. 2021; GitHub 2024; OpenAl 2024a),
are widely used nowadays in 2024. These tools have been made possible by the fact, that
increasing the amount of model parameters leads to even better generational performance
(Kaplan et al. 2020), as seen in large models like GPT-3, which has 175 billion parame-
ters (Brown et al. 2020), over 700 times more than the 245 million parameter SYNTAXPT

model studied in this thesis. However, generative LMs of such size require high compu-

This chapter is adapted from Johannes Villmow, Viola Campos, Adrian Ulges, and Ulrich Schwanecke
(2022). Addressing Leakage in Self-Supervised Contextualized Code Retrieval. In Proceedings of the 29th
International Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea, October
12-17, 2022. International Committee on Computational Linguistics, pp. 1006-1013, licensed under CC
BY 4.0.

127

https://aclanthology.org/2022.coling-1.84
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

CONTRASTIVE PRETRAINING FOR CONTEXTUALIZED CODE SEARCH

tational and environmental costs to train and operate. A single training run of such models
is estimated to emit more carbon dioxide as 125 round-trip flights between New York and
Beijing (Dhar 2020). Even with such large parameter counts, code generation tools often
produce subtle bugs or hallucinations (Maynez et al. 2020), which has led some projects,
such as NetBSD, to ban code generated by LMs (NetBSD 2024). Furthermore, the code
generated by these models may be subject to copyright claims. To address this, GitHub
experiments with matching code generated by Copilot against open-source code to obtain
licenses in a post-processing step (Salva 2023). Furthermore, code generation models
often lack knowledge about project internals, which limits their application in corporate
software development environments. Those key problems with generative models come
from the fact that the model generates code in a non-transparent process, out of its own
parameters. The source of the knowledge, or the reference implementation from which
a proposed solution is derived, is never made transparent. This motivates approaches

towards discovering said source, i.c., approaches towards searching for relevant code.

In addition to code generation, applications such as natural language code search (Husain
etal. 2019) and code clone detection (Svajlenko and Roy 2015) also benefit from the code
understanding capabilities of pretrained transformer LMs, as shown in the last chapter.
This chapter focuses on code search, which unlike code generation, does not suffer from
copyright claim or subtle bugs issues. Here, the source and context of the retrieved code
snippet is known, which allows the developer to validate its plausibility, and—when the
developer trusts the source—safely reuse the code. Most previous work focuses on so-
called natural language code search, where the developer formulates a query in natural
language and the system retrieves code snippets that semantically fit to the query (mostly
on a function-level). However, while natural language code search is a promising tool for
more code reuse, it requires manual query formulation by the developer. However, reuse
often fails when developers are unaware of the existence of a helpful implementation that

could assist them, and thus not even attempts to search (Frakes and Fox 1996).

This suggests a “queryless” search system, similar to code autocompletion, that integrates
seamlessly into the developer’s workflow. Such a system would suggest relevant code
snippets based on the current coding context, i.e., the code and cursor position at which
the developer is currently coding. To this end, the system has to derive the developer’s
intent and informational needs without explicit input. This approach could minimize
the effort required for the developer to search, while at the same time maintaining the
benefits from code search. This approach—referred to as Contextualized Code Search
(CCS)—is the focus of this chapter.

128

5.1. INTRODUCTION AND MOTIVATION

' \\\
1 class Date {
2 int day;
3 int month;
Retrieved .
4 int year;
Indexed . Code Snippets |
Codebase 6 public String toString() {
Search 7 return day + "." + month + "." + year;
8 }
1 public class Date { 9
2 Il%*CURSOR 10 public static void main(String[] args) {
3 3} 11 Date d1 = new Date(19, 11, 2021);
(a) Query. (b) Result 1: 109/02_Date. java

Figure 5.1: Example of the Contextualized Code Search (CCS) task. In (a) a user is editing a Java class Date and the
cursor is at the position of the pipe symbol (black). This context is the query for the CCS system. Code snippets that
fit at this position are retrieved from the codebase. The highlighted lines in (b)—instance attributes and a toString
method—have been found relevant to the query and are presented with some context code.

S.1.1 The Contextualized Code Search Task

The task is illustrated in Figure 5.1, which aims to retrieve code snippets from a codebase
given the developer’s current coding context and a position of interest, i.e., such as an open
file in a code editor, like an IDE, is called Contextualized Code Search (CCS). It has rarely
been studied until now, only a few papers exist (Mishne et al. 2012; Mukherjee et al. 2020;
Dahal et al. 2022). In CCS an encoder, also called retriever, mines a trusted source, such as
the company’s own codebase, for relevant code fragments (or code snippets). We refer to
these fragments as results or targets. To retrieve these snippets, we define the query as the
current coding context with a marked position of interest, e.g., the cursor position in an
IDE. Snippets that “fit” at the current cursor position are considered to be relevant. In
the example the cursor is inside the class, so the system returns instance attributes and a
tostring method that are relevant to the class pate in Figure 5.1b. In other, scenarios

relevant snippets could range from single, over multiple lines to larger for-loops.

CCS can be integrated neatly into the developer’s workflow, just as code autocompletion:
While editing, the user simply clicks a search button and is suggested code snippets fitting
at his/her current cursor position. When all indexed code snippets come from trusted
sources, the discovered code is guaranteed to be correct, and without copyright issues.

CCS enables easy reuse on demand for the developer.
Even though CCS is similar to the aforementioned tasks, it has some distinct differences:

o While natural language code search only searches with a natural language query and
thus lacks the code context in the editor, CCS may—but does not have to—include

a comment describing the missing step, i.e., CCS can be considered a more general

129

CONTRASTIVE PRETRAINING FOR CONTEXTUALIZED CODE SEARCH

task. Additionally, natural language code search often operates at a fixed granularity

(e.g, on a function-level), while CCS aims to retrieve snippets of varying sizes.

o CCSisalso very different to code completion, where a model would try to synthesize
the missing piece from its internal parameters. In CCS the selection and integration
of a relevant code snippet is up to the developer, which makes the coding process

and responsibilities more transparent and reduces the risk of subtle bugs.

o Code clone detection aims to find semantically similar pieces of code, such as code
with high overlap to the given one. In clone detection full code files or methods are
compared against each other. In contrast, CCS targets code that completes a partial

query, rather than identifying duplicate code segments.

CHALLENGES The goal of this chapter is a novel process for training a CCS model.

This poses several interesting challenges from a machine learning perspective:

1. The query is incomplete, which requires the model to infer the intended semantics
from an incomplete description. While retrieving snippets that are structurally
similar to the current context, as in clone detection, is relatively straightforward,
in CCS it is necessary to retrieve snippets that align with the missing components.
Note that code generation faces the same challenge, where it is often approached by
the combination with natural language, e.g., by adding a comment that specifies
the users intent. The same would be possible with CCS, if the user explains his/her

information need in a short comment.

2. The results originate from existing code files and thus use different identifier names
or format than the current context. Since keyword search fails in such cases, a

semantic understanding of code is required.

3. Last and most importantly, relevancy assessments in form of query-result pairs,
which would facilitate a supervised training, are scarce and not available in large
numbers!. The lack of available labels incentivizes a self-supervised approach to-

wards CCS.

S.1.2 Contributions

This chapter presents a self-supervised approach towards CCS training that bootstraps
query-result pairs for contrastive training using only unlabeled pieces of code, which obvi-
ously are widely available. Inspiration comes from recent approaches in natural language
processing (Lee et al. 2019; Conneau et al. 2020) that learn passage retrieval models for

question answering in a weakly supervised manner by solving an inverse cloze task. Instead

'For reference, the most commonly used dataset for passage retrieval in NLP, is called the Ms MARCO
dataset. It consists of 1M questions and 9M passages (Nguyen ct al. 2016).

130

5.1. INTRODUCTION AND MOTIVATION

Leakage Patterns from mysql.connector import connect

(P1) Identifiers def totalSalaryllemp_JJ<—CURSOR
database="db'}l
from mysql.connector import connect (P2) Syntax . l
cursor = con .cursor()
def totalSalaryllemp_ nolll: (P3) Indentation T =
con = connectf "SELECT wage, bonus"

host="localhost', "FROM employees"

user='root', "WHERE emp_no = %s")
database="db'}l cursor.execute(query, (emp_no,))
row = cursor.fetchone()
cursor = con.cursor()
query = (

"SELECT wage, bonus"

salary, bonus = row

return salary + bonus

"FROM employees"

"WHERE emp_no = %s")

cursor.execute(query, (emp_no,)) (b) Context

row = cursor.fetchone() nofl:
salary, bonus = row con = connect [l
host="'1localhost"',
return salary + bonus user='root',
(a) Code File (c) Target

Figure 5.2: Naively bootstrapping context-target pairs for self-supervised CT-based Contextualized Code Search (CCS) is
prone to leakage, which are trivial patterns that the encoder can exploit during pair matching, that hinder the learning of
semantic similarity. This chapter addresses three types of leakage: (P2) a naive cut splits syntactic constructs (visualized
in red), (P1) both context and target share the same identifiers (visualized in yellow), whereas real solutions might have
different identifiers, (P3) the same indentation level (visualized in orange).

of predicting a word or sentence given its context, like in the cloze task (Taylor 1953) or
MLM, the authors treat a sentence as a pseudo-question and predict which passage it
originates from. Following this idea, the approach developed in this chapter learns CCS
by erasing random blocks of code instead of sentences from a file. The erased block is a
possible result, and the file context forms the query, in which the target block has been
replaced by a single token indicating the position of interest. Since in CCS the context is
the query and the erased block the result, this is the regular cloze task, and the proposed
approach will be referred to as cloze task-based retrieval pretraining. To the best of the
author’s knowledge, this type of pretraining has not been investigated for CCS on code.

During training, the model is presented a batch of contexts and target blocks and learns
to match each context with its corresponding target, as in typical contrastive learning
(see Section 2.2.2). The goal is to learn an encoder that produces meaningful dense
representations, called embeddings, for the code snippets that accurately capture semantic
relevance scores for CCS retrieval. After training, the retriever can then be used for search,

by first encoding all code snippets within the codebase with the model and storing them

131

CONTRASTIVE PRETRAINING FOR CONTEXTUALIZED CODE SEARCH

from mysql.connector import connect from mysql.connector
< 1import connect
def totalSalary(emp_no):
con = connect(def totalSalary(VAR1):
host="1localhost"', con = connect(
user='root', host="localhost', T £ d
database="db") user='root ", > ncoaer
database='db"') q
cursor = con.cursor() Embedding
équery = (cursor = con.cursor()
"SELECT wage, bonus" “FCURSOR
" " Y
FROM employees return salary + bonus
_ "WHERE emp_no = %s") [Contrastive Loss]
i cursor.execute(query,
| (b) Context A
— (emp_no,))
‘row = cursor.fetchone() query = (
‘salary, bonus = row "SELECT wage, bonus" k
"FROM employees" Embedding
return salary + bonus "WHERE emp_no = %s") Yy
4 — Encoder
VAR2 .execute(query,
Mutual identifier masking (IM)
— (emp_no,))
Tree-based span selection (TS) row = VAR2 .fetchone()
Dedenting (DE) VAR3, VARl = row
(a) Code File (c) Target (d) Training

Figure 5.3: The proposed self-supervised learning process bootstraps context-target pairs (b) and (c) for contrastive
learning (d) by randomly removing a target passage from a code file (a). To avoid leakages (see Figure 5.2) this chapter
proposes to use the following deleaking steps: (TS) the target is selected using the code’s syntactic structure (green)
instead of using random spans. Additionally, (DE) the target is dedented (orange arrow), and (IM) mutual identifiers are
masked either in the context or target (yellow).

in a vector database. At inference time, a code context (or query) is encoded, and the
resulting embedding is matched against all embeddings in the database using nearest

neighbor searches (see Section 2.2.2).

LEAKAGE PATTERNS A severe key risk for the learning approach outlined above is that
the encoder can exploit trivial patterns—or “/eakage” —between context and target during
pair matching and overfit on these patterns, without learning actual semantic similarity.

This is visualized in Figure 5.2, where the following leakage patterns exist:

(P1) Context and target snippet share identifiers, whereas real solutions might come
with different identifiers. See, for example the shared identifiers con and connect

that are highlighted in yellow in Figures 5.2b and 5.2c.

(P2) A naive cut to create the context and target pair splits syntactic primitives, so

that the pair can be identified by matching delimiters. This is visualized in red

132

5.1. INTRODUCTION AND MOTIVATION

in Figure 5.2, where the closing bracket to the one in the context is in the target

snippet.

(P3) The target’s indentation level always matches the one required by the context. This

is visualized in orange in Figures 5.2b and 5.2c.

To address these patterns, this chapter’s first contribution is a novel approach towards self-
supervised CCS, that introduces deleaking steps during pair construction which remove
the above leaking patterns. Hence, in order to create context-target pairs free of leakage,

the following deleaking steps are proposed:

1. Mutual identifier masking (IM): Hides mutual identifiers, i.e., identifiers that

appear in both context and target, either in the context or the target snippet (yellow

in Figures 5.3b and 5.3¢), which addresses Leakage (P1).

2. Tree-based span selection (TS): Selects the target snippet based on the code’s
syntactic primitives (green in Figure 5.3a), which addresses Leakage (P2).

3. Dedenting (DE): Dedents the target to indentation level 0 (orange arrow), which
addresses Leakage (P3).

The second key research problem is the evaluation of CCS models. In natural language
code search large evaluation datasets can be automatically bootstrapped from function
docstrings (Husain et al. 2019), or code clone detection, where evaluation datasets have
been curated manually (Svajlenko and Roy 2015). To the best of the author’s knowledge,
no such datasets exist for CCS. Lu et al. (2022) and Parvez et al. (2021) have evaluated
CCS code retrievers in combination with generators, which use the context and the
retrieved passages for code infilling. Thus, the quality of the encoder is evaluated only
indirectly via the quality of generated passages. This is problematic, since code generator
quality measures such as CodeBLEU (Ren et al. 2020) are known to reflect semantic
correctness poorly, and generation quality does not only depend on the degree to which
semantically relevant passages are retrieved, but also on generator capacity and other
hyperparameters. Overall, it is not validated properly if for a test case relevant passages
are successfully retrieved. To address this research problem, another contribution of this
chapter is a manually curated dataset for the zero-shot evaluation of CCS models based on

aligned code clones. We call this dataset Cocos (COntextualized COde Search Dataset).

On Cocos this chapter demonstrates that the proposed cloze task-based self-supervised
code retrieval training without the proposed deleaking steps performs worse than statistical
baselines, such as BM25 (Robertson and Zaragoza 2009). When the deleaking steps are
applied the retrieval quality is significantly improved, and the performance compared to
statistical baselines more than doubled. A final contribution explores the possible benefits

of this style of encoder pretraining on the code classification and similarity tasks defecz and

133

CONTRASTIVE PRETRAINING FOR CONTEXTUALIZED CODE SEARCH

code clone detection on CODEXGLUE (Lu et al. 2021). Here, state-of-the-art results are

achieved that even improve over the results of the structural pretraining from Chapter 4.
In summary, the key contributions of this chapter are:

1. Introduce the Cocos dataset, which is to the best of the author’s knowledge the
first evaluation dataset for Contextualized Code Search (CCS).

2. Present a novel self-supervised approach to CCS, that is to the best of the author’s
knowledge the first approach that studies Cloze Task (CT)-based contrastive pre-
training on source code. Additionally, this chapter introduces novel deleaking steps
that significantly improve the retrieval performance after pretraining, more than

doubling the results of a commonly used statistical BM2 5-baseline.

3. Demonstrate that the presented self-supervised cloze task-based pretraining with
deleaking steps achieves state-of-the-art performance for code retrievers, when
evaluated on two encoder-based code understanding tasks from CODEXGLUE:
defect detection and code clone detection. For these two tasks the approach outper-
forms the previous state-of-the-art results from the last chapter (see Sections 4.5.7

and 4.6.4) by +1.1 p.p. accuracy and +1.8 p.p. MAP, respectively.

5.2 RELATED WORK

Software reuse has been a long-studied topic in software engineering (Frakes and Nejmeh
1987; Fischer et al. 1991), largely because “it is often cost-effective to find similar applica-
tions that can be used as the basis for prototypes rather than building them from scratch”
(Grechanik et al. 2007). According to Fischer et al. (1991), software reuse consists of
three main phases: retrieval, comprehension, and adaptation. With code collaboration
platforms like GitHub, code to reuse has become more accessible, yet finding relevant
examples remains a challenge for developers, as they are often unaware of existing reusable
solutions or when to use it (Ye and Fischer 2002). Thus, this chapter focuses on the retrieval
phase of software reuse, where developers search for relevant code snippets in a codebase.
Note that the main focus is on discovering small-scale code snippets, even though it is
possible to search for prototypes of entire applications or complete products on GitHub

for reuse.
This work is closely related to IR techniques used in NLP that often serve as inspiration

for code search tasks. For related work about IR techniques in NLP see Section 2.5.

5.2.1 Natural Language Code Search

Earlier systems relied on heuristics to retrieve code snippets. JSEARCH (Sindhgatta 2006)

extracts structural information from ASTs to enable specific queries, such as identifying a

134

5.2. RELATED WORK

class inheriting from a specific class. However, over the years, various systems have opted to
instead use keyword queries for source code retrieval. EXEMPLAR (Grechanik et al. 2007;
Grechanik and Poshyvanyk 2008) and SNIFF (Chatterjee et al. 2009) focused on API calls
and application descriptions for retrieval. Bajracharya et al. (2010) improved Sourcerer’s
(Linstead et al. 2009) text-based and graph-based retrieval heuristics by incorporating
common API usage patterns. CoODEHOW (Lv et al. 2015) expanded queries by matching
them with API descriptions from the indexed codebase.

However, such heuristic-based approaches are limited by the quality of the heuristics
used. Focus in code search has recently shifted to feature-less neural approaches, which
have demonstrated superior performance and learn code search on large datasets of meth-
ods and their comments (Husain et al. 2019). Neural approaches enable the learning of
semantic similarities, such as recognizing that database is similar to db , which keyword-
based approaches often struggle to achieve. Thereby, code language models are typically
first pretrained on unimodal code, but also bimodal code-comment data to learn the
relationship between code and natural language, and subsequently fine-tuned with con-
trastive learning for code search. LMs that have been trained on bimodal data include
CoDpEBERT, GRAPHCODEBERT (Guo et al. 2021), SYNCOBERT, CODERETRIEVER
(Lietal.2022), CONTRABERT (Liu et al. 2023), CoOTEXT (Phan et al. 2021), CopETs,
and UNIXCODER (Guo et al. 2022). Just like the approach developed in this chapter
these models are all transformer-based. For detailed descriptions of these models, refer to
Section 4.2.

The bimodal pairs for natural language code search are bootstrapped from code files by
using the AST to detect methods and their corresponding docstrings (Husain et al. 2019).
Then they use only the first sentence of the docstring as the natural language query. They
address two types of leakage: By design cutting-out code snippets eliminates syntactic
leakage (P2), the same way it is done in this chapter. By using the first sentence of the
docstring as the query, they reduce the leakage of identifiers (P1) (since after the preceding
summary a docstring usually describes each parameter). However, compared to the work

in this chapter, this is done in a preprocessing step and not dynamically during training.

5.2.2 Self-Supervised Contrastive Learning for Code

Inspired by trends in NLP several approaches have been developed that use contrastive
learning during pretraining to improve the performance of code language models. Since
contrastive learning requires positive pairs of semantically similar examples for training
and annotated data is limited, various approaches have been developed to augment code
snippets for this purpose. CONTRACODE (Jain et al. 2021) uses a compiler for semantically
equivalent code transformations, such as code compression, identifier modification, and

regularization, to form positive pairs. Similarly, CORDER (Bui et al. 2021) augments

135

CONTRASTIVE PRETRAINING FOR CONTEXTUALIZED CODE SEARCH

code snippets to create functionally equivalent versions, with variable renaming, dead
code insertion, and syntactical transformation. The authors train a transformer model
end-to-end on the resulting positive pairs. D1sco (Ding et al. 2022) constructs not only
positive pairs, but also creates buggy versions of code snippets to form negative pairs.
Buggy versions are created by introducing syntactic and semantic errors, such as changing
boolean operators or parameters to function calls. CODERETRIEVER (Li et al. 2022)
trains on bimodal data and additionally mines noisy unimodal positive pairs, by comparing
method names and docstrings using unsupervised SIMCSE sentence embeddings (Gao
etal. 2021b). The SiMCSE method is also used by UNIXCODER (Guo et al. 2022) which
learns contrastive code representations by running the same code piece twice through
a transformer with dropout. CONTRABERT (Liu et al. 2023) augments not only code
but also comments with back-translation and word manipulation. SYNCOBERT uses
contrastive learning on code-comment pairs, and—in addition to the bimodal training—
detects differently masked and ordered input sequences of unimodal code. This eliminates

the need for augmentations.

None of these approaches separates the code into a context and a target code snippet;
instead, the same snippet is augmented to create multiple versions. This obviously leads to
much more leakage and thus the augmentations need to be much more sophisticated. In
contrast, the deleaking steps proposed in this chapter are much simpler. Additionally, the
aforementioned augmentation strategies could be applied to the approach developed in
this chapter as well. Augmentation alone does not address the structural leakage patterns
(P2) and (P3) (see Section 5.1.1), between the context-target pairs. However, deleaking
step mutual identifier masking can be also considered a form of augmentation—although

much simpler than the ones used in the aforementioned approaches.

S5.2.3 Contextualized Code Search

Contextualized Code Search (CCS) aims to retrieve complementary pieces of code given
an incomplete context. Thereby, the system needs to infer the intended semantics of the
missing piece by analyzing the current developer’s context in order to retrieve relevant
snippets. Some non-neural approaches have studied CCS scenarios, but mostly compute a
context-context similarity, in order to find similar contexts which may contain additional
functionality for reuse. CODEBROKER (Ye and Fischer 2002) uses an incomplete method’s
docstring and signature for retrieval to recommend code snippets without the need for
manual query formulation. STRATHCONA (Holmes and Murphy 2005; Holmes et al.
2005) generates structural contexts and matches these with heuristics, such as inheritance
and API call similarity, to locate relevant examples. XSNIPPET (Sahavechaphan and
Claypool 2006) extracts structural information from the current developer context to find
relevant code snippets. Mishne et al. (2012) develop a semantic code search algorithm,

that uses typestate information for answering API-usage queries in partial programs,

136

5.3. APPROACH

where multiple parts can be missing. FACOY (Kim et al. 2018) matches the context with
StackOverflow tags, extracts code snippets from posts with these tags, and uses them to find
similar code in the codebase. AROMA (Luan et al. 2019) searches for code snippets that
approximately contain the context code using manually constructed structural features and
then intersects the results with the context to narrow the results. Since all these approaches

are non-neural there is no need to address leakage.

Neural approaches include copec (Mukherjee et al. 2020), which learns CCS by de-
compiling functions into a simpler intermediate representation called SKETCH (Murali et
al. 2018) and uses a neural network to find similar fragments. sSCoTCH (Dahal et al. 2022)
enhances natural language code search with file context by fine-tuning CODEBERT on a
custom dataset to retrieve complete functions based on comments and file context. The
authors do not address the leakage that results by extracting functions from code contexts.
ReAcc (Lu et al. 2022) focuses on improving retrieval-augmented code completion. The
authors train a code retriever by augmenting code snippets with dead code and variable
renaming. Instead of matching partial target snippets with incomplete contexts like the
approach in this thesis, the authors train retrieving full augmented files. Obviously, even

with their leakage reduction steps, this is a much easier retrieval scenario.

It is important to note that no prior work, to the author’s knowledge, has applied con-
trastive pretraining on source code using a cloze task-based objective for CCS. While
the CCS task itself has been occasionally explored, it remains an under-researched area,
particularly with regard to self-supervised training. The approach developed in this chapter
is novel in bootstrapping the context-target pairs for contrastive learning, and additionally
addresses leakage with simpler and more targeted techniques than previous work, that
mostly augmented the same code snippet twice (which obviously requires more sophis-
ticated leakage reduction steps). Also, CCS as a machine learning task is much more

challenging, requiring the model to build better semantic representations.

5.3 APPROACH

In a retrieval scenario, a query & is used to retrieve a passage y. In CCS, the query is a
code context with a cursor position, and the passage or target is a useful snippet. Given
x, a retriever learns to find y among other passages, and is trained with a typical siamese
contrastive learning setup (see Section 2.2.2). However, as outlined above sufhicient
annotated training data is scarce and hard to obtain. Hence, this chapter explores a self-

supervised strategy towards CCS, that bootstraps the pair from an arbitrary piece of code

with a Cloze Task (CT).

From an arbitrary code token sequence ¢ = (c¢1), ..., ¢)), a subsequence of length L is

selected as a possible relevant target y. To construct the context token sequence @, the

(mask)

target Y is replaced by a special mask token x that marks the cursor position. After

137

CONTRASTIVE PRETRAINING FOR CONTEXTUALIZED CODE SEARCH

rCPlaCCant, thC SeunnCCS are:
(M, 70 glmask) (L1 0 0) (5.1)

(D, ..., D)y (5.2)

T
Yy
Note that after creating and ¥, as in Section 4.4, a programming language-specific
identifier token z(1979) is prepended to both sequences. This token has the same function
as the cLs-token used in BERT, and can be used by the model to summarize the sequence
or to point attention to when not needed (Clark et al. 2019). These sequences can now

directly be used as an input to a contrastive architecture, as visualized in Figure 5.3d, and

trained with a contrastive loss.

For the retrieval task, the model is trained to maximize the similarity between the context
and target sequence, while minimizing the similarity between the context and negative
samples (see Section 2.2.2). As detailed in Section 2.3, the transformer encoder outputs
a sequence of hidden states () € R? in its final layer. In the case of the SYNTAXPT
model, d=768. This work follows recent approaches that use the embedding of the first
token as a sequence embedding (Lee et al. 2019; Ren et al. 2021; Gao et al. 2021b). In
our case, this corresponds to the embedding of the language identification token z(lang),
Given the embeddings of the context and target sequence g and k, the cosine similarity
between the two is computed?. The weights of the context and target encoder are shared,
and initialized with pretrained weights from SYNTAXPT’s encoder, The model is trained
with the contrastive InfoNCE loss from Equation (2.19).

5.3.1 Deleaking Steps

The construction of the context-target pair from a single piece of code with a cloze task is
self-supervised and inherently addresses Challenges (1) and (3) (see Section 5.1.1), as the
model is explicitly trained to retrieve snippets similar to the missing piece. Unfortunately,
the cut-out code segments make poor proxies for real-world queries due to the leakage
patterns (again Section 5.1.1). A retriever can exploit these patterns and overfit to the
synthetic data without learning actual semantic retrieval. To address these patterns, this
work proposes three novel deleaking steps: tree-based span selection (TS), mutual identifier
masking (IM), and dedenting (DE). The steps can be applied individually from each other,
but also all together to & and y. Tree-based span selection controls the selection of y from

¢, while mutual identifier masking and dedenting post-process the pair after selection.

*While other similarity or distance metrics, such as L2, can also be used, cosine similarity offers the
advantage of being computable through a scalar or matrix product after normalizing the embeddings. This
can be advantageous at retrieval time, e.g., to quickly compute the similarity between one or multiple queries
and stored passages.

138

5.3. APPROACH

@0

DoEDEOOO

max L tokens

Figure 5.4: The tree-based span selection technique selects a target ¢ with a maximum length of L tokens from the
syntax tree of a code snippet. First the span length L and a node (1, red) are sampled. Then the selection is iteratively
expanded to the parent (2, green), and a sibling (3, blue) until the target has the desired length or no further expansion
is possible.

TREE-BASED SPAN SELECTION (TS)

Naively selecting a random token-level subsequence as a target is prone to leakage as out-
lined in Figure 5.2. The naive selection highlighted in red cuts several syntactic constructs,
and leaves several brackets unmatched. To this end, this chapter proposes to use the tree-
based span selection technique from Section 4.4.1 to define y based on the program’s
syntax tree. This step is abbreviated throughout this chapter as tree-based span selection
(TS). This technique always prevents structural leakage (P2), as the selected pieces of code

are syntactically complete by definition.

In this chapter, the subtree sampling process differs slightly from the approach introduced
in Section 4.4.1 and is visualized in Figure 5.4. Here, first the length L of y is sampled
from a Gaussian distribution A/(150, 90?). Then a node N which covers at most L tokens
is sampled uniformly from the tree’s nodes. This node may not span over all L tokens,
but less, so the selection is iteratively expanded to either N’s parent or one of N’s direct
siblings until approximately L tokens are selected. When IN’s parent spans over at most L
tokens, the parent is used and the process repeated. Otherwise, the selection is iteratively
expanded to one or more of N’s direct siblings (if possible). This step is important, as it
enables producing multi-statement targets that span over multiple lines, such as the green
selection in Figure 5.3a, since most often each line is a separate expression node in the tree

with the same parent.

Using the syntax tree could additionally enable the restriction of targets to meaningful
code primitives such as functions or loops, however, this is left to future work. Figure 5.6
shows multiple targets produced by applying tree-based span selection to the code context
from Figure 5.3a. Note that these examples will be discussed in detail in Section 5.3.2.

139

CONTRASTIVE PRETRAINING FOR CONTEXTUALIZED CODE SEARCH

Tree-based
File Truncation

Folded File
Removed ||

Segments

Mutual

Tree-based "
. Identifier

Span Selection .
Masking

Truncation

Model

Figure 5.5: The training pipeline for CCS.

MUTUAL IDENTIFIER MASKING (IM)

At inference time, relevant solutions may come with different identifiers than the context
(Challenge (2)). Obviously, this is not the case when constructing the pair from the same
code snippet. The model can exploit matching identifiers between context and target, so
the pair matching during contrastive training gets easy, without learning actual semantic
similarity. Hence, identifiers in & or Yy are randomly masked by special tokens, such as
var1 or vAR2 . This is visualized in yellow in Figures 5.3b and 5.3c. However, Lee et al.
(2019) found that word matching is a useful feature for retrievers, who can exploit the

lexical overlap.

To provide as much lexical information as possible for the model, only mutual identifiers
are masked, i.e., ones that appear in both context and target code. Specifically, from the
set of mutual identifiers only 90% will be masked. This keeps a little bit of lexical overlap
and the model cannot exploit the fact, that an identifier can never appear in both context
and target. The set of mutual identifiers is randomly partitioned to be masked either in
the context or in the target snippet. This ensures the model cannot exploit the amount of
masked variables in either context or target. For generalization and to avoid overfitting
by analyzing the hidden mutual identifiers, also 10% of the not mutual identifiers are
masked. Following Lee et al. (2019), for 5% of samples mutual identifier masking is
skipped altogether, so that the model can learn to exploit word matching as a feature.

DEDENTING (DE)

A relevant solution could have any type of indentation level. However, when construct-
ing a context-target pair from a single code segment, the pair will always have the same
indentation level. This can be another clue for the model to exploit and overfit. Hence,
the indentation of y is removed in 90% of the training samples. To do so, the indentation

(mask)

level or the amount of spaces or tabs before the mask token x is determined and

the same amount of spaces removed from the beginning of every line in y.

140

5.3. APPROACH

5.3.2 Training Pipeline

The training pipeline visualized in Figure 5.5 is implemented dynamically. To this end,
the pipeline uses the TENSORTREE library introduced in Section 4.5.4 on trees of pre-
tokenized code files. It begins by truncating regular, possibly too large code files using
the tree-based file truncation technique described in Section 4.4.2. This step outputs
smaller code snippets ranging from 150 to 800 tokens. Note the sequences are still longer
than the model’s maximum size of 512 tokens, but will be shortened in subsequent steps
of the pipeline (e.g., by selecting the target). Tree-based file truncation produces two
kinds of outputs: (1) a context-rich folded file, in which fold-tokens indicate that at these
positions some nodes have been removed, along with (2) the removed code segments
as individual samples. Following this, the tree-based span selection step splits the single
code segment into a context-target pair, as previously described. Due to the probabilistic
implementation, this step may produce a pair where the context or target exceeds 512
tokens (recall that segments up to 800 tokens were selected). Therefore, after applying
the remaining deleaking steps to the pair, the final sequences are truncated token-wise
to a maximum of 512 tokens before being fed into the model. During the token-wise

truncation of the context, the mask token is ensured to remain within the context.

Note that most steps operate probabilistically, so that each epoch exposes the model to
new examples. This is illustrated in Figure 5.6, where three different context-target pairs
are shown, generated by the training pipeline based on the code context from Figure 5.3a.
The highlighted lines denote the code segment sampled by the tree-based span selection
technique and the corresponding context-target pair to which unique identifier masking
and dedenting have been applied. It can be seen that all bootstrapped pairs are useful,
in a way that they represent actual information needs that a developer might have. For
example, in the first iteration, the functionality connecting to a database was hidden, while
in Figure 5.6, the SQL query was hidden. Both target snippets resemble information that
an inexperienced developer might find helpful during coding, for instance if the developer
does not know how to formulate SQL.

Several notable aspects of the training pipeline are worth discussing. In all iterations, the
technique produced challenging context-target pairs. For instance, in the context shown
in Figure 5.6b, three identifiers were hidden, whereas in the target in Figure 5.6¢, only
one identifier was hidden. This randomized number of hidden identifiers makes it more
difficult for the model to exploit the quantity of masked variables. Additionally, in both
the context and target, VAR1 masked a non-mutual identifier (row and connect), due to
the general mask probability, with the identifier row hidden in line 4 but not in line 5.
In Iteration 1, the tree-based span selection produced a smaller context than target, this
ensures the model can handle varying lengths of context and target snippets at inference

time. While the first two iterations selected top-level statements within the method, in

141

CONTRASTIVE PRETRAINING FOR CONTEXTUALIZED CODE SEARCH

1 def totalSalary(emp_no):

2 con = connect(

3 host="'1localhost"',

4 user="root',

5 database="db")

6 cursor = con.cursor() 1 con = VAR1 (

7 query = (2 host="localhost"',

8 "SELECT wage, bonus" 3 user='root',

9 "FROM employees" 1 def totalSalary(emp_no): 4 database="db")

10 "WHERE emp_no = %s") 2 II(*CURSOR 5 cursor = con.cursor()

11 cursor.execute(query, (emp_no,)) 3 VAR2 .execute(VAR3 , (emp_no,)) 6 query = (

12 row = cursor.fetchone() 4 VAR1 = VAR2 .fetchone() 7 "SELECT wage, bonus"

13 salary, bonus = row 5 salary, bonus = row 8 "FROM employees"

14 return salary + bonus 6 return salary + bonus 9 "WHERE emp_no = %s")

J

(a) Iteration 1: Selection (b) Iteration 1: Context (c) Iteration 1: Target

1 def totalSalary(emp_no):

2 con = connect(

3 host="'localhost', 1 def VAR1 (emp_no):

4 user='root"', 2 con = connect(

5 database='db") 3 host="'localhost',

6 cursor = con.cursor() 4 user='root',

7 query = (5 database="db")

8 "SELECT wage, bonus" 6 cursor = con.cursor()

9 "FROM employees" 7 query = (

10 "WHERE emp_no = %s") 8 "SELECT wage, bonus"

11 cursor.execute(query, (emp_no,)) 9 "FROM employees"

12 row = cursor.fetchone() 10 "WHERE emp_no = %s") 1 row = VAR1 .fetchone()

13 salary, bonus = row 11 cursor.execute(query, (emp_no,)) 2 salary, bonus = row

14 return salary + bonus 12 n(—CURSOR 3 return salary + bonus
(d) Iteration 2: Selection (e) Iteration 2: Context (f) Iteration 2: Target

1 def totalSalary(emp_no):

2 con = connect(

3 host="'1localhost"', 1 def totalSalary(emp_no):

4 user='root', 2 con = connect(

5 database='db") 3 host="'localhost',

6 cursor = con.cursor() 4 user='root',

7 query = (5 database='db"')

8 "SELECT wage, bonus" 6 cursor = con.cursor()

9 "FROM employees" 7 query = (

10 "WHERE emp_no = %s" 8 <—Ccursor

11) 9)

12 cursor.execute(query, (emp_no,)) 10 cursor.execute(query, (emp_no,))

13 row = cursor.fetchone() 11 row = cursor.fetchone() 1 "SELECT wage, bonus"

14 salary, bonus = row 12 salary, bonus = row 2 "FROM employees"

15 return salary + bonus 13 return salary + bonus 3 "WHERE emp_no = %s"

(g) Iteration 3: Selection

(h) Iteration 3: Context

(i) Iteration 3: Target

Figure 5.6: Three different context-target pairs created from the code context from Figure 5.3a by the implementation

of the training pipeline. Highlighted lines denote the code segment sampled by the tree-based span selection technique.
Mutual identifier masking and dedenting have been applied to the context-target pair.

142

5.4. EVALUATION DATASET FOR CONTEXTUALIZED CODE SEARCH

Iteration 3, as shown in Figure 5.6g, a deeper multiline string was sampled. However, since

a string contains no identifiers, no mutual identifier masking was applied.

5.4 EVALUATION DATASET FOR CONTEXTUALIZED CODE SEARCH

In CCS, the objective is to find code segments that implement the intended functionality
for a given code context query with missing parts. Quantitative evaluation of CCS would
need a dataset with relevancy assessments. Segments that implement the intended func-
tionality are considered relevant results. Ideally, for an accurate evaluation, for a query
multiple relevancy annotations should be available. While query contexts can be easily
created by removing blocks of code, obtaining suitable blocks that implement the same
functionality as the removed part is challenging. To the best of the author’s knowledge,

datasets for CCS are not available.

Send E-Mail 20

CRC32 File Checksum 23 Encryption Key Files 18 Download From Web 15
Connect to Database 27 Play Sound 22 Decompress zip archive 7
Get MAC Address String 16 Take Screenshot to File 22 Bubble Sort Array 22
Delete Folder and Contents 18 Fibonacci 20 Setup SGV 18
Parse CSV File 22 Encrypt To File 21 Setup SGV Event Handler 11
Transpose a Matrix 20 Open URL in Browser 24 Initialize Eclipse Project 18
Extract Matches Using Regex 20 Open File in Desktop 23 Get Prime Factors 18
Copy Directory 21 GCD 20 Shuffle Array in Place 20
Test Palindrome 18 Convert Date String 20 Binary Search 21
Write PDF File 20 Zip Files 20 Load Custom Font 21

Table 5.1: The number of samples for each functionality in Cocos.

Thus, this section introduces the Cocos dataset for CCS based on BIGCLONEBENCH,
a Java code clone benchmark with various types of annotated clones (Svajlenko and Roy
2015). Particularly BIGCLONEBENCH includes Type IV clones, which are defined by
functional similarity as “two or more code fragments that perform the same computation
but are implemented through different syntactic variants” (Roy and Cordy 2007). The
Type IV clones in BIGCLONEBENCH are annotated at a method level to implement
specific functionalities. For instance, Figures 5.7a and 5.7¢ show two Java functions that

implement the functionality Compute a CRC32 checksum for a file.

The clones from BIGCLONEBENCH serve as ideal proxies for real-world queries and
solutions for CCS. To construct the CCS dataset, functions from 31 randomly selected
functionalities were considered, as shown in Table 5.1. However, the functionality may
constitute only a portion of each function. To create realistic information needs, annotators
manually identified a shared “main functionality” between the clones. When the sub-block
is removed, a code context is created, and the corresponding sub-blocks from the other

functions are deemed relevant search results.

143

CONTRASTIVE PRETRAINING FOR CONTEXTUALIZED CODE SEARCH

172 public int calculatePrimaryEntriesChecksum() {

173 CRC32 checksum = new CRC32(); 1 public int calculatePrimaryEntriesChecksum() {
174 for (GPTEntry entry : entries) 2 CRC32 checksum = new CRC32();
< checksum.update(entry.getBytes()); 3 Il<—cursor
175 return (int) (checksum.getValue() & OxFFFFFFFF); 4}
176 }
(b) The query obtained by removing the highlighted
(a) A function that computes the CRC for a file. part.

405 public static long getCRC(File f) throws IOException {) 1 HashSet<Integer> lst = new HashSet<Integer>();)
406 InputStream is = new FileInputStream(f); 2 for (int 1 = 0; 1 < values.length; i++) {
407 CRC32 crc = new CRC32(); 3 lst.add(values[i]);
408 byte[] data = new byte[1024]; 4 3}
409 int read; 5 int[] v = new int[lst.size()];
410 while ((read = is.read(data)) > -1) { 6 Iterator<Integer> it = lst.iterator();
411 crc.update(data, 0, read); 7 for (int 1 = 0; 1 < v.length; i++) {
412 } 8 v[i] = it.next();
413 return crc.getValue(); 9 }
414 } 10 return v;

(c) A function with the same functionality (highlighted). (d) A distractor snippet.

Figure 5.7: Two Java functions (a) and (c) that compute the CRC32 checksum of a file have been annotated in BiG-
CLONEBENCH to implement a certain functionality. However, this functionality may constitute only a portion of each
function. During the construction of Cocos, the highlighted sub-blocks (blue in (a) and (c)) were manually annotated to
contain the same functionality. Subsequently, when the highlighted part is removed in (b) a code context is created, for
which the corresponding highlighted lines from the other function (c) are relevant search results. The last sub-figure, (d)
shows an irrelevant distractor target from the Cocos dataset.

For instance, the highlighted sub-blocks (blue in Figures 5.7a and 5.7¢) were manually
annotated to contain the same functionality. Figure 5.7b shows the code context for which
the highlighted lines in Figure 5.7¢ are expected to be found. In Figures 5.7a and 5.7,
the initialization of the crRc32 object (Lines 173 and 407) is also shared functionality, but
the annotator used their discretion to create a realistic scenario in which the developer
might know which objects to use, but not how to add the content of the file to create the
checksum. Note that the query and the relevant solution have a low amount of overlapping
identifiers. For instance, the only overlappingidentifieris cre32 in the query in Figure 5.7b
and crc in the blue part of the possible solution in Figure 5.7c.

This process yielded a total of 606 context-target pairs, on average approximately 20 pairs
per functionality. To simulate a more realistic search index, 10,000 distractor snippets
were created from Java functions in CODESEARCHNET (Husain et al. 2019) by randomly
selecting top-level statements from the functions’ bodies. An example distractor snippet
is visualized in Figure 5.7d. Now for each context, such as the one in Figure 5.7b, the
performance of models in retrieving targets that implement the same functionality can
be quantitatively measured. Note that the original removed segment is not considered
during evaluation, given that it has the same identifiers. Additional examples are shown in

Figure A.5 in the Appendix.

144

5.5. EXPERIMENTAL SETUP

S.4.1 Evaluation Protocol: Zero-shot Code Retrieval

On Cocos, models are evaluated in a zero-shot setting. The scale of the dataset allows
no fine-tuning. For each context, all possible targets and the 10,000 distractor snippets
are ranked, while the original target is excluded. No cut-oft is applied, so all targets are
considered. To evaluate the model, standard information retrieval metrics Prec@k, MAP,

and nDCG are used.

5.5 EXPERIMENTAL SETUP

The experiments aim to assess whether the proposed approach for self-supervised CCS
is effective. To this end, the Cocos dataset was created. On this dataset, the impact
of each deleaking step is investivated and the approach compared to other information
retrieval baselines. Only unsupervised baselines are considered for the Cocos dataset,
as no labeled data is available. Additionally, this chapter explores whether this type of
pretraining improves the code-encoder quality of the transformer model, which could

potentially make it useful as a general pretraining task for various models, even outside

the context of CCS.

5.5.1 Research Questions

The following research questions are addressed through the experiments:
Research Question 5.1: Can CCS be learned with a self-supervised Cloze Task (CT)?

This research question investigates to what extent a model trained using a self-supervised
cloze task retrieval approach on source code can perform CCS on the Cocos dataset.
The cloze task may not be ideal for code due to context-target pair leakage, as discussed
previously. If leakage occurs, it could substantially impact the model’s ability to learn
semantic similarity, reducing its performance on Cocos. To assess the impact of leakage,
multiple ablation models were trained with and without the different deleaking steps, and
their performance on Cocos was evaluated. When tree-based span selection is omitted,
a random token-level span of the same length distribution is selected as a replacement.

The remaining deleaking steps are simply skipped.

Research Question 5.2: How does the self-supervised CCS approach compare to statistical
baselines such as BMzs (Robertson and Zaragoza 2009)?

Statistical retrieval systems, such as BM2 5, have become the industry standard. However,
these systems rely on keyword matching, which is suboptimal for source code as semanti-
cally identical solutions might come with different identifiers. Thus, the proposed CCS

model is compared to statistical baselines using the Cocos dataset.

145

CONTRASTIVE PRETRAINING FOR CONTEXTUALIZED CODE SEARCH

Research Question 5.3: Does pretraining with the self-supervised CCS approach improve

the code encoder’s performance on other code understanding tasks?

The proposed pretraining strategy for CCS could improve not only the model’s ability
to perform CCS, but also the model’s general code understanding capabilities. Overall,
retrieving complementary pieces of code is a challenging task, that requires the model to
semantically understand the snippets. To evaluate this, the pretrained model is tested on
benchmark datasets from CoDEXGLUE on two code understanding tasks. Specifically, the
tasks defect detection and code clone detection are chosen from CODEXGLUE, since these
tasks are encoder-based tasks and have been part of the evaluation from the last chapter.

Which allows comparing the performance to state-of-the-art models and SyNTAXPT.

5.5.2 Hyperparameters and Setup

Chapter 4 has demonstrated that the SYNTAXPT model achieves state-of-the-art code un-
derstanding capabilities, even when evaluated on encoder-based tasks from CODEXGLUE.
Hence, unless otherwise stated, all models are initialized with the weights of the encoder
of SYNTAXPT, to give the model a head start in code understanding capabilities. This
work builds on the implementation of SYNTAXPT and thus uses a similar experimental

setup and infrastructure. For additional details please refer to Chapter 4.

For training, the large-scale dataset introduced in Section 4.5.5 is also used to train the
retriever model. All tasks and models use the AdamW optimizer (Loshchilov and Hutter
2019) with a learning rate schedule that warms up the learning rate linearly for 10% of the
training steps, along with a polynomial decay for the remaining steps. The self-supervised
contrastive model is trained for 500k steps on a single A6000 GPU, with a peak learning
rate 0f 0.00005 and the dynamic batch size set so that batches contain around 7000 tokens.
During training retrieval performance is measured on 30,000 held-out validation samples
of the pretraining dataset. For final test results the checkpoint with the highest validation
MRR is used.

Recall that the dataset contains code from multiple programming languages. This has the
drawback that mixed batches with samples from different languages are another leakage
pattern: Using negative samples from another programming language in the contrastive
loss computation, does not require precise semantic understanding of the code. Those are
easy to differentiate by the model. To address this issue, this work creates batches only
with samples from one programming language. At the end of the training pipeline, the
samples are first grouped by programming language, and subsequently formed to batches.
Obviously, this creates more challenging batches than simply shuffling samples.

146

5.6. REsuLTs

Model Features MAP NDCG P@1 P@3 P@10

BM25 standard 12.4 438 279 249 17.1

BM25 camel 28.0 571 394 371 33.2
None 15.7 499 459 380 24.8
TS 26.5 596 581 50.8 37.0
TS, IM 33.8 66.0 69.8 61.0 45.3
TS, DE 36.3 659 594 546 44.4
TS, IM, DE 50.9 763 736 703 59.7

Table 5.2: Zero-shot code retrieval results for different deleaking steps as described in Section 5.3: tree-based span
selection (TS); mutual identifier masking (IM); dedenting (DE). The non-neural BM25 (Jones et al. 2000) is compared
once with the ElasticSearch default tokenizer (standard) and a code-specific tokenizer that splits on camel case (camel).

5.6 RESULTS

This section presents the results of the experiments.

5.6.1 Pe;fm’mance 0f Se[f-Supervi.ved Contextualized Code Search
Can CCS be learned with a self-supervised Cloze Task (CT)? — RQ 5.1

The results are summarized in Table 5.2. The model trained without any deleaking steps
performs poorly on Cocos, likely because it retrieves mostly targets with matching
identifiers rather than semantically similar code snippets. This is indicated by a high
precision at 1 (P@1) but a low MAP score. The model fails to consistently retrieve a//
relevant targets. These results suggest that training a cloze task-based retriever without
deleaking is not advisable. The performance on Cocos improves consistently when the
deleaking steps are applied, and the combination of all deleaking steps achieves the best
performance. The model with all deleaking steps will be called SyNTAXPT-ccCs from now
on. SYNTAXPT-ccs achieves a more than three times higher performance, compared
to the model without deleaking steps (50.9% vs. 15.7% MAP). These results support the
hypothesis that leakage hinders the learning process. Therefore, for effective code retrieval
training using a cloze task, it is crucial to carefully select spans without syntactic leakage,
handle mutual identifiers to enable the retrieval targets with different variable names, and

also dedent targets appropriately.

This improvement is further illustrated in Figure 5.8, which presents a t-SNE visualization
of the context and target embeddings from a random selection of Cocos problems. The
model trained without deleaking steps fails to fully disambiguate contexts and targets
from different problems. In contrast, the model trained with deleaking steps forms more
distinct clusters in the embedding space. These observations lead to the conclusion that a
cloze task-based code retriever without deleaking steps is not a viable option and the use

of deleaking techniques is essential for performance optimization.

147

CONTRASTIVE PRETRAINING FOR CONTEXTUALIZED CODE SEARCH

v = Context (Leakage) v = Target (Leakage)

-~
(O
&
&

Decompress zip archive.
Bubble Sort Array

Setup SGV

Setup SGV Event Handler
Initialize Java Eclipse Project.
Get Prime Factors

Shuffle Array in Place

Load Custom Font

Create Encryption Key Files
Play Sound

Take Screenshot to File
Encrypt To File

Open File in Desktop Application
GCD

Convert Date String Format
Connect to Database

Get MAC Address String
Parse CSV File

Test Palindrome

Write PDF File

afe
&

Figure 5.8: T-SNE visualization comparing the embeddings of models trained with (bottom) and without (top) deleaking
steps. The embeddings of the model trained with deleaking steps show more distinct and well-formed clusters, which
indicates an improved semantic understanding.

5.6.2 Comparison to Statistical Baselines

Houw does the self-supervised CCS approach compare to statistical baselines such
as BMz25s (Robertson and Zaragoza 2009)? — RQ 5.2

Classic statistical retrieval systems, such as the Okapi BM2 5 (Jones et al. 2000) used in
ElasticSearch, are widely employed in the industry and therefore used as a realistic baseline
for comparison. These statistical methods primarily rely on keyword matching instead
of semantic understanding, which is suboptimal for code since variable and class names
might be different without differing semantics. This is intensified by source code naming
conventions that often use camel or snake case word compositions, which—without
proper tokenization—lead to even less lexical overlap. For example, the function names
calculatePrimaryEntriesChecksum and calculatePrimaryEntriesCRC are two different tokens
when using the standard ElasticSearch tokenizer, that keeps them as a whole. Therefore, in
this approach the default tokenizer is compared to one that splits on camel and snake case.
It outputs the tokens calculate , Primary, Entries, Checksum and calculate , Primary,
Entries, CRC for the example. An overlap of three of four tokens more accurately reflects
the similarity of the two identifiers. However, as argued above the method will fail when

no lexical overlap is present, e.g., database and db .

148

5.6. REsuLTs

Results are presented in Table 5.2. While BM2 5 models can retrieve some relevant targets,
their performance is significantly lower compared to the proposed model. The models
achieve 12.4% and 28.0% MAP with standard and camel case tokenization, respectively,
versus 50.9% MAP for the proposed model. Interestingly, the BM2 5 baselines have lower
P@1 and precision at 3 (P@3) scores, than all the neural models. This indicates, that the
statistical baselines are not able to accurately differentiate the codes’ semantics and thus
retrieve relevant solutions rather on the lower ranks. One could think of using a multi-
stage ranking approach, which is often used in IR, in which a keyword-based first-stage
ranker retrieves a large amount of candidates (in the thousands), that are then reranked by

a neural model in a second stage. This is left for future work.

5.6.3 General Encoder Quality

Does pretraining with the self-supervised CCS approach improve the code en-
coder’s performance on other code understanding tasks? — RQ 5.3

The general quality of the encoder is assessed through evaluation on downstream tasks
that require code understanding. In this chapter the defect and code clone detection
tasks from CODEXGLUE (Lu et al. 2021) are used, since they have been used to evaluate
SYNTAXPT in the last chapter and are encoder-only tasks that require no decoder for
generation. Both tasks are described in detail in Section 4.5.7. The defect detection task is
a binary classification task that predicts if a function contains a vulnerability. The clone
detection task is a retrieval task that aims to retrieve semantically similar programs of
the same functionality. This task is closely related to CCS, with the difference, that it
compares complete code snippets with one another instead of partial code contexts with
relevant targets. For both tasks a hyperparameter sweep is conducted, with the same
setup as described in the aforementioned sections. The model checkpoint with the best

validation performance is evaluated on the test set.

REesuLrTs

The model trained with the self-supervised CCS objective outperforms all state-of-the-
art models at the time of the experiments® by a large margin on both tasks, as shown in
Table 5.3. For the clone detection task the previous state-of-the-art, the UNIXCODER
model, is outperformed by 0.8 p.p. MAP@500. On defect detection the model achieves
the same performance as the best model on the CODEXGLUE leaderboard at the time of
writing in 2024 and outperforms all other models by over 2.7 p.p. accuracy.

Results belong to CONTRABERT model proposed by Liu et al. (2023).
"Results belong to UNTXCODER model proposed by Guo et al. (2022).

>The experiments to this work have been done in 2022 and models that have been published up until
December 2022 are included in this comparison.

149

CONTRASTIVE PRETRAINING FOR CONTEXTUALIZED CODE SEARCH

When comparing SYNTAXPT-ccs to the

Clone Defect
SYNTAXPT one can see that on both tasks Model
. MAP@R Accuracy
the performance improves when after struc-
tural generative pretraining the encoder is sub- ~ ROBFRTA-CODE 767 611
| - ed for CCS. before it is f CODEBERT 82.7 62.1
sequently pretrained for ,beforeitis fine-) 625
tuned on the respective task. Especially on the AROMA 551 625
clone detection task an improvement of 1.8 p.p. ~ PLBART - 63.2
MAP could be observed. Obviously, a retrieval ~ GRAPHCOPEBERT 8.2 63.2
. . Disco 82.8 64.4
task benefits from a retrieval-style pretraining.
SYNCOBERT 88.2 64.5
CODERETRIEVER 88.9 -
But the SYNTAXPT-cCs model improves also ConETS base 887 658
on the classification task defect detection by 1.1 COTEXT } 66.6
p-p- accuracy is achieved on the defect detec- Unixcoper 90.5
. . . . 8 h
tion task. This shows that this style of pretrain- 20 teaderboard °0° o3
ing leads to a strong general semantic under- ~ SYNTAXPT 89.5 68.2
SYNTAXPT-cCs 91.3 69.3

standing of code, not only useful for retrieval,

but also fOI‘ Other encoder-based COdC under_ Table 5.3: Results of the code clone and defect de-

standing tasks. These findings indicate that the tection tasks on CopeXxsLut. For task and dataset
descriptions please refer to Section 4.5.7.

proposed CCS pretraining could be added to

many pretraining approaches to improve their performance on code understanding tasks.
yp g app p p g

5.6.4 Comparison with OpenAl

In a last experiment new for this thesis, the SYNTAXPT-ccs model is compared to
OpenAl’s commercial text and code embeddings on Cocos. These are OpenAl’s flagship
embedding models in September 2024, and are commonly used in Retrieval-Augmented
Generation (RAG) applications. Note that the models are proprietary, for which the
architecture, training data and algorithm are not publicly disclosed. Two models are
available: text-embedding-3-small and text-embedding-3-large. Even though the models
support adaptive sized output embeddings (Kusupati et al. 2022), this experiment uses the
largest option for best possible performance. In this case, text-enbedding-3-small outputs
embeddings of size 1536, while text-embedding-3-1large outputs embeddings of size 3072.
In contrast, SYNTAXPT-ccs has an embedding-size of 768. Additionally, one can expect
that the OpenAl models have more parameters than the SYNTAXPT-ccs model and
are trained on both unsupervised and supervised data, but this is a speculation and not
confirmed®. The cursor position—for which the target should be retrieved—is indicated
to the models by a comment // insert here at the corresponding position in the context,

since no markers (sentinel tokens) can be used in the OpenAI models.

“The only available research paper by OpenAl employees on text and code embeddings is Neelakantan
etal. (2022). It is unclear if the available models (OpenAl 2024b) are the same as the ones used in the paper.

150

5.7. CONCLUSION AND FUTURE WORK

Model Params Dim MAP NDCG P@1 P@3 P@10
SYNTAXPT-ccs 110M 768 50.9 76.3 73.6 70.3 59.7
text-embedding-3-small (OpenAl 2024b) ? 1536 50.5 733 59.4 589 53.8
text-embedding-3-large (OpenAl 2024b) ? 3072 60.0 788 66.3 65.1 62.5

Table 5.4: Comparison of the SYNTAXPT-ccs model to OpenAl’s general purpose text and code embeddings on Cocos.
These are proprietary models from OpenAl, for which the architecture, training data and algorithm are not disclosed.

Table 5.4 presents the results. One can see that the SYNTAXPT-ccs model performs
competitive with these commercial models. SYNTAXPT-ccs performs better than Ope-
nAT’s smaller embedding model across all metrics, even though its embeddings are only
half the size. Additionally, it performs better than text-embedding-3-large in P@1 and
P@3, but worse in MAP and nDCG. This indicates that SYNTAXPT-ccs peforms well
in the top ranks, but does not have the same coverage as the larger OpenAl model. The
text-embedding-3-large model achieves a MAP of 60.0% and a nDCG of 78.8%, which is an
improvement of 9.1 p.p. in MAP and 2.5 p.p. in nDCG compared to the SYNTAXPT-CCs
model. The smaller improvement on nDCG confirms that the model is not as precise
on the first elements in the result list, since nDCG penalizes errors in the beginning of
the result list stronger. This is a promising result, since lower ranks are most important
for a user. The better performance on the top-ranks can be attributed to the proposed
training routine, which is specialized for CCS. Our model is trained to use the available

information for which position a solution should be retrieved, which is not the case for

the OpenAl models.

As these results demonstrate, our CCS model is competitive with OpenAT’s general pur-
pose embeddings, which have been developed, tuned and optimized by a much larger team
of Al specialists, have likely been trained including supervised data (note that SYNTAXPT-

CcCs’s training is entirely self-supervised), and likely feature much bigger models.

5.7 CONCLUSION AND FUTURE WORK

This chapter addressed the challenge of training a code retrieval model for Contextualized
Code Search (CCS) without supervised data. To this end, a novel self-supervised approach
was proposed, that uses a Cloze Task (CT) to bootstrap query-result pairs from unlabeled
code for contrastive learning. To mitigate leakage patterns that could hinder the learning
of semantic similarity, three deleaking steps—tree-based span selection, mutual identifier
masking, and dedenting—were introduced. These steps effectively prevent the model from
exploiting trivial patterns during training, forcing it to learn semantically meaningful code

representations. Also, the Cocos dataset, the first evaluation dataset specifically designed

The smallest model size Neelakantan et al. (2022) study is 300M parameters, which is almost three times of
SYNTAXPT-ccs (110M). Their largest model has 175B parameters (1590 times larger).

151

CONTRASTIVE PRETRAINING FOR CONTEXTUALIZED CODE SEARCH

for CCS based on aligned code clones, was introduced. This dataset enabled a rigorous

evaluation of the retrieval capabilities of the model in a zero-shot setting.

The experimental results demonstrated that, without the proposed deleaking steps, cloze
task-based self-supervised training underperforms compared to statistical baselines such as
BM25. However, with the deleaking steps applied, the model significantly outperformed
these baselines, and doubled the retrieval performance on the Cocos dataset. This
confirms the effectiveness of the deleaking strategies in enhancing the models ability to
learn semantic code representations. Furthermore, it was shown that the self-supervised
cloze task-based pretraining not only improves retrieval performance but also enhances
general code understanding capabilities. On two encoder-based code understanding tasks
from CopEXGLUE—defect detection and code clone detection—the model achieved
state-of-the-art results and outperformed previous models, including the SYNTAXPT

model presented in the previous chapter.

These findings have important implications. They demonstrate that the proposed self-
supervised cloze task-based pretraining with appropriate deleaking steps is a viable and
effective strategy for CCS. It allows building powerful code retrieval models without the
need for labeled data. Moreover, this approach contributes to the broader field of code
understanding by offering a method to pretrain code-encoders that can perform well across
various tasks. Future work could further train the proposed retriever in combination with
a generator model for a joint, unsupervised RAG training (Izacard et al. 2020), where
a generator and retriever model are trained at the same time, so that the retriever adds

relevant code to the generator (e.g., from the project context).

An interesting direction for future work would be to integrate momentum contrastive
learning (He et al. 2020) into the training routine, which aims to increase the amount
of negative samples by keeping a queue of embeddings across batches, together with a
moving-average of the encoder. He et al. (2020) show that this improves the quality of the
learned representations on visual tasks, but recently has been shown to also work for NLP
(Izacard et al. 2022). Larger amounts of negative samples require more sophisticated code
understanding during pair matching in the contrastive loss computation. In combination
with larger transformer models, this could improve the performance of the approach
proposed in this chapter substantially. Also, it is left to future work to investigate, if the
retrieval performance can be improved by adding some supervised data to the training
routine, and how much is needed. The output size of the embeddings could also be

investigated, which could potentially reduce the computational cost of the model.

Furthermore, the combination of this model with a multi-stage ranking approach com-
monly used in IR could be an interesting direction for future work. The SYNTAXPT-CCS
model could be used as a first-stage ranker to retrieve a large amount of candidates, which

are then reranked by a cross-encoder, that can better differentiate the semantics of the code

152

5.7. CONCLUSION AND FUTURE WORK

snippets, but is computationally more expensive. This could potentially further improve
the retrieval performance of the model. It is left for future work to investigate whether
a cross-encoder can be trained with the same self-supervised cloze task approach, or if
supervised data is needed for training. Another direction for future work could be to
investigate the impact of training on mixed-language batches. The authors noticed that,
since the model was trained exclusively on batches of a single programming language (see
Section 5.5.2), the model is able to do cross-language retrieval (e.g., retrieve a Python

solution for a Java problem).

153

CONTRASTIVE PRETRAINING FOR CONTEXTUALIZED CODE SEARCH

154

ParT 1

APPLICATIONS

155

The half of knowledge is to know where to find knowledge.
— Inscription at Dodd Hall, FSU

Evaluating Contextualized Code Search in
Practical User Studies

THE PRECEDING CHAPTERS in Part I introduced several code-specific transformer
models. Initially, two separate methods for incorporating the syntactical aspects of code
into the transformer model were studied: The first modified the transformer architecture
to be able to learn from ASTs and the second improved self-supervised pretraining for
code-LMs with denoising tasks constructed from the code’s syntax tree. The main resul,
the proposed SYNTAXPT LM, achieved state-of-the-art performance in code understand-
ing benchmarks at the time of its development. In the final chapter of Part I, a novel
self-supervised training strategy for Contextualized Code Search (CCS) was introduced.
By fine-tuning the SYNTAXPT model on alarge-scale codebase using contrastive learning,
the SYNTAXPT-ccs model outperformed traditional retrieval methods such as BM25.
This fine-tuned code-encoder model demonstrated state-of-the-art performance not only

in contextual code retrieval but also in other code understanding tasks from CODEXGLUE.

Opverall, Part I has focused strongly on the design of machine learning models and their
training task. Hence, evaluations of the research in Part I primarily aimed to measure
the general code understanding capabilities of the models through standard machine
learning benchmarks, as is common practice in machine learning research (Goodfellow
etal. 2016). These evaluations are important to assess the performance in research settings
and to optimize machine learning pipelines, hoping that they accurately reflect real usage
scenarios. Nonetheless, they only provide a limited view of the model’s practical utility.
Part IT of this dissertation will now shift the focus from research benchmarks to practical

applications of the developed models. Here, the goal is to explore how SYNTAXPT and

157

EvALUATING CONTEXTUALIZED CODE SEARCH IN PRACTICAL USER STUDIES

SYNTAXPT-ccs perform in practical settings that reflect actual developer workflows and
needs. We first look at the performance of SYNTAXPT-ccCs from an end-user’s perspective.
Two user studies will assess how effectively the model supports developers in practical
coding tasks by finding relevant code snippets in a codebase. Next, in Chapter 7, we take
adifferent perspective and determine if SYNTAXPT can be used to evaluate the quality
of variable names, which are an important factor for code readability and maintenance.
To this end, we will assess whether the predictions of the self-supervised model reflect
widely accepted best practices in software engineering, in form of established software

engineering guidelines for naming variables.

6.1 INTRODUCTION AND MOTIVATION

The development of software is a complex and time-consuming process, and the ability
to reuse existing code can significantly reduce development time and costs. Thus, devel-
opers are constantly exchanging knowledge, via mailing lists, forums, and open-source
repositories, to find solutions to their problems. In this context, CCS has the potential
to enable much more effortless access to these solutions, as it seamlessly integrates into
the developer’s workflow. While a developer writes code in their editor, CCS can analyze
the context together with the cursor position and search a codebase (e.g., a company’s
software-repositories) for relevant code snippets that could be inserted at the current
cursor position. Compared to natural language code search, this eliminates the need for
the developer to manually specify a query and additionally utilizes the currently written
code as an additional source of information. This consequently reduces the amount of
effort required to discover relevant code. It is important to note that the code snippets
found relevant by SYNTAXPT-cCcCS are not synthesized but rather retrieved from existing,
verified solutions written by other developers. In this way CCS can enable safe and secure
code reuse (as opposed to code generation tools, such as ChatGPT or GitHub Copilot

that often ignore these and for which the source of the generations remains unclear).

The benefits of code reuse are familiar to experienced developers—compared
with newly added code, reused code has already been tested & proven stable
in production. Often, reused code has been touched by multiple developers,
so is more likely to include documentation. This accelerates the interpreta-

tion of the module by developers who are new to it. (GitClear et al. 2024)

Having an easily approachable way to discover code is particularly more relevant in com-
panies with multiple parallel software projects, where developers (or development teams)
often work in isolation from each other, while working on similar problems. In such
contexts, knowledge often remains within the teams, and valuable solutions from one
project may never reach other teams that could benefit. CCS could bridge these gaps and

share solutions across development teams.

158

6.1. INTRODUCTION AND MOTIVATION

6.1.1 Contributions

The self-supervised approach to CCS presented in Chapter 5 uses contrastive learning
on a large-scale codebase without manually labeled data. Pairs for training the model are
sampled from complete code files in a self-supervised manner and deleaking steps have been
introduced to minimize overfitting. Until now, CCS models have been evaluated only
using research datasets (Mukherjee et al. 2020; Dahal et al. 2022; Villmow et al. 2022), and
the models” practical utility for software developers remains underexplored. Hence, this
chapter aims to investigate whether the model and training pipeline proposed in Chapter 5
work in real development scenarios. This poses additional research challenges related with

applying the proposed SYNTAXPT-ccs model in practical software development:

o The model must be integrated into a user-friendly application that allows developers
to interact with the model. This includes a User Interface (UI) concept, as well
as a filtering concept to restrict the search results to specific directories, files, or
programming languages. Preliminary user tests have indicated that developers may

appreciate additional filtering options to restrict the search space.

o The model must be robust to variations in the user’s query formulation. In contrast
to benchmarks, users may formulate their queries differently, and the model must
be tolerant to these changes. For example, the users may misplace the cursor or
query the model with an incomplete line. The model has not seen such situations

during training, but should still be able to provide useful results.

o The codebase must be indexed, which includes selecting potentially relevant code
snippets from the files in the codebase to build the index. These snippets form the
basis for the search results. Using every possible code snippet in the codebase is not

feasible due to the large number of possible snippets (e.g., all possible subsequences

of a file).

e Redundant search results, i.e., cases where the model suggest Lines 1-5 and Lines
2-6 from the same file, must be filtered out to ensure that the search results are
concise and relevant. The attention span of a user is limited, and redundant results

may distract from the relevant ones.

With these challenges in mind, this chapter aims to investigate the following research

objectives:

e CCS follows a specific workflow: (1) write code context, (2) analyze the result
list, and (3) adapt the solution into their own code. A key question is: How do
developers assess the effort and difficulty of these individual steps?

159

EvALUATING CONTEXTUALIZED CODE SEARCH IN PRACTICAL USER STUDIES

e What particular use cases do developers see for the CCS in practice, such as ex-
ploring a new software project, reusing code they have written previously, and

others?

Even though the self-supervised approach to CCS proposed in Chapter 5 reduces the
time for query formulation to a minimum (since in fact no explicit query is required),
CCS still requires the developer to shift focus from its editor window to comprehend and
adapt the search results. Hence, it remains unclear, whether developers find the concept of
CCS useful. To address this research gap, this chapter introduces a prototype application
for CCS, called CoDEBUDDY. A screenshot of this application is shown in Figure 6.1.
Using CoDEBUDDY, a practical evaluation of SYNTAXPT-ccs through two user studies
is conducted. In Study A, the impact of CODEBUDDY on the efficiency of developers
on student’s programming exercises is assessed, and in Study B potential use cases in a

corporate scenario are explored.

According to Hevner et al. (2004) this research aligns with the principles of design science,
which is why this chapter closely follows the proposed methodology and guidelines. The
authors define design science as the creation of purposeful, innovative, and novel artifacts
for specific problem domains. Such an artifact is the proposed CODEBUDDY prototype,
which is, to the best of the author’s knowledge, the first prototype that allows developers
to interactively search with CCS. Hevner et al. (2004) state that “design is inherently an
iterative and incremental activity” (p. 85), and “the design process [...] a Generate/ Test
Cycle” (p. 88). Such a cycle has been applied in the development phase of CopEBUDDY,
in which several iterative steps of implementation and testing with an experienced devel-
oper as an alpha user have lead to a sequence of user interface improvements and model
refinements’. In this chapter, the design decisions and outcomes of these iterations are
described. For example, the model refinements have led to additions to the self-supervised
pretraining routine of Chapter 5, that aim to improve the robustness of the model when
used by end-users. This chapter thus contributes to both the academic understanding and

practical application of CCS models.

Hevner et al. (2004) emphasize that to demonstrate the utility of CODEBUDDY for
developers, a “thorough evaluation of the artifact is crucial” (p. 82), using “methodologies
available in the knowledge base” (p. 86). In this chapter two of such evaluation methods
are used: (1) a controlled experiment that measured both quantitative and qualitative
performance improvements by using CODEBUDDY among computer science students in
Study A, and (2) an observational case study with a professional software development

team to discover the practical impact of CODEBUDDY in Study B.

In summary the key contributions of this chapter are:

"The iterative development of CODEBUDDY was conducted with the help of an experienced developer
from the AOE GmbH in Wiesbaden, Germany.

160

6.2. RELATED WORK

1. Present enhancements to the self-supervised pretraining approach from Chapter 5
that improve SYNTAXPT-ccs’s usability and robustness, when used in a zero-shot

application with end-users.

2. Present an indexing strategy to discover and index candidate code snippets from

the codebase and introduce a post-processing strategy to filter redundant results.

3. Introduce and open-source a software application to search and visualize relevant
code passages in a codebase, called COoDEBUDDY (the first tool for interactive

CCS).

4. Evaluate CODEBUDDY in two practical user studies: (1) Study A is a controlled
experiment that measured performance improvements when using CopEBUDDY
in fourth-semester computer science students working on simple algorithmic pro-
gramming exercises, and (2) Study B is a case study in which a professional software

development team used CODEBUDDY during their regular work activities.

6.2 RELATED WORK

Code search is a fundamental activity in software development. It enables developers
to locate relevant code snippets, understand unfamiliar codebases, and reuse existing
solutions. For a detailed description about related work on code search, please refer to
Section 5.2. This section outlines the related work on user studies in the context of the
usability and efficiency implications of Al tools in practical software development and
code search. The first has recently been studied: GitHub Copilot has shown significant
productivity benefits in practical settings (GitHub 2024). Studies report a 56% increase in
task completion speed (Peng et al. 2023) and high acceptance of code suggestions (Dohmke
et al. 2023; Ziegler et al. 2024). To circumvent copyright issues, GitHub experiments
with a code reference feature that uses code search to link generated snippets to public
repositories (Salva 2023). CCS, on the other hand, directly retrieves existing code snippets

from a trusted source without generating new code.

Several empirical studies have explored how developers search for code and the tools they
use, for which Grazia and Pradel (2023) provide a comprehensive survey. They report that
these studies typically use the following methodologies: They may (1) observe developers
behavior (Ko etal. 2006), (2) analyze log files (Bajracharya and Lopes 2012), or (3) conduct
a questionnaire-based survey (Singer et al. 1997), or a combination of these methods. This
chapter follows these methodologies and analyzes logged requests and ratings, but also ask
for feedback from the participants using a questionnaire. Additionally, we will conduct
expert interviews to gain insights into the practical implications of CCS in a professional
software development environment. Grazia and Pradel (2023) also report that, while some

studies exist that analyze usage patterns in large-scale (code) search websites (Bajracharya

161

EvALUATING CONTEXTUALIZED CODE SEARCH IN PRACTICAL USER STUDIES

and Lopes 2012; Rahman et al. 2018), such as Koders or Google Search, many studies
explore a practical scenario and index a codebase that consists of multiple software projects,
such as one from a company or organization (Panchenko et al. 2011; Sadowski et al. 2015).
This chapter will create a similar scenario and focus on medium-sized codebases consisting

of tens of repositories, as in Study B, a software company’s codebase.

Most of these studies are about regular code search (e.g., with short queries of natural
language or parts of code), and none have been conducted specifically for CCS. Bajracharya
and Lopes (2012) analyzed over ten million usage logs from the Koders code search engine,
and found that most queries are short, with 79% of users providing only a single search
term. This indicates that developers find formulating queries cumbersome and prefer to
use short, simple queries. This supports our “queryless” CCS approach, where the model

automatically infers the search intent from the context and cursor position.

Similarly, Ko et al. (2006) conducted an observational study of ten Java developers per-
forming maintenance tasks. They discovered that developers spend a large amount of
their time navigating and searching for relevant code and often use tools such as grep

and find (Grazia and Pradel 2023). Studies by Rahman et al. (2018) and Sadowski et al.
(2015) investigated how developers use general-purpose search engines like Google for
code retrieval. Rahman et al. (2018) found that code-related searches often require more
effort—such as longer time, more result clicks, and query modifications—compared to
general web searches. Sim et al. (2011) evaluated different code search approaches and
found that while general-purpose search engines are effective for finding small code snip-
pets or reference examples, specialized code search engines perform better when searching
for larger components or libraries. However, general web search engines, such as Google,
“are the most popular choice for code search and will continue to be like that, in all like-
lihood, because they are lightweight, easy to use, and have sophisticated web interfaces”
(Rahman et al. 2018). Based on these findings, the participants that were not allowed to
use CODEBUDDY in the controlled experiment in Study A were explicitly provided with
adirectory with the codebase in order to employ tools like grep or find and allowed to

use general-purpose search engines to find helpful code snippets.

Recall that such user studies have not yet been conducted for CCS, where research has
focused on improving retrieval or code generation quality on research datasets, rather
than practical applications (such as in Chapter 5). We want to address this gap and test

self-supervised CCS in two practical user studies with developers.

6.3 APPROACH

This section describes how the aforementioned challenges are addressed. It first describes
the user interface and implementation of the CODEBUDDY demo application, then

presents enhancements made to the self-supervised pretraining approach from Chapter 5,

162

6.3. APPROACH

Figure 6.1: The web-frontend of the CODEBUDDY demo application. On the top a code editor and the user has the cursor

Wﬁfddlmﬁqlﬁgdges Date Iéﬂ:bﬁ&&yl/wdbrfr@mmhd;pﬂglicks the blue search button (middle), the context and
the cursor position is encoded with SYNTAXPT-ccs, which is trained to retrieve code snippets that fit in the context at
the cursor position. The search results are displayed below, with the option to expand each code snippet to see more
context. Below each code snippet, the user can provide feedback on the relevance of the snippet.

and finally describes the indexing strategy and the proposed filtering of redundant results
within CoDEBUDDY.

6.3.1 Demo Application

SYNTAXPT-ccs is evaluated in two user studies, which require a user-friendly interface
for developers to interact with the model and a backend to index the codebase, retrieve
code snippets, and store user feedback. Therefore, the CODEBUDDY demo application
has been developed to enable developers to perform searches, visualize results, and give
feedback regarding the results. To be as seamlessly integrated into developers’ workflows as
possible, the application includes an editor and supports two user interfaces. The first is a
browser-based interface, shown in Figure 6.1, used by students in the controlled experiment
of Study A. The second is an Intelli] plugin, shown in Figure 6.2, used by developers in
Study B, which provides a more convenient interface that is integrated in their usual
work environment. Since Study B is conducted in cooperation with a software company
on their codebase, the application has been dockerized to be deployed on a cloud-based

infrastructure within the company’s network to ensure data privacy and security.

Recall, that SYNTAXPT-CCs is trained to retrieve code snippets that could plausibly be
inserted at the cursor position. When a user clicks the search button, the SYNTAXPT-
ccs retrieves code snippets from the codebase. In CODEBUDDY, the cursor plays an
important role, since it indicates the model for which position code snippets should be
received. For instance, positioning the cursor inside a class—just as in Figure 6.1—signals
to the model that instance attributes or methods should be retrieved. However, when the
cursor is positioned outside the class (e.g., Line 1, Col. 1), one could expect the model
to retrieve imports, enums, or even another complete class. Note that this is a new User
Experience (UX)-concept, and the author is not aware that this feature has yet been used

in any retrieval applications. Hence, there hypothetically is a learning curve for the users.

In CoDEBUDDY the user can set filters over the filepath and language of the code snippets
(which defaults to snippets in the same language as the current file). However, filters over
the filepath have been used only by the professional developers in Study B (see text fields
below the search button in Figure 6.2). Preliminary developer feedback revealed that
snippets were often challenging to understand without additional context before and after
the code snippet. To address this issue, the web-frontend displays three lines of code above
and below each snippet, as shown in Figure 6.1. The IntelliJ-plugin, on the other hand,

displays the found snippets without additional context, as shown in Figure 6.2. In both

163

EvALUATING CONTEXTUALIZED CODE SEARCH IN PRACTICAL USER STUDIES

[] BM buddy ¥ §° main v Python tests for test_cursor_wig..._overlap

Code Buddy

package de.playground.sample.domain Search 4»Clear results £33 Settings Feedback
Z

import org.apa 0 g3.builde!

import org.apa e 93.buildel pagyit1 from customer-messages/src/main/java/com/aoe/co...
1

import java.util.Arrays; @ata

. public static class Plan {

class Plan 3 . s

e private final long id;

private final String title;

private final String subType;

+

* & kX k K

Result 2 from sample-microservice/src/main/java/de/playgrou...
1
private final long id;

private final String title;

private final Plan.Type type;

* & k k &

Result 3 from customer-messages/src/main/java/com/aoe/co...

1
private final long contractlId;
private final double score;

@ ¢ @

* K

Result 4 from customer-messages/src/main/java/com/aoe/co...

il

© ©

private final long id;

buddy > tests > = Plan.java

Figure 6.2: The IntelliJ-plugin frontend of the CODEBUDDY demo application used in Study B. The regular IntelliJ editor is
used to code and a side-panel with the CODEBUDDY plugin can be opened to the right. Once the user hits search, the
current cursor position in the editor marks the information need and results are retrieved. Note that at the top of the
plugin, the developers can specify additional filters to restrict the results.

frontends the developer has an option to view more context if needed. Both frontends
show the path to the file above each search result, and in the web-frontend, users can
click on the file path to open the full file in a new tab. In both frontends, the relevant
code snippets are presented with syntax highlighting and line numbers for best possible
readability. Feedback can be given with a five-star rating system below each search result

to enable users to rate the usefulness of the code snippets.

SOFTWARE STACK

A high-level overview of the software system is shown in Figure 6.3. The web-frontend is
implemented as a single-page application in Vue.js (You 2024), and the IntelliJ-plugin is
implemented in Kotlin. Both frontends communicate with the backend via a REST API,
which is implemented in Python using the FastAPI web framework (Ramirez 2023). The
backend runs SYNTAXPT-ccs and provides API endpoints for authentication, search

164

6.3. APPROACH

requests, and feedback. In addition to the REST API, the backend handles asynchronous
tasks, such as indexing the codebase. Internally, the code files are stored in a MongoDB
database, which also stores user management data and feedback. The code snippets are
encoded with the model and the embeddings are stored in the Qdrant vector database
(Zayarni 2023), which is used for efficient vector search operations. Along with each
embedding, metadata to the snippet is stored in Qdrant, including the file path, line range,

and language.

Before the application starts, it first indexes relevant code snippets from the codebase (this
can be time-consuming, but has to be done only once). Therefore, CODEBUDDY stores
the code files in a MongoDB database, detects candidate snippets (this step is described
in detail in Section 6.3.3), encodes the candidates with the model’s target encoder (see
Section 2.2.2), and stores the target embeddings in a vector database. When a user clicks
the search button the code in the editor is encoded with SYNTAXPT-CCS into a query
embedding (see Figure 5.3). After obtaining the query embedding, it is matched with all
target embeddings stored in the vector database using a filtered nearest neighbor similarity
search (Malkov and Yashunin 2020; Douze et al. 2024). The vector database returns the
file path and line ranges of the nearest code snippets in the latent space. These are first used
to apply the non-maximum suppression algorithm, described in Section 6.3.3, to filter out

redundant results, and subsequently query the actual code from the MongoDB database.

Lastonl REST API <—>M l
Authentication Feedback CCS-Model

IntelliJ-Plugin

Backend

Embedding, Filepath, Line Range

<+

MongoDB Qdrant

Code

Figure 6.3: High-level overview over the architecture of the CODEBUDDY demo application. The software stack is
dockerized and can be deployed on any cloud-based infrastructure. The backend service is implemented in Python
and uses the FastAPl web framework to provide a REST API for the frontend applications. The application runs the CCS
model and handles asynchronous tasks such as indexing the codebase. During indexing the code is stored in a MongoDB
database, while an embedding for each code snippet is stored along with metadata in a Qdrant vector database, which
is used for efficient vector search operations. The frontend applications are a browser-based interface implemented in
Vue.js and an IntelliJ-plugin written in Kotlin.

165

EvALUATING CONTEXTUALIZED CODE SEARCH IN PRACTICAL USER STUDIES

FEEDBACK MECHANISM

For feedback a five-point scale has been adopted from IR benchmarks. The scale used
within CODEBUDDY closely follows the descriptions in the four-point scale proposed by
Craswell et al. (2020) for an IR benchmark for the Text REtrieval Conference (TREC) but
has been worded to better fit the task. Additionally, a remotely relevant middle category is

added to have a more fine-grained rating:
1 Star: Irrelevant: The snippet has nothing to do with my search.
2 Stars: Related: The snippet seems related to my search but does not answer it.

3 Stars: Remotely Relevant: The snippet provides some information relevant to my

search, which may be minimal.

4 Stars: Relevant: The snippet has some answer for my search, but may need sub-

stantial modification.

5 Stars: Highly relevant: The snippet is dedicated to my search and can be used

with minimal modification.

6.3.2 Model Enbancements

SyNTAXPT-ccs introduced in Chapter 5 has a siamese architecture with transformer
LMs as encoders. The model is trained using contrastive learning on context-target pairs,
which are sampled randomly from code files. To prevent the model from overfitting (since
context and target come from the same code file), several measures were taken: (1) Tree-
based span selection samples only complete subtrees of the AST to be cutout as a target,
so that the selected span is a syntactically valid code snippet. This prevents the model
from solving the task by merely detecting syntactical matches, such as an opened but not
closed bracket in the query. (2) With mutual identifier masking identifiers that are shared
between context and target are masked in either the context or the target. At application
time, query and target predominantly not share the same identifier names; thus, this forces
the model to learn the intent of the code snippet rather than just connecting identifier
names. (3) Dedenting is used to probabilistically remove leading whitespace from the target

snippet, to prevent the model from returning only targets with matching indentation level.

An example of a context-target pair produced by this process is shown in Figure 6.5. This
self-supervised learning procedure can be trained on large codebases without the need for
labeled data. However, the pretraining always cuts-out the “exact” missing piece of code,
which is always a complete substructure (see (1) above). Preliminary user tests have shown

that these assumptions are violated when developers formulate their queries freely:

1. Users often typed an incomplete line and then ran a search, as if using a code

completion tool. However, the model is trained to find only complete syntactical

166

6.3. APPROACH

8%
Code File Mutual
o . N 90%
Identifier Partial Lines

Tree-based Masking 10%
File Truncation
Partial Results

0
95% 5%

Tree-based
Span Selection 20% Remove Tokens
[Model]<—[Truncation]<—[Cursor Wiggle]]

Around Mask

A)

80%

Figure 6.4: The self-supervised training pipeline for CCS with the additional steps to improve the user experience
highlighted in yellow. Apart from these changes, this is the same pipeline as detailed in Section 5.3.2. In these new
steps the context is modified to simulate user queries with incomplete lines and cursor variations, but also to allow
finding partial results. If a step is only applied sometimes (e.g., to 8% of samples), its frequency is indicated on the arrow
leading to the step.

units and not partial lines, because of the context-target pair creation with tree-

based span selection. This leads to suboptimal results.

2. The model has not been trained to yield partial results that contain some—but not
all—of the missing code. These results, however, may be interesting in practice. For
example, if a user starts writing a method but most of its body, including the return
statement, is missing, the model only finds results that complete the full method
and thus contain a return statement. However, intermediate statements within the

method could also be useful.

3. During pretraining, the exact token position where code is needed is known. In
practice, however, users often misplaced the cursor at a slightly different position
than where code was needed. We observed that the model strongly focuses on the
cursor position, and even slight variations can result in significantly different search

results. This behavior is suboptimal and can be difficult for users to understand.

Since the approach to CCS is completely self-supervised and no additional fine-tuning
data is employed, these issues need to be addressed during pretraining. To this end, this
chapter introduces several additions to the training pipeline of Chapter 5 that modify
the context snippet to simulate queries with the aforementioned user behaviors. The new
pipeline is shown in Figure 6.4, where the new steps are highlighted in yellow. These
steps are applied probabilistically to some of the training samples, for which we estimated
their frequency based on the observed user behavior during the preliminary tests. Note
that we do not want to overrepresent these cases. Apart from the new steps, the model

architecture, pretraining dataset, and hyperparameters remain the same.

167

EvALUATING CONTEXTUALIZED CODE SEARCH IN PRACTICAL USER STUDIES

1 def totalSalary(VAR1):

2 con = connect(host="localhost"',
< user='root', database='db"')
cursor = con.cursor()
I<—Ccursor

return salary + bonus

~ o b~ oW

print(totalSalary(1))

(a) Context

query = (
"SELECT wage, bonus"
"FROM employees"
"WHERE emp_no = %s")
VAR2 .execute(query, (emp_no,))
row = VAR2 .fetchone()
VAR3 , VARl = row

~N o A W N R

(b) Target

Figure 6.5: Example of a context-target pair produced by the self-supervised learning strategy for CCS, as introduced in
Chapter 5. The creation process of the pair has been visualized in Figures 5.3b and 5.3c.

1 def totalSalary(VAR1):

2 con = connect(host="localhost"',
< user='root', database='db')
cursor = con.cursor()

query =[i

return salary + bonus

~N o b~ oW

print(totalSalary(1))

(a) Simulate incomplete queries by copying tokens
from the target (Figure 6.5b) to the context (high-
lighted in blue).

1 def totalSalary(VAR1):

2 con = connect(host="localhost"',
< user='root', database='db')
cursor = con.cursor()ll

return salary + bonus

o b~ w

print(totalSalary(1))

(c) Remove tokens around the mask token to reduce
focus on cursor position.

1 def totalSalary(VAR1):
2 con = connect(host="'localhost',
< user='root', database='db')

cursor = con.cursor()

o u b~ ow

print(totalSalary(1))

(b) Remove everything behind the mask token to allow
for partial results. The removal is limited to the scope
of the mask token using the syntax tree.

1 def totalSalary(VAR1):
2 con = connect(host="localhost',
< user='root', database='db"')

cursor = con.cursor()

return Ilsalary + bonus

~ o AW

print(totalSalary(1))

(d) Change cursor position to simulate slight variations
and misplacements.

Figure 6.6: User experience improvements to the approach for self-supervised CCS. Note that only the context is changed

(i.e., the query), while the target remains the same for all samples. The idea is that the model should learn to find

the same target code snippet, regardless of the changes in the context due to variation in user’s queries and cursor

placement.

168

6.3. APPROACH

PArRTIAL LINES To simulate scenarios where the context contains incomplete lines
as in code completion, 8% of the samples are modified by adding a few tokens from the
beginning of the target to the context snippet. This allows the model to find partially
complete code snippets in scenarios where a user has started writing a line but not finished
it. Specifically, the amount of tokens 1, is sampled from round(n,;) ~ N(0,4) and
added to the context before the mask token. A visualization of applying this step to the

context in Figure 6.5a is shown in Figure 6.6a.

PARTIAL RESULTS In 10% of the samples a scenario in which the user has just started
writing code and wants to find a partial solution is simulated by removing everything
behind the mask token from the context. This removal is limited to the scope of the mask
token using the syntax tree. For example, if the mask token is placed at the position of
a top-level statement in a method, all following top-level statements in the method are
removed. Take alook at Figure 6.6b, in which this step removes the return statement from
the context snippet (Line 5 in Figure 6.5a), but keeps the out-of-scope print statement
(Line 7 in Figure 6.5a). This enables the model to learn that, even though the return
statement is missing, the return statement does not have to be part of the retrieved target

snippet.

CuURrsOR PosiTION Users often placed the cursor at a different position than where the
code was needed. To create a more robust model that is less sensitive to slight variations in
cursor position, two new steps are introduced, which are denoted as Remove Tokens Around
Cursor and Cursor Wiggle in the pipeline in Figure 6.4. The first is visualized in Figure 6.6¢
and aims to reduce the model’s focus on the exact syntactical position of the mask token
in the context snippet. In 5% of the samples, a random number of tokens directly around
the mask token are removed. This is achieved by removing a window of [n,+] ~ N (0, 3)
tokens around the mask token. The second step adds noise to the cursor position in 20%
of the samples. This is achieved by shifting the mask token [1cy, | ~ N (0, 2.5) tokens to
the left or right. This step is visualized in Figure 6.6d.

6.3.3 Indexing and Retrieval

During inference, the model searches for appropriate target code snippets in the code-
base given the user’s editor context. For instance, searches may target a method body,
a statement, or multiple statements within a code file. However, at indexing time, this
level of granularity is unknown, which theoretically requires indexing code snippets at
all possible granularities. Clearly, this is not feasible. To address this problem, the AST is
used to determine which parts of the files will be indexed as possible targets. Note that
this is similar to the context-target pair creation during pretraining (see Section 5.3.1).
Specifically, a subset of 24 node types of the set of nonterminal labels I is manually selected

to be relevant targets (see Section 2.1.2), e.g., ExpressionStatement, IfStatement, etc. The

169

EvALUATING CONTEXTUALIZED CODE SEARCH IN PRACTICAL USER STUDIES

complete list is provided in Table B.1. This subset has been primarily constructed for Java
code, but has been found to also work well for Python, TypeScript, and JavaScript.

Each selected node is a separate syntactical unit (e.g., Lines 1-4, and Line 5 in Figure 6.5b
are two separate nodes). When these nodes are considered only individually, the user can
never find top-level multi-statement code snippets (such as the complete Figure 6.5b that
is composed of multiple expression statements). Hence, adjacent sibling nodes in the AST
(e.g., two lines of code) are combined up to a maximum of six nodes and are also indexed.
This approach is analogous to word-level n-grams but for tree-nodes. Pretraining uses a

similar strategy during tree-based span selection, as described in Section 5.3.1.

In an offline step, all those code snippets are encoded using the target encoder of the
model and the embeddings are stored in the vector database. Note that opposed to
pretraining, no deleaking steps or modifications are applied to the selected code snippets
at inference time (indexing or retrieval). At runtime, the user’s editor context with the
cursor position inserted as a mask token is encoded by the context encoder, resulting in
the query embedding. This query embedding is compared with all indexed target code

snippet embeddings in the database using nearest neighbor searches (see Section 2.2.2)2.

Note that this strategy encodes every possible target code snippet individually and inde-
pendent without the remaining context of the file, even though the context could provide
valuable information during semantic matching. Obviously, this hardens the retrieval task
and is more error-prone. Future work could explore combinations of SyYNTAXPT-CCS
that additionally use the contextual information in the target file. For example, first find
matching the contexts with some model, then locate the relevant parts within the matching

contexts with SYNTAXPT-CCS.

NON-MAXIMUM SUPPRESSION

Preliminary user tests indicated that the model frequently returns overlapping code snip-
pets, such as lines 4-8, 68, and 5-10 from the same file. This is reasonable, since the
overlap in content of these snippets can be expected to result in similar embeddings.
Presenting redundant results to the user is expected to negatively affect the overall user
experience. This is not only because “most users [...] rarely go to the second page of [10]
results, and most of the time they only click on one document in the result set” (Pan et al.
2007, p. 803), but also the cognitive load associated with reading and evaluating multiple
redundant solutions can be mentally straining. Consequently, it is essential to minimize

overlapping code snippets in the result list.

*In practice the vector database employs an approximate graph-based algorithm for fast nearest neighbor
searches in high-dimensional spaces, such as HNSW (Malkov and Yashunin 2020). Within the algorithm it
is possible to trade-off accuracy for speed or memory. In the demo application the setting with the highest
retrieval accuracy is used, regardless of speed and memory.

170

6.4. STUDY A: PROGRAMMING EXERCISES

To this end, this chapter proposes to post-process SYNTAXPT-ccs’s search results using
Non-Maximum Suppression (NMS) (Canny 1986) to filter out redundant code snippets.
This method is commonly used in visual object detection (Viola and Jones 2004, p.159),
where initially a large set of bounding boxes is predicted, followed by a post-processing step
to filter or merge redundant predictions, retaining only the highest-scored ones (Hosang
etal. 2017). Xia et al. (2019) utilized NMS for the NLP-task named entity recognition,
but to the best of the author’s knowledge, this is the first time it has been applied in CCS

or code-retrieval applications.

The non-maximum suppression algorithm filters the search results in the following way:
First, snippets are sorted in descending order according to their relevance scores. The next
snippet with the highest score, X, is then iteratively selected, and all other snippets Y’
in the result list that originate from the same file are discarded if they overlap of more
than 50% with X. Thereby, overlap is measured as the Intersection over Union (IoU),
which is computed based on their line ranges. Formally, if [s1, e1] and [s2, 2] represent
the start and end line ranges (inclusive) of two code snippets X and Y, their intersection

1 is calculated as:

I(X,Y) = max(0, min(eq, e2) — max(sy, s2) + 1) (6.1)
The IoU is subsequently defined as:

I
(81—51+1)+(62—82+1)—I

IoU(X,Y) = (6.2)

After non-maximum suppression, the top 10 most relevant code snippets are presented to

the user as a result list, ranked by descending scores.

6.4 STUDY A: PROGRAMMING EXERCISES

Research Question 6.1: _Are programming students more efficient when using ConEBUDDY
and a codebase where solutions to similar problems exists, compared to students who do not use
CoDEBUDDY but have access to the same codebase and can use conventional search methods,

including web search?

The primary goal of Study A is to evaluate the impact of CODEBUDDY on the efficiency of
programmers in a controlled environment with a considerable number of participants (n =
41). The study aims to explore whether students using CoDEBUDDY display objective
and subjective improvements in task efficiency compared to those using conventional
search methods, such as web search engines or a local file search. The main hypothesis of

the study is that students using CoDEBUDDY will complete programming tasks more

171

EvALUATING CONTEXTUALIZED CODE SEARCH IN PRACTICAL USER STUDIES

efficiently than those who do not use CODEBUDDY, as measured through both subjective

self-assessment and objective scores rated by a teaching assistant.

To test this hypothesis, the students work on modified algorithmic programming exercises
from the lecture “Algorithms and Data Structures”. The codebase consists of student
submissions from previous years on similar and related exercises and some additional
algorithmic software projects. Efficiency is measured by the students’ ability to complete
programming tasks within a fixed time frame. The students are divided into two groups:
one group uses CODEBUDDY exclusively, and the other can use traditional search methods.
The students can validate the correctness of their implementation through automated
tests in a submission system. Also, students were asked for their subjective impression to
to what degree they solved the respective exercises, and a teaching assistant familiar with
the exercises provided an objective grading on the final submission. For CobEBUDDY to
improve student efficiency, it must (1) effectively retrieve relevant code snippets, and (2)
students must comprehend and interpret the search results, to (3) successfully integrate

the solutions into their own code.

6.4.1 Experimental Setup

The study was conducted in three rounds with separate groups of students of in total
41 participants. The students were in their fourth semester and had taken the lecture
“Algorithms and Data Structures” a year ago (2nd semester, 5 credit points). At the
beginning of each session the students were given a short introductory presentation to
CoDpEBUDDY with a short example of how to use the tool and could try it out. The
student were also advised about the aims, overall purpose, and methods of this study.
They were guaranteed anonymity of their data produced in the experiments. The students
worked alone, no pair programming, and implemented their solutions in a browser-based
code editor within an online submission system?, which is routinely used at HSRM, and
the students were familiar with. They could test their solution with the system as often
as they needed which verifies it against automated test cases. Each student worked on
three exercises for a maximum of 15 minutes per exercise. When the processing time
was over, the last state of their work was submitted to the submission system. After
completing each exercise, students were shown the correct solution of the exercise to
self-assess their performance. At the end of the study, students filled out a questionnaire,
and their submitted solutions were graded by a teaching assistant who was unaware of the

group assignments.

ExeErcises Each student worked on three exercises, which were slight variations of old
exercises from the lecture. Thus, the exercises were not completely new to the students.

For example the students had to implement logic for a syntax parser that validates brackets

>The submission system can be accessed at https://subato.cs.hs-rm.de.

172

https://subato.cs.hs-rm.de

6.4. STUDY A: PROGRAMMING EXERCISES

P
The following method determines all primes smaller than n:
PROCEDURE PRIMEFILTER(n)
1. Write down all numbers from 2 to n in sequence.
2. Mark the number 2 as prime and strike out all multiples of 2.
3. Find the smallest number m that is neither struck out nor 1 public class Prines {
marked 2 static boolean[] filter(int n) {
4. Mark m as prime and strike out all multiples of m. 3 b°°19?n[]'array = new boolean[n + 1];
S. Repeat steps 3—4 until no number m < n can be found. 4 for Fmt b G;_1 < array. length;
6. All marked numbers are prime numbers. s R
5 for (int j = 2; j < array.length;
— J++) {
Implement the following method(s): a /) FIXNE
® boolean[] filter(int n): This method should return a boolean 7 }
array b of length n 4 1, which indicates for each number s FORIRD ETED
k = 0,...,n whether it is a prime number or not. (The 9 3}
index in the array serves as a reference to the numbers) 10 3}
(a) Task description (translated to English). (b) Code skeleton provided to the students.

Figure 6.7: The prime number filter exercise given to the students, in which the students need to implement logic for
the Sieve of Eratosthenes.

in a string, a sorting algorithm such as Mergesort or Heapsort, or a prime number filter
using the Sieve of Eratosthenes algorithm. The prime number filter task is visualized
in Figure 6.7 and the complete list of exercises shown in Table 6.1. The exercises were
created by another teaching assistant unaware of the performance of CoDEBUDDY. The
assistant was advised to strip down the exercises to a manageable size for the 15 minute
time-frame, and change variable, method, and class names, so that keyword matching with
previous solutions would not be sufficient to solve this task. The students were provided
with skeleton code files, such as the one in Figure 6.7b, in which the logic for filtering
had to be implemented. For instance, the original class and method in the prime number
example were called Sieve and sieve, respectively, which were renamed in the skeleton in
Figure 6.7b to Primes and filter , respectively. Note that the students had encountered
the original versions of these tasks a year earlier. This situation resembles that of developers

who look up solutions for similar—but not identical —problems.

SEARCH INDEX The search index for this experiment was designed to contain realistic
solutions to the given programming exercises and should also be large enough to pose a
challenging retrieval scenario. Since the exercises were derived from old exercises of the
same lecture, old student submissions of the original exercise could be used as relevant
solutions for the derived exercise. Recall that because identifiers were changed in the
skeleton, a simple keyword matching was not an effective approach to find the old solutions.
From the old submissions five more or less diverse solutions were manually selected to
be part of the codebase. Two of such solutions for the task of Figure 6.7 are shown in
Figures B.1 and B.2. To obtain a realistically-sized codebase, additional code files were

added to the index: A Java Algorithms package that implements various algorithms and

173

EvALUATING CONTEXTUALIZED CODE SEARCH IN PRACTICAL USER STUDIES

Task

Description

Syntax Parser
Binary Tree
Quicksort with Stacks

Primes Filter

Quaterly Search
Ternary Search

Heap Sort

Logic Solver

Double Linked List
BigInteger Search Tree
Mergesort

Double Linked Queue

Implement a method that validates brackets using a stack.

Implement a method to verify if a binary tree is complete based on its depth.
Implement Quicksort using stacks, so that the smallest element is at the top of the stack
after sorting.

Implement the Sieve of Eratosthenes to find all prime numbers below a given limit.
Implement a variant of a binary search that divides the array into four parts.
Implement a variant of a binary search that divides the array into three parts.
Implement HeapSort for integers using a Max-Heap for ascending sorting.
Implement methods that validate logical formulas in conjunctive normal form.
Implement some methods for double linked lists.

Implement recursive insertion and counting of smaller elements in a Search Tree.
Implement the merge() method for an ascending Mergesort in Java.

Implement descending priority queues with double linked lists.

Table 6.1: List of programming exercises used in Study A.

data structures, as well as five random solutions from every other exercise of that lecture
that were not part of the chosen exercises. This resulted in a total of 1962 files in the search

index, from which 625,128 snippets were extracted and indexed.

CoNTROL GROUP Atthebeginningof the session, the students were randomly divided
into two groups. The first group worked on the exercises without CODEBUDDY. To ensure
a fair comparison this group was provided with the files in the codebase locally on their
computer (e.g., in order to use grep). This group could also perform traditional web-based
searches, e.g., to obtain solutions from Google or Stack Overflow. The other group used
CoDpEBUDDY exclusively to complete the exercise (i.e., no local searches or web searches
were allowed), the students could query the search index as often as they wanted and
were asked to provide feedback for each search result they found useful. For both groups,
using code generation tools such as GitHub Copilot or ChatGPT was prohibited. After
two exercises, the groups were switched, and the students that previously worked with
CoDpEBUDDY now work without it. Note that both groups worked on the same exercises
in the same order. In summary, one half of the students worked on two exercises with

CoDEBUDDY and one without, while it was vice versa for the other half.

6.4.2 Results

With RQ 6.1 this study aimed to assess efficiency improvements of students using CODEBUDDY
compared to those who did not. To answer this research question, the objective perfor-
mance and the subjective, self-assessed performance of the students is analyzed, grouped
by whether the students used CODEBUDDY or not. To correctly estimate their own
performance in the self-assessed rating, the students were shown the correct solution after
each exercise and at the end asked to estimate their overall progress with and without

CopeBUDDY. Their estimate is visualized in Figure 6.8a. For the objective performance

174

6.4. STUDY A: PROGRAMMING EXERCISES

R R R R R E N NN RN E RN ERR RN] B e

15 Code Budd -
: . 40 ode Buddy -
2 B 5 . N\ -
o a N
- 2 -— -
g 10 F _ g 30 Yes -
12 _ S -
s - el z
[o -
g . g 20 :
< 8 -
8 51 Code Buddy - S -
= [] - § 10 II :
No & .
I = I il 1|
L AN = HRAL: 1T D]
20 30 40 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Performance (%) Performance (%)
(a) Subjective ratings of performance by students. (b) Performance based on scores given by the teacher.

Figure 6.8: Results of Study A comparing the performance of the students with and without CODEBUDDY. In (a) it can be
seen that the students using CODEBUDDY rated their performance slightly higher than those who did not, and in (b) also
received higher scores from the teacher (who was unaware whether the students used CODEBUDDY or not).

a teacher graded the performance of each student in its final submission in 10% steps,
which is shown in Figure 6.8b. Recall that each student worked on three exercises, which
is why this is visualized per submission. Apart from performance metrics, the students
provided feedback about their experience with CopEBUDDY and CCS in general in
a final questionnaire. Following common practice, the students rated their agreement
with the statements in the questionnaire about their experience with CODEBUDDY on a
commonly used five-level Likert-scale (Likert 1932): (1) strongly disagree, (2) disagree,
(3) neutral, (4) agree, (5) strongly agree.

For validating the significance of the results, the non-parametric Mann-Whitney-U-Test
(Mann and Whitney 1947; Wilcoxon 1945) is used. The Mann-Whitney-U-Test is a
test between two groups on a single ordinal variable, i.e., the students working with and
without CODEBUDDY, measured by their performance rating. This test is chosen over
the common t-test, since the t-test requires a normal distribution of the variable, whereas
the Mann-Whitney-U-Test does not assume any specific distribution. The null-hypothesis
Ho is that there is no significant difference between the medians of the two groups, which
can be rejected with a 5% significance level, when the Mann-Whitney-U-Test returns a
p-value smaller than 0.05. Then the alternative hypothesis H 4 can be accepted, i.c., that

there is a significant difference between the two groups.

From Figure 6.8a it can be seen, that the students who used CODEBUDDY rated their
own performance slightly higher (mean = 54.5% =+ 23.1) than those who did not use
CoDpEBUDDY (mean = 49.8% =+ 25.9). However, with a p-value of 0.293 the difference
in the distributions of the two groups of 1 students working with and ng students without
CoDpEBUDDY is not significant (Mann-Whitney U=909, n; =no=41, p-value > 0.05,
two-tailed). Median subjective performance ratings of the two groups were 60% and 50%,

respectively. The similar subjective performance may be due to the fact that the students

175

EvALUATING CONTEXTUALIZED CODE SEARCH IN PRACTICAL USER STUDIES

had to familiarize themselves with the new tool and development environment, which
could have potentially also worsened their performance. Additionally, CopEBUDDY
provides different types of information. Instead of using a familiar web search to obtain
information (that may return sites explaining the algorithm, and offer potential solutions),
the students had to rely fully on CODEBUDDY (that only returns partial solutions, without
explanations). Hence, from a subjective perspective CODEBUDDY seems to provide the
same amount of useful information compared to what traditional web searches offer. One
would have to conduct another study with a third control group, that is not allowed to

search for any information, to measure the absolute impact of the retrieved information.

A different effect could be observed for the objective performance as rated by the teaching
assistant in Figure 6.8b. Recall that the assistant rated the performance blindly without
knowing whether the solution was implemented with or without CopEBUDDY. Here, one
can see that the performance on exercises had been significantly higher when the student
had been using CoDEBUDDY (mean = 37.1% =+ 36.6) compared to when not (mean =
25.1% =+ 34.0). A p-value of 0.0498 indicates that the distributions of the two groups
of n3 exercises completed with CODEBUDDY and n4 exercises without CODEBUDDY
differed significantly (Mann-Whitney U=2122, n3=>56, n4=63, p-value < 0.05, two-
tailed). The median objective performance of the two groups had been 30% and 10%,
respectively. These findings revealed that the students self-assessed their performance
higher than what could be objectively measured. The rather low overall performance of

the students could be attributed to the short 15-minute timeframe per exercise.

Concluding RQ 6.1, the controlled experiment indicates that—according to objective
performance measuring—students indeed are more effective when using CoDEBUDDY
instead of traditional search methods. This is a promising finding, since it means that
in order to have a higher performance the students needed to find relevant solutions
with CODEBUDDY and be able to comprehend these solutions. However, subjectively
the students rated their performance similarly. Additionally, the model did not work
perfectly on all occasions. On one exercise that aimed to implement a recursive binary
search by splitting an array into four parts, CODEBUDDY retrieved many solutions to a
similar binary search implementation splitting into three parts. However, while this was
close to what was needed, no actual solution to the original problem was retrieved. Even
though the solution was similar to what they needed, the students took longer to adapt
the solution and were unsatisfied with the results. But overall for most tasks at least one

relevant solution was retrieved.

Apart from performance metrics, the students were also asked to provide feedback about
their experience with CoDEBUDDY and CCS in general. Figure 6.9 visualizes the ques-
tions and results of the questionnaire. Most students found relevant resultsin CobEBuppy

(mean = 3.4 + 1.1), which is also reflected in the feedback to the search results where the

176

6.5. STUDY B: CORPORATE SCENARIO

40]

—J 1
30 L)
20

1

o

Percentage of Students

— T —— 77— 77— T—T— T
1
- 3
4
L g
4
I I I |
o o [] [B= mBllm . li
CODEBUDDY provided | could have found CoDEBUDDY helped me | found it difficult | found it difficult | found it difficult
relevant results for the results with a complete tasks more to formulate the to comprehend the to adapt a good

my searches. targeted keyword efficiently. search query. search results. result to my own
search. code.

Figure 6.9: Results of the questionnaire in Study A. The students rated their agreement with the statements on a Likert
scale from 1 (strongly disagree) to 5 (strongly agree).

MRR of the results which the students rated as most useful was 52.4%*. Students found
that it helped them complete tasks more efficiently (mean = 2.9 4 1.2). Students reported
that formulating queries in CODEBUDDY was relatively easy (mean = 2.0 + 1.03). How-
ever, they found it more challenging to judge the relevance of the search results (mean
= 2.9 £ 1.02). Especially the adaption of the solution to the students’ current coding
context had been perceived as stressful and time-consuming (mean = 3.3 £ 0.99). This is
understandable, as at the time of the experiment many students have become used to the
tailored solutions of code generation LMs. This leaves potential for future work that can
automatically adapt the relevant solutions of CODEBUDDY to the current context with
LMs, for example by using RAG. When code generation tools are guided with external
knowledge, research shows that hallucinations can be reduced (Huang et al. 2023).

6.5 STUDY B: CORPORATE SCENARIO

Research Question 6.2: What use cases do professional developers see for CopEBUDDY
in their daily work?

The goal of this research question is to evaluate the potential usefulness of CopEBuDDY
in a corporate development environment. This setting is particularly interesting from a
research perspective, as the self-supervised CCS model has been trained only on open-
source code. Corporate codebases are often highly domain-specific, and if CopEBuDDY
is able to retrieve relevant code snippets in this context without additional fine-tuning, it

would demonstrate the model is applicable to a wide range of possible scenarios.

To address RQ 6.2, a case study was conducted with four developers from a professional
software development team that integrated CODEBUDDY into their everyday work. The
company has a typical agile development environment where multiple semi-independent

teams work on the same or related products. These teams frequently develop similar

“When computing metrics such as MRR with the five-star feedback scale introduced in Section 6.3.1, any
rating of three stars or higher is considered relevant (Craswell et al. 2020).

177

EvALUATING CONTEXTUALIZED CODE SEARCH IN PRACTICAL USER STUDIES

features or face similar challenges. CODEBUDDY was deployed within the company’s
infrastructure, and a snapshot of the company’s codebase was indexed. This snapshot
comprised approximately 7,000 TypeScript files, 4,500 Java files, 2,500 JavaScript files,
700 PHP files, 10 Rust files, and 5 Go files. Among the four participating developers, two
were frontend developers, that worked primarily with Java code, and two were backend
developers, that wrote JavaScript and TypeScript code. One member from each frontend
and backend team was experienced, while the other one was new to the team and relatively
unfamiliar with the codebase. The developers were instructed to use CODEBUDDY as fre-
quently as possible, particularly when they encountered an information need (which—they
believed—could be satisfied with code from the codebase). When using CopEBUDDY,
they were asked to rate as many search results as they could. The study spanned over three
months, from mid-January to mid-April 2024. At the end of the study, individual expert
interviews were conducted with each developer, and their search queries and feedback

were analyzed.

6.5.1 Results

RQ 6.2 aims to detect potential use cases for CODEBUDDY in a corporate environment.
Hence, first it should be analyzed whether CoDEBUDDY provides relevant results in
domain specific environments, since, as previously detailed, CoDEBUDDY had been
pretrained only on open-source code and is used now in a zero-shot fashion on domain
code. An MRR of 41.2% for the most useful search result confirms that CobpEBuDDY
also works in corporate application scenarios, while it leaves room for improvement.
Interestingly the interviews revealed, that the frontend developers were more satisfied with
the results than the backend developers. This may be because of the similar technological
stack used throughout the different frontend products of the company, while the backend
technology was rather specialized. In specialized domains, the codebase is more likely
to not contain relevant code snippets, which is a limitation of the CCS approach. One
frontend developer noted that when relevant code snippets were present, the results were
often very close to what they needed, though not always exact matches. One of the backend
developers mentioned that the quality of results could be hit or miss and some searches
returned only irrelevant snippets. This is in line with the observation in Study A, where
for one exercise the model retrieved exclusively solutions to a different exercise, while it
worked well on most others. Future work could filter the search results to exclude results
with low relevancy and rather show no results at all. Currently, the application always
returns the top-10 results, even if their scores are low. However, when search results were
not directly relevant or when results depended heavily on accurate cursor positioning, the
developers quickly became frustrated. When analyzing the searches, one could see that
62.1% of the searches with feedback had at least one good result (22.2% of all searches).

178

6.5. STUDY B: CORPORATE SCENARIO

In the interviews, the developers were directly asked what potential use cases they see for
CopeBuDDY. In addition to CODEBUDDY’s main use case, quickly finding relevant
snippets within the codebase without extensive manual search, developers saw potential in
using CODEBUDDY to maintain consistency across projects, because with CopEBupDY
they stumbled over similar and helpful code written by other teams. One of the newer
developers used CODEBUDDY in an exploratory way to familiarize themselves with the
codebase. The developer found that CODEBUDDY saved them time, because otherwise he
would have been browsing the repositories manually. The ability to additionally formulate
their intent in a natural language query had been requested by two developers. Some
developers wished to search not only for code snippets that could fit in the current context
but also for code snippets that are similar to the current context (similar to clone detection).
The direct adaptation of a relevant code snippet to their current coding context was seen as
avaluable feature. Hence, a combination with code generation tools could be a promising

next step.

Furthermore, in modern software development—particularly in frontend projects—a
considerable amount of work is done in configuration files. These are often scattered
throughout the codebase, with and can often be found under many filenames, which
makes manual search complicated. Additionally, the developers mentioned that code
generation tools such as ChatGPT often struggle with configuration files. They wished
CoDEBUDDY supported such files, so that they could easily search within other teams’
configurations. They stated that finding in-use configuration files, which are validated and
thus reliable, would be extremely helpful. Unfortunately, searching for configuration files
is currently not possible with CODEBUDDY, as the SYNTAXPT model was pretrained
exclusively on files in the 16 programming languages listed in Table 4.1. Adapting it to
configuration files should be relatively straightforward. Configuration files are typically
written in JSON, YAML, or other tree-like languages, which can be parsed and tokenized
with the method introduced in Section 4.5.4. To adapt the CCS approach from Chapter 5
to configuration files, the tree-based span selection and dedenting technique could directly
be used on these languages. One could hypothesize that mutual identifier masking would

not be necessary, since there are no variables in such descriptive languages.

One problem noticed by the developers was that full files sometimes yielded less relevant
results, compared to a (manually shortened) smaller context. This can be potentially
attributed to the model’s input sizes. During pretraining, sequences are truncated to a
maximum length of 512 tokens (as detailed in Section 5.3.2). At inference time, however,
the full editor context regardless of its length is encoded by the query encoder, which is
made possible by the bucketed relative positional embeddings of the T architecture, as
previously detailed. However, this potentially creates a discrepancy between pretraining
stage and inference time. One could think of another subsequent, possibly self-supervised

training with longer sequence lengths to circumvent this problem.

179

EvALUATING CONTEXTUALIZED CODE SEARCH IN PRACTICAL USER STUDIES

In addition to the exploration of potential use cases in the interview, the questions from
the questionnaire in Study A regarding the usability of CoDEBUDDY had been asked.
One developer found it straightforward to formulate search queries and appreciated the
intuitive interaction through the cursor in the editor. However, others found the concept
of CCS more challenging and were confused about positioning the cursor correctly for
optimal results. The professional developers found it manageable and not tedious to read,
understand, and evaluate the search results, especially when developers were familiar with
the codebase. However, they found that adapting the solutions to their context as too
effort-intensive, and one developer noted that most results served as inspiration rather
than direct solutions. Specifically, difficulty in formulating the query achieved a mean of
2.5+0.87 (std), while understanding the search results was rated by a mean of 2.0+ 0.79,
and adapting the results to their own code achieved a mean of 3.0 £ 1.5.

6.6 CONCLUSION AND FUTURE WORK

This chapter explored the potential of CCS in real-world developer environments. It
introduced CopEBUDDY, a CCS demo application, and outlined how the self-supervised
training of Chapter 5 could be improved for better handling of real-world developer
behavior. Two studies validated the effectiveness of CODEBUDDY: a controlled study
with computer science students and a field study with professional developers. In Study A
significant improvements in efficiency of the students when using CobEBUDDY could be
observed. In Study B, professional developers found CODEBUDDY useful to facilitate
code reuse across development teams by easily discovering relevant code. However, they
also faced challenges with COoDEBUDDY’s dependency on accurate cursor positioning

and the relevance of search results.

This chapter has evaluated the practical utility of SYNTAXPT-ccCs through two user stud-
ies, and demonstrated the potential of CCS in real-world software development scenarios.
To this end, it introduced CoDEBUDDY, a CCS demo application, and outlined how the
self-supervised training of Chapter 5 could be improved for better handling of real-world
developer behavior. The findings from Study A indicate that students using CopEBUuDDY
were able to complete programming tasks more effectively, achieving significantly higher
objective performance scores compared to those using traditional search methods. This
suggests that CCS can enhance learning and efficiency in educational settings. In Study B,
professional developers identified valuable use cases for CODEBUDDY within a corpo-
rate environment. They found it particularly useful for exploring unfamiliar codebases,
maintaining consistency across projects, and discovering existing solutions to common
problems. The positive feedback demonstrates the model’s applicability even when used

in a zero-shot setting on domain-specific codebases.

180

6.6. CONCLUSION AND FUTURE WORK

However, the studies also highlighted areas for improvement. Users occasionally were
confused about the cursor positioning, and found adapting the retrieved code snippets
to their specific contexts cumbersome. This suggests that further research is needed to
enhance the usability of CCS. Additionally, the model’s performance varied depending
on the domain specificity of the codebase (frontend/backend), so that further fine-tuning

on the target codebase could improve relevance of the suggestions.

Integrating CODEBUDDY with code generation LMs seems to be a reasonable next step,
since this and the previous chapter showed that SYNTAXPT-cCs is applicable not only
in research contexts, but also in corporate environments. Generative LMs like GitHub
Copilot and ChatGPT (GitHub 2024; OpenAI 2024a) have gained popularity in recent
years, and are currently changing software development practices. Many developers now
routinely use these tools for code suggestions. However, these models often fall short in
more complex software projects, particularly because they lack specific knowledge about
project internals or coding standards. This leads to suggestions that may not adhere to the
corporate coding style or practices, and developers often spend additional time adapting
the generated code to their needs. Furthermore, the source of the generated code is not
always traceable, which raises concerns about the legal implications of using code produced
by generative LMs (Salva 2023). In the context of code generation, RAG has become
an increasingly popular way to improve the relevance of the code completions. In RAG
additional contextual information, such as the content of other open files, the structure of

directories, and more, is added to the prompt of the LM.

Two ways of integrating CODEBUDDY with code generation tools could be considered.
First, CoDEBUDDY could potentially be used as a retriever-backbone in a fully-automated
RAG pipeline. It would enrich prompts for the LM with relevant code from a personal
or the companies’ codebase, to better adapt the generations to the coding style of the
developer or the organization. This could potentially improve the quality of the generated
code and reduce the need for manual adaptation. However, it does not allow the user
to manually discover a specific solution, the search results are analyzed by the LM and
the developer never interacts with the retriever itself. This could be explored in a second
way, since the developers found CODEBUDDY useful for exploring the codebase. After
manually discovering a relevant solution with CoDEBUDDY, an instruction-based LM
could then be prompted to adapt the snippet to the developer’s context. Another option
worth exploring is that CODEBUDDY could directly present the adapted code snippets
instead of raw search results to the developer. Both methods allow users to validate the
code generation by viewing its source, verify license compliance, and reduce the need for

manual adaptation.

Also, currently CODEBUDDY encodes the target code snippets in isolation from their

context (see Section 6.3.3), which makes the retrieval of relevant code snippets much

181

EvALUATING CONTEXTUALIZED CODE SEARCH IN PRACTICAL USER STUDIES

harder. Obviously, the context of the code snippet can provide valuable information
about the code snippet itself. However, due to the nature of the self-supervised training,
the context of the target snippet is not available during training. One could think of
ways to make the target encoder context-sensitive, for example by using small amounts
of supervised training data. Also, the non-maximum suppression could be replaced by a
union of all results in the file, which could potentially improve the quality of the results.
However, these are only ideas and would need to be evaluated in future work. To evaluate
such strategies the Cocos benchmark introduced in the last chapter could potentially be
used. While the last chapter focused on a fixed set of candidate snippets, the evaluation
could be extended to select targets freely from the codebase. This would allow evaluating

the quality of the retriever in a more realistic setting.

182

T've developed a new programming language! [...] Just normal code.
Good clean syntax. Nothing weird. [...] Except the only variable
name is ‘X, To refer to different variables you have to write “X” in

different fonts.
— Munroe (2020)

Spotting Identifiers that Violate Naming

Guidelines

ParT I OF THIS THESIS introduced the SYNTAXPT model, a transformer-based encoder-
decoder code-LM trained on an AST-based multi-task learning objective. In the last
chapter, a specialized version of this model was used to guide developers by introducing
CoDpEBUDDY, the first application for interactive CCS. In this chapter, we explore another
practical application scenario of the SYNTAXPT model’s capabilities: its potential to
improve the quality of source code by assisting developers in writing better identifiers.
To this end, we will assess whether the SYNTAXPT model has learned to follow widely
accepted best practices in software engineering, specifically in relation to established
software engineering guidelines for naming variables. The overall research goal of this
chapter is to investigate whether LMs can be used to evaluate the quality of variable names,

which are an important factor for code readability and maintenance.

7.1 INTRODUCTION

Metrics to measure the quality of source code range from negatively correlated cyclomatic

complexity, Lines of Code (LOC), and nesting depth, to positively correlated number of

This chapter is adapted from Johannes Villmow", Viola Campos™, Jean Petry, Amine Abbad Andaloussi,
Adrian Ulges, and Barbara Weber (2023b). How Well Can Masked Language Models Spot Identifiers That
Violate Naming Guidelines? In 23rd IEEE International Working Conference on Source Code Analysis and
Manipulation, SCAM 2023, Bogotd, Colombia, October 2-3, 2023. IEEE, pp. 131-142, previously published
by ©2023 IEEE.

183

https://doi.org/10.1109/SCAM59687.2023.00023
https://doi.org/10.1109/SCAM59687.2023.00023

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

comments and the absence of linguistic antipatterns (Fakhoury et al. 2020). These aspects
are important to understand the complexity and maintainability of source code. Another
key aspect beyond such structural properties is the choice of identifiers: identifiers are
the part of source code that developers can directly influence and interact with. They are
typically written in natural language, are used to embed concepts, and have been found to
be essential for communication between developers and code readability (Fakhoury et al.
2020). In software engineering, a large amount of time is spent understanding code written
by others, particularly during maintenance, code reviews, debugging, and testing (Brooks

1983). Therefore, reduced comprehension time directly lowers development costs.

Bad or low-quality identifiers have been found to negatively impact the overall quality of a
software project (Butler et al. 2010). This is supported by the findings of Fakhoury et al.
(2020), who reported “evidence of a correlation between the quality of identifiers [...]
and the quality of a software project”. Arnaoudova et al. (2016) found that low-quality
identifiers exhibit linguistic antipatterns, which “significantly increases the cognitive load”
(Fakhoury et al. 2020) of developers. In contrast, high-quality identifiers “provide hints
abouta program’s purpose” (Siegmund et al. 2017), which allows experienced programmers
to comprehend a program using a top-down approach (Brooks 1983). This has been
confirmed by the aforementioned studies that have shown that “commented programs
and programs containing full word identifiers are easier to understand” (Arnaoudova et al.
2016).

Opver the years, research has been conducted to improve identifier quality, including the
development of naming guidelines for identifiers (Butler et al. 2010; Arnaoudova et al.
2016; Hilton and Hermans 2017), and the application of NLP techniques to standardize
identifiers (Caprile and Tonella 2000) or even recommend better versions (Lin et al. 2017).
More recent approaches have extended this to transformer LMs that automatically rename
identifiers in code (Li et al. 2021). Automatically renaming variable names using an LM is
relatively straightforward. Generative code LMs, such as GitHub’s Copilot (Chen et al.
2021; GitHub 2024), are trained on large collections of open-source repositories and
are widely used for code autocompletion, as detailed in Chapter 4. When prompting a
(masked) LM with a hidden identifier, multiple versions of the identifier can be generated.
Note that to predict an identifier name, it cannot be present in the context (otherwise
the model would favor the identifier from the context). So additional masking tokens
have to be used to hide other occurrences of the identifier. The SYNTAXPT model from
Chapter 4 is particularly well-suited for this task, as it has been trained with a multi-task
learning strategy that included identifier deobfuscation as a pretraining task. During
pretraining the model predicts the most likely name for a hidden identifier by estimating
a probability distribution for the next token, given all previously generated tokens and

an input sequence (see Equation (2.16)). This model can be used for automatic identifier

184

7.1. INTRODUCTION

renaming by first masking the identifier (and all its occurrences) and then sampling one or

more candidates to present to the user (Mastropaolo et al. 2022).

However, blindly renaming all identifiers in a code file is impractical and generally unwel-
come by developers. A more useful approach in practice would be to highlight identifiers
of insufficient quality for the developer that would benefit from refactoring. A model that
could detect the quality of an identifier would be a valuable tool for developers, as it could
provide feedback on the quality of their identifiers, guide them in writing better identifiers,
and improve the overall quality of the source code. Identifiers of insufficient quality could
be highlighted in an IDE or in a code review tool to the developer, allowing him/her to

either manually refactor the identifiers or use generated candidates from an LM.

Quantifying the quality of an identifier is challenging due to variations in coding styles
influenced by personal preferences, company guidelines, and language-specific naming
conventions. However, widely accepted coding conventions in the form of identifier
naming guidelines (Butler et al. 2010; Arnaoudova et al. 2016; Hilton and Hermans 2017)
provide precise rules that developers should follow, such as “Use words from a dictionary and
no uncommon abbreviations”. Measuring identifier quality by adherence to these guidelines
has many advantages, as they are mostly language-agnostic, widely accepted, and most
importantly offer a way to measure the quality of identifiers objectively. This is why in
this chapter, identifiers that violate naming guidelines will be referred to as low-quality or
bad, while those adhering to the rules are considered high-quality or good. Therefore, to
evaluate how well an LM assesses the quality of an identifier, this chapter quantifies how

effectively it detects violations of these guidelines.

7.1.1 Contributions

To this end in a first contribution, this chapter presents and compares four different ways
of extracting identifier quality scores from an LM. All these strategies use the SYNTAXPT
model from Chapter 4, but could be applied to any LM that supports masked language
modeling, which is demonstrated by the INCODER and GRAPHCODEBERT models. The
approach is visualized in Figure 7.1. To identify low-quality identifiers, the SYNTAXPT
model from Chapter 4 is used in two different self-supervised strategies to predict identifier

quality:

1. Generative Rating: SYNTAXPT is used to estimate the probability of the identifier,
without further fine-tuning, as shown in Figure 7.1a. This is done in three ways: The
first two directly use the identifier’s likelihood and the last compares its likelihood-
ratio to the most likely identifier predicted by the model.

2. Discriminative Rating: This strategy is motivated by the fact that the generative

model has never learned to discriminate between good and bad identifiers. Identi-

185

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

fiers are replaced by alternative versions sampled from a word embedding model,
and SYNTAXPT’s encoder is fine-tuned to discriminate original identifiers from

replaced ones.

Fine-Tuning

Avg. Perplexity S0t ey -
array
Max Perplexity

Pretraining: Chapter 4

(fone o5

B

Identifier

Jayisse)

sort
~ | Replace-
ment.

Jawosuel)
Jawlosuel]
Jawuoysuel]

g
Likelihood-Ratio Y

a Original

L Code Replaced Code A cobedding E Replaced
Token Probabilities !

| Sequence

Code Obfus-
cated Code !

(a) Generative Rating (b) Discriminative Rating

Figure 7.1: The SYNTAXPT model—an encoder-decoder transformer LM described in Chapter 4—was pretrained, among
other tasks, with identifier deobfuscation. In this chapter it is used to assess the quality of identifiers with two ranking
strategies (a) and (b), with four proposed scoring functions (green). All are inherently self-supervised. In (a), the
generative strategy uses the LM'’s likelihoods in a zero-shot setting without further fine-tuning, with three scoring
functions: (1 and 2) directly using the identifier’s likelihood/perplexity and (3) comparing its likelihood ratio to the
most likely identifier predicted by the model. In (b), the discriminative strategy fine-tunes the encoder of SYNTAXPT
to distinguish between real identifiers and those replaced by a weak Al. Figure adapted from Villmow™ et al. (2023b)
©2023 IEEE.

Directly using the likelihood of an identifier as an identifier quality score has been explored
before with n-grams language models (Allamanis et al. 2014). This chapter builds on this
foundation and addresses its open challenges: First, multi-token identifiers pose a problem.
The first token typically has a lower probability, because many options are possible. Once
it is clear how the identifier starts, the continuation will be “casy” (fewer choices possible),
thus the model will assign a higher probability to subsequent tokens. For instance, consider
the identifier number_of_items_in_cart , that gets easier to predict after the first few tokens.
Second, other identifiers in the target identifier’s context matter. The model is trained
to predict the most likely identifier for a given context, which does not necessarily have
to be a high-quality one. For example, in code where all other identifiers are single-letter
abbreviations, the model may assign a high probability to a poor-quality identifier (i.c.,
a single-letter abbreviation), while assigning a low score to a high-quality identifier. To
address these issues, this chapter proposes and compares novel alternative scoring functions

and discusses the impact of masking on generative scoring functions.

It can be hypothesized that by predicting the most likely identifier for a given context, the
SYNTAXPT model implicitly learns what makes a good identifier. Assuming that most
code in open-source repositories implements best practices in software development and
contains high-quality identifiers, the LM should predict high-quality identifiers more often
than low-quality identifiers. This chapter aims to test this hypothesis by evaluating the
performance of the LM on a dataset of identifiers labeled with respect to their adherence

to identifier naming guidelines. Only few datasets consider identifier quality. For example,

186

7.2. RELATED WORK

Chen et al. (2022) build a dataset for measuring the similarity between identifiers, by
automatically collecting two versions of an identifier from GitHub commits, assuming
that the newer version is of better quality. However, this can be a noisy measure, and the
authors do not consider naming guidelines. To the best of the author’s knowledge, no
dataset with human-labeled quality assessments for identifiers exists, particularly none

regarding coding guideline violations.

Therefore, this chapter addresses this research gap by introducing the first benchmark for
detecting violations of identifier naming guidelines. The dataset contains 6,203 dense
annotations of identifiers across 28 common naming guidelines, organized into four
groups: syntax, vocabulary, data type, and method name. The dataset has been made
publically available to support further research (Villmow et al. 2023a). On this dataset,

the proposed scoring functions are evaluated and compared.
In summary the contributions of this chapter are:

o The first dataset for assessing the quality of identifiers, which is based on established
coding guidelines (Villmow et al. 2023a).

e Propose and evaluate three distinct generative and one discriminative scoring func-
tions to extract identifier quality scores from a LM. All scoring functions are self-
supervised. Most scoring functions are novel itself (to the author’s knowledge), but
especially the application to identifier quality estimation with respect to naming
guidelines is novel and has not been previously explored. The generative scoring
functions can be applied to any masked LM and are designed to facilitate compari-
son with future research that may employ more complex methods. Additionally,

the impact of masking on the generative scoring functions is discussed.

e Compare the SYNTAXPT model against other state-of-the-art LMs on this task
and dataset and demonstrate that it outperforms even the larger INCODER (1.3B

parameter) model by a large margin.

e Provide an in-depth analysis of guideline-specific performance of the generative
and discriminative scoring functions, and discuss what makes a guideline hard to

detect.

7.2 RELATED WORK

The importance of identifiers in source code has long been recognized in software en-
gineering literature. Identifiers typically constitute up to 70% of the code (Deissenboeck
and Pizka 2006), and their quality directly affects program comprehension and main-
tainability (Lawrie et al. 2006; Takang et al. 1996; Fakhoury et al. 2020). In this section,

prior research on the role of identifier quality in code comprehension, automatic renaming

187

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

approaches, and the application of machine learning models, particularly language models,
to code and identifier quality assessment are reviewed. For a more comprehensive review
please refer to Lietal. (2021).

7.2.1 Impact of Identifier Naming on Code Comprehension

Identifiers are important for embedding concepts in communication between developers,
and the choice of identifier names influences the code’s readability and maintainability
(Fakhoury et al. 2020). Comprehending a program plays a central role in many software
engineering tasks such as code reviews, debugging, and maintenance (Brooks 1983). As
code readability strongly influences comprehension time and effort, identifiers, which serve
as semantic beacons, can either ease or hinder the understanding of source code (Siegmund
etal. 2017). Siegmund et al. (2017) demonstrated that well-chosen identifiers significantly
lower the cognitive load of developers by providing meaningful cues about a program’s

purposec.

Studies such as those by Gellenbeck and Cook (1991) and Lawrie et al. (2006) further
confirm that full, meaningful names are more comprehensible than abbreviated or non-
intention-revealing ones. Takang et al. (1996) empirically evaluated the combined effect
of identifier namingand comments on comprehension, and conclude that poor-quality
identifiers complicate code understanding. Cognitive load theory posits that high cog-
nitive load negatively affects performance and increases the likelihood of errors (Sweller
2011; Chen etal. 2016), which is also the case when developers are faced with poor-quality
identifiers (Fritz et al. 2014; Andaloussi et al. 2022). Empirical studies using brain imag-
ing techniques such as functional Near Infrared Spectroscopy (fNIRS) and functional
Magnetic Resonance Imaging (fMRI) have confirmed that lexical inconsistencies and
low-quality identifiers significantly increase developers’ cognitive load (Fakhoury et al.
2020; Siegmund et al. 2017).

7.2.2 Naming Guidelines

To address the challenges posed by low-quality identifiers, researchers have proposed nam-
ing guidelines to help developers write better identifiers (Butler et al. 2010; Arnaoudova et
al. 2016; Hilton and Hermans 2017). These guidelines provide precise rules for construct-
ing identifiers, including syntax guidelines (how identifiers are formatted), vocabulary
guidelines (word choice), data type guidelines (including data type names in identifiers),
and method name guidelines (Hilton and Hermans 2017). Studies have demonstrated
that adherence to naming guidelines improves code comprehension (Lawrie et al. 2006;
Takang et al. 1996). For example, Lawric et al. (2006) found that full identifier names
are more comprehensible than abbreviated ones. Similarly, Takang et al. (1996) mea-
sured the combined effect of identifier naming and comments on developers’ ability to

understand code, concluding that meaningful identifiers significantly aid comprehension.

188

7.2. RELATED WORK

While various readability metrics have been proposed (Buse and Weimer 2010), stud-
ies on identifier quality have emphasized that readability cannot be solely captured by
syntactic measures. Butler et al. (2010) find that “the multifactorial nature of identifier
quality makes measurement problematic”. This chapter takes a step towards addressing
this challenge by providing a dataset of identifiers annotated with respect to adherence to

the aforementioned guidelines.

7.2.3 Automatic Improvement of Identifier Names

Given the importance of high-quality identifiers, various approaches have been proposed to
automatically improve identifier names. These can be broadly categorized into rule-based

and learning-based methods.

RULE-BASED APPROACHES

Early rule-based approaches such as those by Caprile and Tonella (2000) standardized
identifier names by imposing lexicon constraints and term sequencing rules. Similarly,
Deissenboeck and Pizka (2006) proposed a formal model based on bijective mappings
between concepts and names. Later works explored the harmonization of identifier names
through an analysis of variable assignments (Thies and Roth 2010), and tools like CREN
(Jablonski and Hou 2007) and SMART FORMATTER (Corbo et al. 2007) applied coding
style rules learned from existing source code to code in an IDE. However, these techniques

are often limited to specific coding styles or do not generalize well to different contexts.

LEARNING-BASED APPROACHES

More recent approaches use data-driven machine learning, particularly language models, to
improve identifier names. Hindle et al. (2012) introduced the concept of the naturalness
of software and found that code is repetitive and predictable, even more than natural
language. Allamanis et al. (2018) found “software is a form of human communication;
software corpora have similar statistical properties to natural language corpora; and these
properties can be exploited to build better software engineering tools”. For example,
NATURALIZE (Allamanis et al. 2014) used a n-gram language model to detect and suggest
corrections for surprising or inconsistent identifier names. The authors use a language
model’s likelihood as a surprise metric to detect refactoring opportunities, which is similar
to the approach in this chapter. However, they don’t test the adherence of that score to
naming guidelines. Other work has applied n-gram language models to detect anomalies
in code, and point out that improbable code may indicate bugs (Ray et al. 2016), or
by refining the NATURALIZE model to produce more consistent identifiers (Lin et al.
2017). However, Lin et al. (2017) found that the aforementioned approaches to identifier
renaming still generate a high number of false positives, which may hinder their practical

application and emphasizes the need for a better indicator of identifier quality.

189

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

While these early language models were primarily n-gram-based, more recent work has
shifted towards deep learning approaches. CONTEXT2NAME (Bavishi et al. 2018) and
DIRE (Lacomis et al. 2019) applied neural networks to infer meaningful variable names in
decompiled code. However, these models mainly focus on recovering meaningful names
from obfuscated or unclear contexts, rather than assessing adherence to established naming
guidelines. Other works have focused on method naming (which has been detailed in
Section 3.2), e.g, Allamanis et al. (2015) introduced a neural context model for suggesting
accurate method and class names. Liu et al. (2022) proposed GTNM, a transformer-
based model that considers local context, project-specific context, and documentation to

recommend method names.

TRANSFORMER MODELS FOR IDENTIFIER QUALITY AND NAMING Therise
of transformer-based LMs has significantly advanced the field of code understanding
and generation (see Section 4.2). Large pretrained models such as SYNTAXPT from
Chapter 4, CODEBERT, CODET's, and INCODER (Fried et al. 2023) have been applied
to various software engineering tasks (Ciniselli et al. 2022), including identifier renaming.
For example, Mastropaolo et al. (2023) evaluated transformer LMs for automatic variable
renaming and demonstrated their potential for detecting and refactoring variable names.
However, they primarily assessed the correctness of the renamed identifier by comparing
it to refactored names in GitHub repositories, without investigating how well the models
conformed to coding guidelines. Their work offers limited insight into why identifiers
were refactored and which properties make bad identifiers easy or difficult to spot, which
is addressed in Section 7.6.3. Chen et al. (2022) proposed VARCLR, a method that learns
semantic representations of variables via contrastive learning, to capture the similarity
between identifiers. However, the authors encoded variables without additional context,
which may limit the model’s ability to capture the full meaning of an identifier. Similar to
this chapter, Sengamedu and Zhao (2022) evaluated the probabilities from LMs for general
code quality identification, but focused on issues such as token-level errors or unnatural
code. It is similar in the use of a LM’s likelihood or perplexity to detect code quality
problems, but the authors did not specifically evaluate adherence to coding conventions or
identifier naming guidelines. Evaluating the likelihood on a sub-token level of a decoder
model is not directly comparable to the approach of this chapter in which a// occurrences
of an identifier are masked. Their approach rather detects variable misuses, where the
wrong variable is used at a certain position. This is something our approach does not

consider.

As argued above this chapter extends prior research by directly addressing the challenge of
evaluating identifier quality based on adherence to established naming guidelines. While
previous studies have demonstrated the potential of using language models for identifier

renaming or assessing code quality (Mastropaolo et al. 2023; Hindle et al. 2012), none
g g q y p

190

7.3. APPROACH

have systematically examined how well language models detect violations of naming

conventions.

7.3 APPROACH

This section describes the approach to analyze the quality of identifiers in code using the
SYNTAXPT LM from Chapter 4 in two self-supervised strategies. Recap, that the model
first tokenizes code into input tokens ¢ = (c(1), ..., ¢(™) using the syntax-tree aware
BPE (see Section 4.5.4). This allows to utilize the syntax tree to detect all occurrences of an
identifier. Each identifier may not only consist of a single token, but rather a multi-token
subsequence of ¢, since the BPE tokenizer may split it into multiple tokens. So an identifier
is represented by a sequence of tokens, that can appear multiple times in ¢. Let I denote

the set of all identifiers appearing in c.

The model has been pretrained with a multi-task denoising objective, in which sub-
sequences Y7, ..., Y} of ¢, such as identifiers, have been replaced by sentinel tokens
to form a noised input sequence x, defined in Equation (4.3). The input sequence &
is fed into the encoder, which produces an intermediate output sequence of embed-
dings z. Based on these embeddings, the decoder produces an output sequence y =
(zmesk)y oYy @ ... @ (xMeskk)) @ Y, @ (2(¢°9)) (see Equation (4.4)). Thereby,
the model autoregressively predicts the likelihood p(y® | y(<"), x) of cach token y*)
of the target sequence y. In the case of identifier deobfuscation, the model predicts the
likelihood of each token of an identifier. The model is trained by optimizing its parameters

0 to maximize the following objective function:
1 m
log£(8) = —> logp(y™ | y<?) 7.1
g L£(6) m;ng(y |y~ z) (7.1)
Note that this is Equation (2.16) slightly rewritten to be maximizing log probability

instead of minimizing the negative log-likelihood loss.

Given this pretrained model that is able to predict identifier names, this chapter proposes

two different strategies to use the model to estimate the quality of an identifier:

1. The generative rating, visualized in Figure 7.1a, uses the likelihoods of the LM
directly,

2. 'The discriminative rating, shown in Figure 7.1b, fine-tunes a classifier that uses
the encoder output 2 to distinguish between real and fake identifiers inserted from a
FASTTEXT model (Bojanowskictal. 2017). This model is called SYNTAXPT giscriminative

from now on.

191

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

Both strategies are self-supervised and therefore do not require labeled training data. The
details of each approach will be discussed in Sections 7.3.1 and 7.3.3, with a probabilistic

analysis provided in Section 7.3.2.

7.3.1 Generative Rating

Given that the model has been trained to deobfuscate identifiers, the likelihood of an
identifier within a given context can be directly computed from the model’s output proba-
bilities. Let I C I denote the subset of all identifiers that will be obfuscated in 2. Consider
identifier I € T’ with tokens Y; representing the subsequence (y9), ...yl /)) of y.
In this chapter, the log-likelibood of identifier I is defined as the average log-likelihood of

its tOkCIlS in the Output Sequence:
logL,(Y;,) = ———— 1 < xr 7.2
og 0(Iz) j/] 1 p ng(y |y)) ()

Given this definition of the log-likelihood of an identifier one can see that it depends
on two major factors which define how much context is available to the model when
predicting an identifier: the construction of (1) the input sequence &, and (2) the output
sequence Y. First the total number of hidden identifiers in x strongly impacts the log-
likelihood of an identifier. The more identifiers are obfuscated, the less information is
available to the model from other identifiers, and the less confident are its predictions.
Moreover, the position of an identifier in the output sequence influences its likelihood,
since the autoregressive transformer decoder can attend to previously generated tokens.
During deobfuscation, the model can use identifiers 1 (<%) a5 additional context when
predicting identifier / (), This can lead to higher log-likelihoods for identifiers that occur

later in the sequence.

SCORES

This section present three scoring functions that utilize the log-likelihood of an identifier
to estimate its quality. Subsequently, two different masking strategies will be introduced
to address the aforementioned context factors. Given that code quality analysis should be
reasonably fast, performance considerations are essential when developing these scoring

functions. Thus, the computational requirements for each method will be discussed.

PERPLEXITY Perplexity is a common measure used to evaluate LMs. Jurafsky and
Martin (2009) define the perplexity of an LM on a test set as the inverse probability
of the test set, normalized by the number of words. Due to the inverse relationship
between perplexity and likelihood, higher perplexity indicates lower probabilities for the

individual tokens. From an information theory perspective, it is closely related to entropy

192

7.3. APPROACH

and measures how “surprised” the model is by the test set, or, in other words, the degree
of uncertainty the model has in its predictions. Perplexity has the advantage of being
independent of the length of the given sequence.

With the hypothesis that low-quality identifiers are less likely, perplexity can be used to
directly assess the quality of an identifier I*. The perplexity-score is defined as:

Perplexity(I°) = exp(— IogLe(Yi, x)) (7.3)

When this score is high for an identifier, it indicates that the model is surprised by the
identifier, and it is likely to be of low quality. This perplexity-score requires only a single

forward pass through the model.

MAX-TOKEN PERPLEXITY With the intuition that a single suspicious part of an iden-
tifier can make the whole identifier bad, another generative scoring function is introduced
that computes the perplexity of each token in the identifier individually and returns the
maximum perplexity of all tokens in the identifier. The max-token perplexity is defined as:

MaxTokenPerplexity(I') = kE{I?an/} exp(—logp(y® | y(<F)) (7.4)

Recap that the identifier 17 is represented by the subsequence (y9), . .., y")) of .

LOG-LIKELIHOOD RATIO In complex contexts, the model might distribute the prob-
ability mass among a large set of possible identifiers. In such cases, high perplexity or
low probability of an identifier does not necessarily indicate low quality, as many other
identifiers may be equally (un)likely. These scenarios can be detected by analyzing whether
the LM finds another identifier much more plausible, in the place of 1), the identifier to
score. This analysis is performed in a third scoring function: first, the most likely identi-
fier in-place of I(¥) is generated', then the log-likelihood ratio of the existing identifier

compared to the best one is analyzed.

Formally, when quantifying identifier 1 (05 tokens Y;, and Yl is the best identifier pre-
dicted by the model in place of Y5, the log-likelihood ratio score is defined as:

. logL,(Y;
LikelihoodRatio(I*) = osly (Vi 2) (7.5)

a logLH (}fh CL’)

This score is high when the identifier is suspicious. However, it is computationally more

demanding than the perplexity scores since it requires to first generate the most likely

"Beam search with width 5 is used when generating identifiers.

193

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

def [T (n):

if n <= 1:
return n
return ENSM(n - 1) + GIESSR(n - 2) MASK1 it J
J

(a) Noised input with mask-single strategy. (b) Output.

cer | RN D

if AR <= 1:

return fib
return | R - » + YR - » :

(c) Noised input with mask-all strategy. (d) Output.

Figure 7.2: Example of identifier deobfuscation with different masking strategies. In (c) the mask-all strategy is used,
where every identifier is obfuscated in the context. The model is trained to predict the concatenated output sequence
with the original identifiers. Note that in this setting when predicting identifier fib the identifier n is also hidden, but
when predicting n identifier fib is visible to the model. In (a) the mask-single strategy is used, in which only a single
identifier is obfuscated in the context. To score all identifiers this strategy is applied to each identifier individually.

identifier—which itself requires multiple forward passes through the model—and then

another forward pass to compute the log-likelihood of the given identifier.

MASKING STRATEGIES

As outlined above, the amount of masking in the context and the order of identifiers
in the output sequence are two factors that strongly influence the log-likelihood of an
identifier. To address these factors, two separate masking strategies are explored in this
section, both of which can be used in combination with all of the above scoring func-
tions. The masking strategies are visualized in Figure 7.2 and described in the following.

Table 7.1 lists the requirements for all combinations of scoring and masking strategies.

Likelihood
Perplexity
Ratio
MASK-SINGLE The maximum amount of con- c e c o
textual information is provided to the model when
. Mask-All 1 0 1 n
only a single identifier is obfuscated, i.e., |I'| = 1.)
Mask-Single 7 0 n n

To compute a score for every identifier in I using

this masking strategy, the scoring method must be Table 7.1: Number of single forward passes (F)

applied multiple times—once for each identifier. "¢ generations (G) necessary for each combi-
R . . nation of scoring and masking method for a file
This approach allows the scoring function to ex- yitn 1 identifiers, ie. n = [I|.

ploit other identifiers to draw conclusions about

the hidden identifier.

194

7.3. APPROACH

However, using contextual information may in-

troduce an unwanted bias into the model when estimating identifier quality. For example,
when masking an identifier in a piece of code with low-quality identifiers, where all identi-
fiers are single characters, the most likely identifier for the LM is also a single-character
identifier. The goal is to estimate the quality of an identifier, not merely its goodness-
of-fit with other identifiers in its context. A countermeasure is to reduce the amount of

contextual information available to the model.

Mask-ALL This is explored in the mask-all method, in which all available identifiers
are hidden in @, making I’ = I. Since the model can only attend to identifiers that appear
earlier in the output sequence, as previously outlined, this approach provides limited
contextual information to the model. However, it is also the fastest masking scheme, as

the log-likelihood for every hidden identifier can be computed in a single forward pass.

7.3.2 Probabilistic Interpretation

The goal with identifier assessment is to develop a detector for low-quality variables, which
frames the task as a binary classification problem. Given supervised training data of code
contexts &, in which identifiers have been annotated whether they are of low-quality and
belong to class C=1, or are of high-quality and belong to class C'=0, a binary classifier
can be trained to predict the class of an identifier I given its context . This corresponds

to estimating the conditional probability P(C=1 | I, x).

Note that the generative approach introduced above estimates the overall probability of
an identifier given an obfuscated context P(I | &) (compare Equation (7.2)). To examine

this from a probabilistic viewpoint, the posterior probability can be expressed as follows:

P(C=1,1,x)
(C=0,1,z)+ P(C=1,1,x)
(7.6a) (7.6b) (7.6¢)
—— - -
B P(C=1)-P(z | C=1)-P(I | x,C=1)
P(C=0)-P(x | C=0)-P(I | x,C=0)+P(C=1,1,x)

————
(7.6d) (7.6€) (7.6f) (7.6g)

P(C=1|La) =+

(7.6)

The individual terms in the equation above have the following interpretations:

e P(C=1) (Term 7.6a) is the prior probability that an identifier is low-quality. It is

a constant that reflects the distribution of low-quality identifiers in source code.

e P(x | C=1) (Term 7.6b) is the probability of code context & occurring, given
that the identifier is low-quality. For example, poor identifiers are more likely to

appear in poorly written code contexts.

195

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

P(I| z,C=1) (Term 7.6c¢) is the likelihood of an identifier I given the context
x, assuming the identifier is low-quality. The generative approach lacks this term,

as it presumes all code in the training phase to be of high quality.
P(C=0) (Term 7.6d) is the prior probability that an identifier is high-quality.

P(zx | C=0) (Term 7.6¢) is the probability of a given code context & occurring,
given that the identifier is high-quality.

P(I | ,C=0) (Term 7.6f) is approximated by P(/ | x) in the generative
approach, as the assumption is made that all code in pretraining is high-quality.
However, this is a poor approximation, as not all identifiers in the training data are

necessarily of high quality (training data is crawled from GitHub at a large-scale).

Term (7.6g) is same as product of Terms (7.6a) to (7.6¢).

These terms have three major factors, which affect the probability of an identifier being

low-quality, which are not directly captured in the generative approach:

196

1. The generative approach assumes that all code in the pretraining phase is high-

quality (Term 7.6f), since P(I | &, C=0) ~ P(I |). This assumption may not
hold for arbitrary software projects. To ensure this approximation is as accurate
as possible, it is necessary to select high-quality software projects for pretraining.
Recap that during the collection of the pretraining dataset in Section 4.5.5, quality
filters were used to ensure that only projects with active development and a high
number of stars on GitHub are selected. Only projects that passed these criteria

were used for pretraining the generative model.

Terms (7.6b) and (7.6¢) suggest that low-quality identifiers are more likely to appear
in poor code contexts, and high-quality identifiers in well-written code contexts. For
instance, in a code context where all identifiers are single characters, the likelihood
of an identifier being low-quality is higher than in a context where all identifiers
are meaningful words. This creates a challenge for the generative approach, as it
conflates identifier quality with its contextual likelihood. To mitigate this, different
masking strategies, such as mask-single and mask-all (see Section 7.3.1), are explored
in this chapter to reduce the amount of contextual information available when

computing the log-likelihood of an identifier.

Term (7.6¢) highlights that the generative approach does not model the counterclass,
i.e., it does not discriminate between good and bad identifiers. This is an inher-
ent limitation of the generative approach, which the next section will address by

introducinga discriminative approach.

7.3. APPROACH

7.3.3 Discriminative Rating

As discussed above the generative approach assumes that all code in the training data is of
high quality and lacks a counterclass model for poor identifiers. During pretraining, the
model does not learn to differentiate between good and bad identifiers. The generative
scoring function computes the likelihood of an identifier given a certain context, which
works well when bad identifiers are unlikely. However, this approach may not always yield
the desired results, and a model that estimates the counterclass (C=1) directly can be

preferable.

To address this issue and to develop a model that estimates the posterior P(C=1 | I, x)
directly, this section introduces a discriminative approach. An encoder is trained on a
binary classification problem to achieve this goal. Given the scarcity of annotated data
for good and bad identifiers, the model is trained in a self-supervised manner. A weaker
LM (FASTTEXT) is used to sample weaker but plausible versions of identifiers, similar to
discriminator language models such as Electra (Clark et al. 2020) in NLP and CODEBERT,
which are trained to detect replaced tokens (see Section 4.2). However, in the proposed
discriminative approach full identifiers are replaced by supposedly worse but still realistic

versions, instead of replacing individual tokens.

An unsupervised word embedding (FASTTEXT) is trained on the identifiers in the train-
ing data (Bojanowski et al. 2017). For each real identifier I, alternative identifiers are
sampled from the top five most similar identifiers, with the probability of selection pro-
portional to the cosine similarity between the FASTTEXT embeddings. For instance,
TRAIL_RANGE might be replaced with RANGE , ALLOWABLE_ERROR with ERROR_CODE ,o0r setModel

with setRepeatMode . Details on dataset creation are provided in Section 7.4.

Once the FASTTEXT model has been trained, the approach operates similarly to the
generative approach, but instead of replacing identifier subsequences Y; with mask tokens
to create a noised context &, the context is created by replacing identifier subsequences
with other identifiers Y. Let I denote the set of identifiers in &, where some are original
and others have been replaced by the FASTTEXT model. After processing the noised
sequence through the transformer encoder to obtain output states z € R™>d 4 single
contextualized embedding () € R? for every identifier I(¥) € Tis computed the follow-
ing way: Since identifier 7(*) may consist of multiple tokens and occur at several positions
in the noised input. To aggregate the individual token representations corresponding to
1), max-pooling is employed (Goodfellow et al. 2016). Let J () denote the set of token
indices corresponding to the identifier I(*), The identifier embedding is then computed as

s = max (z(j)) (7.7)
jeJ@

197

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

Dataset Train Validation Test
Pretraining Dataset 32M 50.000 -
Fine-Tuning Dataset 64,474 13,911 13,854
Manually Annotated Dataset - - 1,770

Table 7.2: The number of code files in the training, validation, and test sets for each dataset used in this chapter.

where the max operation is applied element-wise across all dimensions of the token repre-
sentation vectors z/), Max-pooling is used here because the quality determination of an
identifier from its individual tokens is invariant to their positions, and the strongest signal

indicating a suspicious identifier is desired.

Next, the identifier embedding s(*) is fed into a binary classification head that estimates
P(C=1] I, x). Following common practice the classification head projects the identifier
embedding to a scalar probability using two linear layers, with a ReLU activation function

in between and a sigmoid activation function at the end:
P(C=1]1% x)=o(ReLU(s") - A) - B) (7.8)

Here, A € R%9and B € R¥*! are the weight matrices of the two linear layers, and &
is the sigmoid function. The model is trained using the binary cross-entropy loss:
1 X A _ A ,
£(0) = =5 > (1105 + (1 =y logl = 50)) (79)

=1

where N is the number of identifiers in the batch, 3/(*) is the ground truth label for identifier
no. i,and) = P(C=1| I),) is the predicted probability that the identifier is bad.

7.4 DATASETS

The pretraining dataset used for training the generative model is described in Section 4.5.5.

This section introduces two new datasets:

1. 'The fine-tuning dataset for training the discriminative models. This dataset consists

of Java files in which identifiers have been partially replaced by a weak AL

2. A smaller, manually-annotated evaluation dataset has been constructed to increase
confidence in the quality of the considered identifiers. In this dataset, identifier

quality was manually inspected and matched against coding guidelines.

Precise statistics of all datasets used in this chapter are provided in Table 7.2.

198

7.4. DATASETS

7.4.1 Fine-Tuning Dataset

To fine-tune a transformer encoder model to discriminate between good and bad identifiers,
a dataset was constructed in which identifiers were replaced with semantically similar but
less meaningful substitutes sampled from a weaker Al as outlined above. This section

describes the construction of this fine-tuning dataset for the discriminative model.

FASTTEXT MODEL

A good candidate for a weak Al is to use static word/identifier embeddings (Mikolov
et al. 2013b). These are trained unsupervised on large amounts of text and have been
frequently used in NLP until the rise of contextualized transformers. Given a word
embedding model, similar identifiers can be retrieved by performing a nearest neighbor
search based on the cosine similarity between their embeddings. In this chapter the
FAsTTEXT word embedding model is used, since it incorporates subword information to
obtain an embedding for words not seen during training (Bojanowski et al. 2017). This is

particularly useful for identifiers, given that they are often composed of multiple individual

words.
1 [...] height toBlocking first response getResult response getResult getMiners Exception e
< log error e getMessage e Collections emptylList [...]
2 [...] sendResult rocketMQTemplate syncSend UserSmsCodeSaveMessage TOPIC message
< SendStatus SEND_OK equals sendResult getSendStatus log error [...]
3 [...] member setPassword pwd member setCreateTime now member setUpdateTime now member
—s setChannelld loginWay member setPlatform MemberConstant [...]
. J

Figure 7.3: For the FASTTEXT training, the files were preprocessed to contain only their identifiers, separated by spaces
each code file becomes a line.

To train the word embedding model FASTTEXT’s released software package (Joulin et al.
2016) was used. The training set was constructed from Java files of the validation set
of the pretraining dataset (see Section 4.5.5). In each code file all non-identifier tokens
were discarded, and the remaining identifier mentions separated by spaces, as shown in
Figure 7.3. In total, the training data for the word embedding consisted of 1,809,110
identifier mentions. The model was trained for five epochs using the CBOW approach
with a learning rate of 0.01, an embedding dimensionality of =100, a context window

of size 5, and minimum and maximum subword sizes set to 3 and 6, respectively.

After training, the model stores word embeddings for every identifier seen during training
in a matrix E€RIVI*4 where V is the set of unique identifiers in the training data and
d is the embedding dimensionality. Additionally, the model can provide embeddings
for unseen identifiers by averaging the embeddings of their subwords. This matrix is

normalized to unit length along the embedding dimension, so that the cosine similarity

199

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

between two embeddings E; and E; can be computed as their scalar product. Here, the
embedding at index ¢ in the embedding matrix E belongs to the identifier v,

DATASET CONSTRUCTION

Given the FASTTEXT model, the fine-tuning dataset of approximately 92k Java files was
created. The files used for this dataset have not been in the training set of the pretraining
dataset (see Section 4.5.5 for details about the pretraining dataset). Given a code file, a
subset of its identifiers I’ C I was selected to be replaced by similar identifiers, so that
II'| < 0.2 |I]. The replacement I’ for each identifier I € I’ was sampled from the top
five most similar identifiers to I according to the FASTTEXT model.

Formally,letw € R% be the normalized embedding of the existing identifier 1, which does
not necessarily have to be in the FASTTEXT training data and thus in E, since FASTTEXT
is a subword embedding model. The cosine similarity between w and all embeddings in

E is computed, and the indices of the top five most similar identifiers are selected:

argtopsie{lw"'w} (EfL, . w) (710)

Then one of these five identifier indices is sampled with a probability proportional to the
cosine similarity, P(i) o« E;. - w. Let i’ be the sampled index, then the replacement
identifier I’ = V@), All occurrences of I in the code file are replaced by I’. This process

is repeated for each identifier in I.

For example, with the FASTTEXT model the identifier user may be replaced with users,

saveUser , or User . Key is the idea that the replaced identifiers are of lower, but sufficient
quality to be plausible in real-world code. Note that the replacement users directly
violates the guideline 15 of using singular nouns for variable names, while saveuser may
be misleading in the given context (no user is saved, but handled differently) and thus
violates guideline 11. To validate that the identifiers sampled from FASTTEXT are worse
than the real identifiers, but at the same time more plausible than assuming a uniform
distribution, a small blind annotation study was conducted that assessed the quality of
the replacements. A test person was asked to compare 100 real and sampled FASTTEXT
identifier pairs without knowing which was the original and which the replacement. The
test person found the replacements to be worse in 86% of cases, comparable in 12% of
cases, and better in 2% of cases. The same study was conducted for random replacements
without FASTTEXT. Here the test person found the replacements to be worse in 99% of
cases and comparable in 1% of cases. This indicates that the FASTTEXT model provides

plausible but weaker replacements for identifiers.

200

7.4. DATASETS

7.4.2 Mamm[[y Annotated Dataset

The manually annotated test dataset was constructed to evaluate models that assess the
quality of the identifiers based on ground truth derived from coding guidelines. Annotators
were given a code file, a subset of identifiers occurring in the code file, and a random
guideline for assessing the quality of the identifiers. They were asked to either correct the
identifier if it did not meet the guideline or to confirm that the identifier was correct and
create a plausible but violating version if possible. This process of creating the dataset is

now described in detail.

Data COLLECTION

Project Version Project Version
elasticsearch 8.3.3 clojure 1.12.0
Android-Universal-Image-Loader 1.9.5 dropwizard 2.11
libgdx 1.11.0 okhttp 5.0.0
storm 2.4.0 presto 0.274
zxing 3.5.0 metrics 4.2.10
netty 4.1.79 RxJava 3.15
bigbluebutton 2.5.4 spring-boot 2.7.2
junit 4.13.2 Bukkit 1.7.9
retrofit 2.9.0 nokogiri 1.13.8

Table 7.3: The software projects and versions used in the manually annotated dataset, from which 59 Java files were
randomly selected and annotated.

First, a collection of Java code files was selected from 18 top active GitHub projects that
spanned various domains, measured by the number of watchers, forks and collaborators.
The complete list of projects including the specific versions is shown in Table 7.3. The files
should be self-contained and be able to be understood without knowledge of the entire
project, and could be comprehended in a reasonable amount of time, given that during
annotation all identifiers in the code files were considered. Therefore, a set of rules was

applied to select the files: A code file should have
e no more than 5 imports from the Java Class Library,
e no more than 5 imports from external sources,
e at least one function with a minimum of 10 lines to exclude trivial data classes,
e between 100 and 250 LOC.

Apart from these rules the files were chosen randomly from the projects. After the selection,
the files were manually shortened to ~90 LOC by removing comments, empty lines, and

irrelevant or hard to understand segments.

201

https://github.com/elastic/elasticsearch/commit/801fed82df74dbe537f89b71b098ccaff88d2c56
https://github.com/nostra13/Android-Universal-Image-Loader/commit/9da1b1ad1dd61b8df1571d7b6dc1308f19d5d40d
https://github.com/libgdx/libgdx/commit/c8cdf57d2e21dfbb14ebf8ee5ea4540db73d17ad
https://github.com/apache/storm/commit/a432e99bca526886655cc1d5b2453a09b302b5ca
https://github.com/zxing/zxing/commit/eb76d0283c49c2b1c71ff2b438e42c0882a3b62b
https://github.com/netty/netty/commit/aa59245955f5121c4230d46c41a4b7f55e0c9ba7
https://github.com/bigbluebutton/bigbluebutton/commit/5e24c3a58cd1bbbb9425232592a476cd461605bc
https://github.com/junit-team/junit4/commit/05fe2a64f59127c02135be22f416e91260d6ede6
https://github.com/square/retrofit/commit/bd33a5da186aa6f5365e78e27eb0292b1b8b1bff
https://github.com/clojure/clojure/commit/52bb71bb615e2ad2cd75b3d47fce541d5b37c1ec
https://github.com/dropwizard/dropwizard/commit/d2455b5369c8d9391e81e697f2354246532d0d5e
https://github.com/square/okhttp/commit/956664f11dea088e7209504aa4eafb4309a808cd
https://github.com/prestodb/presto/commit/f87057cd5b0cf6e4c230972e42a9384d48cd3164
https://github.com/dropwizard/metrics/commit/adf9ed08d5f0d7e14b5ed64782a65a08f3e168e4
https://github.com/ReactiveX/RxJava/commit/88453711ec1b0e03eb7ba02d42b51fe1330b3a73
https://github.com/spring-projects/spring-boot/commit/6f89aca00c3aec6f9587eb3807270c4854bddbd7
https://github.com/Bukkit/Bukkit/commit/9b2d3d1a5a303c393d89cd27ff12fadd589b37f1
https://github.com/sparklemotion/nokogiri

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

ID Description Confirming Example Violating Example

1 Apply standard case with rigorous consistency. databaseName databaseNAME [1,2]

2 Use dictionary words and no (uncommon) abbreviations. databaseName dbNm [1,2]

3 Expand single-letter names (except for control variables). databaseName d [1,2]

4 Only use one underscore at a time. database_name database__name [2]

5 Only use underscores between words. database_name _databaseName [1,2]

6 Name constant values. BOILINGPOINT ONEHUNDRED [2]

7 Limit name character length to 20. databaseName databaseIdentificationName [2]

8 Limit name word count to four. databaseName newDatabaseNameOfStudent [1, 2]

9 Qualify values with suffixes. studentCount countStudent [2]

(a) Syntax Guidelines

ID Description Confirming Example Violating Example

10 Use a descriptive name that conveys a recognizable concept. databaseName foo [2]

11 Be precise by identifing specific information and purpose. databaseName name [2]

12 Use standard language, avoid humor and abiguity. terminate whack [1, 2]

13 Use a large vocabulary: replace phrases with specific terms. learningPerson student [2]

14 Don’t use prefixes or suffixes that encode the data type. databaseNameString databaseName [2]

(b) Vocabulary Guidelines

ID Description Confirming Example Violating Example

15 Use singular names for values. User user; User users; [2]

16 Use plural names for collections. User[] users; User[] user; [2]

17 Use Boolean variable names that imply true or false. isFinished finish [2]

18 Use positive Boolean names. isFinished notRunningAnymore [2]

19 Attribute name and type should be consistent. int studentCount; String studentCount; [2, 3]

(c) Data Type Guidelines

ID Description Confirming Example Violating Example

20 Use a verb-phrase name. createUser(): User userCreation(): User [2]

21 Don’tuse get, is or has prefixes for methods with side- getUser(): User getUser also creates User [2,3]
effects.

22 Onlyuse get prefix for field accessors that return a value. getUser(): User getUser fetches an API [2,3]

23 Onlyuse is and has prefixes for Boolean field accessors. isActive(): Boolean isActive(): void [2, 3]

24 Only use set prefix for field accessors that don’t return a setName(name): void setName(name): String [2,3]
value.

25 Use transformation verbs only for methods that return a trans- toString(): String toString(): void [2,3]
formed value.

26 Expecting and getting single instance. getUser(): User getUser(): User[] [2, 3]

27 Expecting and getting a collection. getUsers(): User[] getUsers(): User [2,3]

28 Method name and return type should not contradict. getUser(): User getUser(): Database [2, 3]

(d) Method Guidelines

Table 7.4: Guidelines used in this chapter to assess the quality of identifiers. Guidelines annotated with [1] have been
taken from Butler et al. (2010), [2] from Hilton and Hermans (2017), and [3] from Arnaoudova et al. (2016).

202

7.4. DATASETS

CoDING GUIDELINES

The coding guidelines offer a set of rules for naming identifiers. To construct the dataset,
28 guidelines originally proposed by Hilton and Hermans (2017), Butler et al. (2010)
and Arnaoudova et al. (2016) were selected. The guidelines were aggregated by merging
similar guidelines and removing overly specific ones, which could rarely be applied to the

code samples. The complete list of guidelines used in this chapter is shown in Table 7.4.

The guidelines can be divided into four categories: syntax, vocabulary, data type, and
method naming. Nine syntactical guidelines, shown in Table 7.4a, focus on casing, the
use of underscores, and the length of identifiers. This can be seen as the most basic level
of identifier quality, as many of these guidelines could also be checked by rules without
semantic understanding of the code. A more advanced level of identifier quality is covered
by the five vocabulary guidelines, shown in Table 7.4b, which include guidelines for
the use of dictionary words, the avoidance of abbreviations, and the use of descriptive
names. Adhering to these guidelines enables the developer to understand the purpose
of the identifier without having to look up its definition. Table 7.4c shows the five data
type guidelines, which focus on the consistency of names and types, for example by using
singular names for values and plural names for collections. For a developer these guidelines
avoid confusion and make the code easier to understand. Finally, the nine method naming
guidelines, shown in Table 7.4d, focus on the naming of methods and are only applicable
to method names. These guidelines ensure that the method name reflects the method’s

purpose, and that the method name is consistent with the return type.

Even though some guidelines of lesser difficulty can be detected by rules, such as “Only
use one underscore at a time”, more complex ones require semantic understanding of the
functionality of the methods, such as “Use transformation verbs only for methods that return
a transformed value”. Nonetheless, it is interesting to investigate how well an LM adheres
to both types of guidelines. This provides an overall impression of how well LMs capture

the quality of identifiers.

ANNTOTATION PROCESS

Given the code files and the 28 selected guidelines the annotation process was conducted
in two phases by six developers. In the first phase, every identifier in every code files was
annotated for their conformance with respect to all guidelines. Out of 2143 identifiers

677 (32%) were found to violate at least one of the guidelines.

Next, in the second phase, the annotators were given a code file, a list of random identifiers
from the code file, and a guideline for assessing the quality of the identifiers. They were
asked to either correct the identifiers if it did not meet the guideline (shown in green in
Figure 7.4¢) or to confirm that the identifier was correct and create a violating version if

possible (shown in red). When the annotators found the guideline not applicable to the

203

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

96 protected void doXContent(XContentBuilder builder, Params params) throws IOException {
97 builder.startObject(ScriptFilterParser.NAME);
98 builder.field("script", script);
99 if (this.params != null) {
100 builder.field("params", this.params);
101 }
102 if (this.lang != null) {
103 builder.field("lang", lang);
104 }
105 if (filterName != null) {
106 builder.field("_name", filterName);
107 }
108 if (cache != null) {
109 builder.field("_cache", cache);
110 }
111 if (cacheKey != null) {
112 builder.field("_cache_key", cacheKey);
113 }
114 builder.endObject();
115}
(a) Code
Guideline
Name Use dictionary words.
Description Spell words out in full and define abbreviations for the bounded context.
Violating Example(s) acc, pos, mod, auth, appCnt
Details Only use correctly-spelled dictionary words and abbreviations. Make exceptions for id and

documented domain-specific language/abbreviations. Spelling mistakes can render names
ambiguous, and result in confusing inconsistency. Abbreviations introduce a different kind
of ambiguity that the original programmer does not see because they know which word the
abbreviation stands for, even if multiple words have that same abbreviation.

(b) Guideline
Identifier Violation Correction
filterName filName
lang language
endObject
builder bldr

startObject sObj

cacheKey cachek

(c) Identifier

Figure 7.4: The annotation process of the manually annotated dataset. The annotators were given the code snippet in

7.4a, the guideline in 7.4b, and a list of random identifiers of the file to annotate, shown in 7.4c. The annotators were

asked to annotate at least 5 identifiers either by correcting an identifier that violates the guideline (shown in green in

7.4c) or by creating a violation (red). Thereby, the annotators could also skip identifiers, if they found the guideline not

applicable.

204

7.4. DATASETS

-~
1 public abstract class Filter {

public abstract boolean shouldRun(Description description);
public abstract String describe();

2
3
4
5
6 public void apply(Object FilterRunner) {
7 if (1(filterRunner instanceof Filterable)) {
8 return;

9

}
10 Filterable filterable = (Filterable) filterRunner;
11 filterable.filter(this);
12}

14 public Filter intersect(final Filter otherAcceptedTests) {

1 public abstract class Filter {

public abstract boolean EHGHUGMEGR (Description description);
public abstract String NG () ;

2
3
4
5
6 public void apply(Object FilterRunner) {
7 if (!(filterRunner instanceof Filterable)) {
8 return;

9

}
10 Filterable filterables = (Filterable) filterRunner;
11 filterables.filter(this);
12 1}

14 public Filter |GEEINEERSEEEUON(final Filter otherAcceptedTests){

15 if (otherAcceptedTests == this || otherAcceptedTests == ALL) { 15 if (otherAcceptedTests == this || otherAcceptedTests == ALL) {

16 return this; 16 return this;

17 } 17 }

18 final Filter theseAcceptedTests = this; 18 final Filter theseAcceptedTests = this;

19 return new Filter() { 19 return new Filter() {

20 public boolean shouldRun(Description description) { 20 public boolean EHGUIMNRGA(Description description) {

21 return theseAcceptedTests . shouldRun (description) && 21 return theseAcceptedTests . ERGUIENEGA (description) &&
< otherAcceptedTests. shouldRun (description); < otherAcceptedTests. SHOUIENEGR (description);

22 } 22 }

23 23

24 public String describe() { 24 public String IEDESERISEE() {

25 return theseAcceptedTests.describe() + " and " + 25 return theseAcceptedTests . IEDESEMIBEE() + " and " +
< otherAcceptedTests.describe(); < otherAcceptedTests . DESEmBE () ;

26 } 26 }

27 1B 27 }

28} 28 }

29} 29}

(a) Original file without guideline violations. (b) Violated version.

Figure 7.5: Example from our dataset. On the left the (shortened) file without guideline violations, on the right the
violated version. We highlighted identifiers by scaling the likelihood-ratio score of the SYNTAXPT model linearly between
1-50. Note that even in the original the model finds some identifiers suspicious (left). However, it spots most guideline
violations (right) but fails to detect the identifier filterables in lines 10-11 (which violates Guideline 13).

identifier, they could skip the identifier. In the example in Figure 7.4c, the guideline is to
use dictionary words and no (uncommon) abbreviations. The annotator corrected the
(violating) identifier lang to language and create a violation for the identifier cachekey
by shortening it to cachek . In total, 865 randomly selected identifiers were annotated
in this way, resulting in 4503 guideline violations and 1700 corrected identifiers?. Every

annotation from this phase was cross-checked by a second person.

EvVALUATION DATASET

Once the annotation process was completed, the code files were first normalized to a high-
quality state, by replacing all identifiers that violated a guideline with the corrected version,
which may not be possible for all identifiers. Next, for each code file 30 random variations
were generated: In each file up to 5 identifiers for which a violating version existed were
sampled and replaced with the violating version. Note that since some identifiers were left
unchanged and violating, they appear in every variation of the file. This is addressed in the
evaluation procedure, described in the next section. In total 1770 densely annotated code
files were generated, each containing up to 5 identifiers that violate a coding guideline and

otherwise only guideline-adhering identifiers.

% An identifier can be annotated multiple times for each guideline.

205

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

7.5 EXPERIMENTAL SETUP

In the preceding sections, multiple strategies to detect guideline violations of code identi-
fiers with LMs were introduced. Additionally, a manually annotated dataset for evaluating
these strategies was described. This section presents the experimental setup used to eval-
uate the effectiveness of the proposed strategies and to compare the performance of the
SYNTAXPT model developed in Chapter 4 against other state-of-the-art LMs. This sec-
tion is structured as follows: first, the research questions are outlined; next, the evaluation
procedure and metrics used for model comparison are formalized in Section 7.5.2; and

finally, the implementation details of the baseline models are provided.

7.5.1 Research Questions

The experiments address the following research questions:

Research Question 7.1: Which of the proposed strategies is most effective for detecting
guideline violations of code identifiers?

This research question aims to evaluate the effectiveness of the different strategies pro-
posed in this chapter for detecting guideline violations of code identifiers with LMs. To
this end, the discriminative approach is compared to the generative approaches. For the
generative approaches, different scoring methods, including perplexity, likelihood-ratio,
and max-token perplexity score and masking schemes that control the amount of con-
textual information available to the model are compared. For a fair comparison all these
experiments are conducted with the same model, SYNTAXPT, which is used as a basis for
both the generative and discriminative approaches. The experiments for the generative
model use SYNTAXPT in a zero-shot setting, while the discriminative approach uses the

same model as a basis for fine-tuning.

Research Question 7.2: How accurately can SYNTaXPT spot guideline violations com-
pared to other state-of-the-art LMs?

To address this research question, the SYNTAXPT model from Chapter 4 is compared
against other state-of-the-art LMs at the time of publication of the original work. Specifi-
cally, the encoder model GRAPHCODEBERT is used as a baseline for the discriminative
approach, and the decoder-based INCODER model is used for the generative approach.
The rationale behind the selection of these models and their implementation details are

provided in Section 7.5.3.

Research Question 7.3: How accurately can the individual models detect different types

of guideline violations?

The evaluation dataset comprises 28 distinct guidelines that assess the quality of identifiers,

which are categorized into four groups: syntax, vocabulary, data type, and method naming,

206

7.5. EXPERIMENTAL SETUP

as shown in Tables 7.4a to 7.4d. This research question aims to determine whether certain
guidelines pose more difficult challenges for the models or reveal patterns in their perfor-
mance. To investigate this, the performance of each model is evaluated on a per-guideline

basis.

7.5.2 Evaluation Procedure

With the annotated dataset and a set of models at hand, it is now possible to evaluate how
well the models can assess the quality of the identifiers or, in our case, detect violations of
the coding guidelines. While this could be evaluated as a classification task using precision
and recall—which measure how many of the predicted violations are actual violations and
how many of the actual violations are predicted by the model—these measures require a
threshold on the models’ scores. Moreover, precision and recall do not consider the order
or severity of the violations, which is important for practical applications. Rather than
using precision and recall, the task is viewed as a retrieval task, i.c., to detect and rank the
most severe potential violations of the coding guidelines. In a practical scenario, these
could then be presented for review to the developer. A retrieval scenario allows us to judge
the quality of a model by the distribution of relevant items (here, guideline violations)
over its ranked result list, without any thresholding and common retrieval metrics like

Mean Average Precision (MAP) can be used for measuring performance.

The standard MAP calculation, as defined in Equation (2.30), is not directly applicable to
the evaluation of the models in this context for two reasons. First, the MAP score should
be calculated for each guideline independently, as some guidelines have more violating
identifiers in the dataset than others. However, different guideline violations can occur
simultaneously in an evaluation sample. Second, the dataset contains multiple versions of
the same original code file since in each version a random selection of identifiers has been
turned violating, while some violating identifiers appear in every version (because they
have no non-violating version, see Section 7.4.2). Hence, the MAP calculation is slightly

modified, which is explained below.

Here, the 1770 evaluation samples are called versions. Each version is a code file in which
some identifiers are already violating and some have been replaced with guideline-violating
substitutes. Given a version v of a code file ¢, the models rank all identifiers in v by
their likelihood of violating any of the coding guidelines. Each guideline G € G is then
evaluated independently:

1

MAP = ——
Gl

> MAP(G) (7.11)

GeG

The MAP score for guideline G considers only versions of the code files in which an

identifier violates G. Additionally, only the identifiers that violate G are considered

207

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

relevant in the result list and identifiers that violate other guidelines are filtered. Let us
denote the set of all code files in which violations of guideline G occur as D¢. Then the
MAP score for guideline G is calculated as:

MAPG(G) = Uch\ > AP(G,c) (7.12)

ceDg

Analogously to the definition of AP in Equation (2.29), the AP is defined based on the
precision at k score for each relevant target, in our case violating identifier, where k is the
position of the identifier in the ranked list. To account for the different versions of the
same code file, the precision at k scores of the identifier is averaged over all versions of
the file in which the identifier appears. Formally, let us define the set of all identifiers that
violate guideline G in all versions of the file ¢ as I. . The average precision for guideline

G in file ¢ is then calculated as:

1
|Hc,G|

AP(G,c) = > AvgPrecAtk(I, ¢, G) (7.13)

IEHC,G

This uses the arithmetic mean of the precision at k scores for each identifier I across all
versions of the file ¢ in which the guideline G is violated. With the set of all versions of

code file ¢ denoted as S, ¢ 1, the average precision at k score is defined as:

1
AvgPrecAtk(1, ¢, G) =

= ool > PrecAtk(I,v,G) (7.14)
¢,G,I

’UESC,G,]

In each version, all identifiers are ranked descending by the score of the model, which
indicates the severity of the identifier violating the guideline. When identifier I is ranked

at position k in version v, the precision at k is calculated as:

k

1
PI'CCAtk<I, v, G) = % § Lidentifier at rank i violates G (715)
=1

Finally, the overall MAP score is computed by averaging the MAP scores over all guidelines,
as detailed in Equation (7.11).

7.5.3 Implementation of Other Language Models

The model is compared to two state-of-the-art LMs pretrained on code: the encoder-based
GRrAPHCODEBERT (Guo et al. 2021) and the decoder-based INCODER (Fried et al.
2023). This section describes why these models were chosen and how they were adapted

for the task of identifying guideline violations in code identifiers.

208

7.5. EXPERIMENTAL SETUP

DISCRIMINATIVE RATING

The discriminative approach employs an encoder architecture, which makes it reasonable
to use a state-of-the-art encoder LM as a drop-in replacement for SYNTAXPT. This chapter
compares SYNTAXPT with GRAPHCODEBERT, introduced by Guo et al. (2021). The
GRAPHCODEBERT model is an improved version of the CODEBERT model. For a

comprehensive description of the model, please refer to Section 4.2.

GRrRAPHCODEBERT is a good candidate for comparison, not only because it is a state-
of-the-art encoder model for code understanding tasks, but particularly because it was
pretrained with a discriminative learning approach. During pretraining, the model was
tasked to discriminate real tokens from replaced ones, along with several other tasks. This
is analogous to the approach used in this chapter, albeit with a focus on token-level rather
than identifier-level discrimination. In theory, this provides GRAPHCODEBERT with an
advantage over the SYNTAXPT model, which did not learn to discriminate between real
and replaced identifiers during its generative pretraining. SYNTAXPT has to learn this

task during fine-tuning.

The integration of GRAPHCODEBERT into the approach described in Section 7.3.3 is
relatively straightforward. The pretrained GRAPHCODEBERT model replaces the encoder,
while the same discriminative fine-tuning approach is kept as in the original model (using
the same pooling, classification layers, and training). However, the SYNTAXPT model is
capable to process code of any length thanks to its bucketed relative positional encoding
(see Section 2.3.2). In contrast, GRAPHCODEBERT is limited to a maximum sequence
length of 512 tokens, which requires a slight modification of the approach. To process
longer code files, the files are split into overlapping chunks of 512 tokens. This ensures the
model has sufficient context for each identifier. After processing each chunk separately
using the approach described in Section 7.3.3, the scores of identifiers that appear in
multiple chunks are averaged before evaluation. A batch size similar to the one used in the
reference implementation of GRAPHCODEBERT is used for fine-tuning and a sweep over

the learning rate is conducted.

(GGENERATIVE RATING

Good candidate models for the generative approach are models that have been pretrained
on identifier deobfuscation. An ideal fit would have been the CODET's model proposed
by Wang ct al. (2021b), because it has been pretrained on identifier deobfuscation. The
authors tried to use to released code and model checkpoint of Wang et al. (2021b) for
identifier deobfuscation, but the released model appears to lack this functionality. Hence,
the model could not be used for comparison. Models trained on identifier deobfuscation

are scarce, and the only other model with published checkpoints known to the authors is

209

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

the CODET's model. An alternative are models that have been pretrained on code infilling
tasks, such as the decoder-based INCODER model.

INCODER has been introduced by Fried et al. (2023) as a unified generative model de-
signed for code generation through both left-to-right generation and infilling. Both
settings enable the model to perform various code generation tasks. Fried et al. (2023)
demonstrated the model’s efficacy by evaluating the model on variable renaming in a zero-
shot setting. Since this task is similar to variable deobfuscation INCODER is an interesting

candidate for comparison.

This chapter uses the released code of the authors of INCODER in its infilling setting
to produce input sequences with replaced identifiers. Unlike the method described in
Section 7.3.1, where a mask token represents a single identifier and may be used multiple
times, INCODER uses unique mask tokens (e.g., MASK1, MASK2 , etc.) for each occurrence of
an identifier. This requires a slight modification of the approach, since the model predicts
the log-likelihood of every occurrence separately. Initial experiments compared min, max,
and mean pooling strategies for aggregating the scores of each identifier occurrence, and
the mean pooling method yielded the best results. Hence, the mean pooling strategy is

used to aggregate the scores of each identifier occurrence before evaluation.

7.5.4 Hardware and Training

A potential thread to validity of the proposed evaluation is that the pretrained LMs could
have been trained on the files that were annotated in the manually annotated dataset. This
would make the evaluation unfair, because the models’ scores for replaced identifiers in
the annotated files would likely be higher. To mitigate this for SYNTAXPT, not only
the repositories used for the evaluation dataset were excluded from the training data
of SYNTAXPT, but also repositories that contained similar files, such as forks of the
original repositories. A simple content-based matchingis not sufficient to determine clones,
because ongoing development often causes slight variations of file content. However, one
can assume that the file-structure changes less frequently, so this is used as a heuristic to
exclude similar files. To do so, all repositories that might contain a file from the annotated
dataset were collected, by checking whether a file with the same name in the same directory
existed in the training data. If this was the case, the repository was excluded from the

training data of the generative model.

For the generative models no further training or hyperparameter search is required, since
these models are used in a zeroshot fashion. Please refer to Section 4.5 for the training
details of the SYNTAXPT model. The discriminative approaches were fine-tuned on a
single A6000 GPU. A hyperparameter sweep over the learning rate was conducted, and
carly stopping was used on the validation F1-score of the fine-tuning dataset. Test on the

evaluation dataset were conducted only once at the very end for every model.

210

7.6. RESULTS

. Perplexity Likelihood-Ratio Max-Token Perplexity
Discriminative

Mask-Single Mask-All Mask-Single Mask-All Mask-Single Mask-All

52.6 55.1 52.8 62.6 28.2 56.1 53.2

Table 7.5: A comparison of the identifier quality scoring strategies proposed in this chapter. The table shows the MAP
score (%) on the manually annotated dataset, for the experiments that use the SYNTAXPT as the base model. The best
performing method is highlighted in bold.

7.6 RESULTS

This section presents the results of the experiments conducted to evaluate the effectiveness

of the proposed strategies for detecting guideline violations of code identifiers.

7.6.1 Comparison of Scoring Methods

Which of the proposed strategies is most effective for detecting guideline violations
of code identifiers? —RQ 7.1

The first set of experiments aimed to determine the most effective scoring method for
identifying guideline violations in code identifiers. Table 7.5 compares the results of the
discriminative model and the three generative scoring methods: Perplexity, Likelibood-
Ratio, and Max-Token Perplexity, each evaluated with two masking strategies (Mask-Single
and Mask-All) on the manually annotated dataset. Recall that the distinction between the
two masking strategies is that Mask-Single masks only the target identifier, while Mask-All
masks all identifiers in the code snippet. Allowing the model to see all identifiers in the
code snippet may provide additional context that could help the model better assess the
quality of the target identifier. However, this may also introduce biases, as the model may
be influenced by the quality of the surrounding identifiers. Also, recall that mask-single

comes with higher computational costs (see Table 7.5)

The results of the experiments reveal that the Likelihood-Ratio scoring method achieves
the highest score of 62.6% MAP, when used with the Mask-Single strategy. With this
masking strategy, the Likelihood-Ratio outperforms all other generative and discriminative
scoring methods. However, this strategy is also the computationally most expensive
scoring function. The Perplexity and Max-Token Perplexity methods perform similarly,
with a slight advantage for the Max-Token Perplexity method. Recall that the difference
between these two methods was that the Max-Token Perplexity method only considers
the perplexity of the most suspicious token and not the entire identifier, as the perplexity
method does. This result indicates that it is more relevant whether a model spots subword-
level derivations, than rating the full identifier. However, this result strongly depends
on the vocabulary used by the model and what it considers a token. For models with

large vocabularies both scores should anneal. This result suggests that a model’s ability to

211

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

identify subword-level derivations is more relevant than its rating of the entire identifier.
However, this outcome is highly dependent on the model’'s vocabulary and its tokenization
strategy. For models with large vocabularies, one can expect both scores to converge. The
discriminative model achieved a MAP score of 52.6%, which is similar to the Perplexity
and Max-Token Perplexity methods, when using the Mask-All strategy.

However, the Likelihood-Ratio method requires multiple forward passes through the
encoder-decoder transformer to generate the best version for each identifier before scoring
the target identifier in another forward pass. The Mask-Single strategy requires this to be
done for each identifier in the code snippet. This makes the Likelihood-Ratio method
computationally expensive. The discriminative strategy, on the other hand, requires only
a single forward pass through an encoder to score the target identifier, making it the
most efficient strategy. For application scenarios in which efficiency is important, the
discriminative model may be a suitable choice, as it achieves a competitive performance
with only ~10 p.p. less MAP than the best-performing generative model. It can be
hypothesized that the performance of the discriminative model could be further improved
by fine-tuning the model with a stronger replacement strategy, or even ground truth
sourced from GitHub edits, such as in the work by Chen et al. (2022).

Interestingly, the Mask-Single strategy consistently improved performance across all scor-
ing methods, which supports the importance of contextual information during evaluation.
This may be due to the fact that the code files in the evaluation dataset are of high quality
and confusions, such as when all identifier names are single characters, are less likely to
occur. Investigating the performance of the different strategies on lower-quality code files

is left for future work.

7.6.2 Comparison to State-of-the-Art Language Models

How accurately can SYNTAXPT spot guideline violations compared to other
state-of-the-art LMs? — RQ 7.2

Next, SYNTAXPT was compared against two state-of-the-art models, GRAPHCODEBERT
and INCODER, in terms of their ability to assess identifier quality. Table 7.6 presents
the MAP scores for each model. The results show that SYNTAXPT significantly out-
performs both GRAPHCODEBERT and INCODER, with a MAP score of 62.6% using
the Likelihood-Ratio (Mask-Single) method. GRAPHCODEBERT, despite its robust
architecture, achieved a lower score of 46.3%. This indicates that the identifier deob-
fuscation pretraining objective of the base model is more closely aligned with the target
task of identifier quality assessment than the token-level discrimination pretraining of
GRAPHCODEBERT.

212

7.6. RESULTS

Approach Model #Params Generative Scoring MAP (%)
Baseline Random 18.3
Discriminative =~ GRAPHCODEBERT 125M 46.3
SYNTAXPT giscriminative 110M 52.6

Generative INCODER 1.3B Perplexity (Mask-Single) 22.7
Perplexity (Mask-All) 25.3

Likelihood-Ratio (Mask-Single) 23.4

Likelihood-Ratio (Mask-All) 23.8

SYNTAXPT 247M Likelihood-Ratio (Mask-Single) 62.6

Table 7.6: Comparison between the models based on SYNTAXPT and state-of-the-art models.

INCODER, with its large parameter count, struggled in the generative evaluation, par-
ticularly when using the Mask-All strategy, suggesting that while it is effective in code
generation tasks, it may not be as well-suited for identifier quality assessment without
further fine-tuning. As detailed in Section 7.5.3 the INCODER model was pretrained on
code infilling tasks, and to score an identifier, new mask tokens need to be introduced for
each occurrence of the identifier. When predicting the identifier, the model additionally
has to predict whether the occurrences refer to the same identifier or not. SYNTAXPT has
an advantage in this regard, as a single mask token is used for every occurrence of an iden-
tifier, and the model can exploit this bias to its advantage. Another difference lays in the
tokenization of the models. INCODER tokenizes code across whitespace and punctuation
symbols to represent common code idioms as single tokens. Fried et al. (2023) found
that when using the model for predicting single identifier names, breaking tokenization at
word boundaries led to a slight decrease in performance. This may have contributed to the

model’s struggle in the evaluation.

7.6.3 Guideline-specific Analysis

Which guideline violations are most challenging for the models to detect? —
RQ7.3

This research question aims to investigate which guideline violations are most challenging
for the models to detect, what factors contribute to these challenges, and how these factors
could be addressed to improve model performance. Table 7.7 shows the MAP score on
each guideline for the models based on SYNTAXPT, as well as both state-of-the-art LMs
and a random baseline. Specifically, the best performing generative variant has been the
Likelihood-Ratio (Mask-Single) method for SYNTAXPT, while it has been the Perplexity
(Mask-All) for INCODER. In Figure 7.6 one can observe a strong variance in the MAP
scores across guidelines. The MAP scores for the models based on SyNTAXPT range from
30% to 91%, while the random baseline varies from 14% to 25%, and the state-of-the-

art models range from 12% to 83%, where the lower end belongs to INCODER and the

213

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

100 T T T
80 F ° y
< 60 F N
o
<
= 40 F T
20 ==
Generative Discriminative
O 1 1 1 1 1
A <« A A
N & N e s
\a & & '
& S & & >
S N S C
I
w
(,)%

Figure 7.6: Variation of the MAP scores across guideline for the different models.

upper end to GRAPHCODEBERT. The finding that the INCODER model only slightly
outperforms the random baseline has been discussed in the previous section. Therefore,
the model is excluded from further analysis in this section and in the following, when
referring to the generative model, the SYNTAXPT model is meant. This strong variation

suggests that the models capture guideline information very differently.

First, let us examine whether the models perform differently on guidelines from differ-
ent categories (syntax, vocabulary, data type, method name). Figure 7.7 shows that the
generative SYNTAXPT model performs relatively consistently across the four categories,
with a slight advantage in method naming guidelines and a slight disadvantage in data
type guidelines. Surprisingly, syntax guidelines are not “easier” predicted by the mod-
els. So the variation in performance across guidelines is not due to the category of the
guideline, but rather the specific guideline itself. In contrast, both discriminative models
(SYNTAXPT giscriminative and GRAPHCODEBERT) perform notably worse than the gen-
erative model on the syntax and vocabulary guidelines, as visible in Figures 7.7a and 7.7b,
but at the same time they achieve a similar or even better performance on the data type
and method name guidelines compared to the generative model (Figures 7.7¢c and 7.7d).
In a closer inspection in Table 7.7, the discriminative models outperform the generative
model in Guidelines 15, 16, and 27 by +19, +7, and +7 p.p. MAP, respectively. These
guidelines contain naming conventions for identifier and method names of singular values
and collections, such as that collections and methods that return a collection should be
named in plural. Additionally, the discriminative models perform better in Guidelines 22
and 24 by +8 and +13 p.p. MAP, respectively, which specify that methods starting with
get should always return a value, while methods starting with set should never return

anything.

The better performance of the discriminative models on these guidelines can be attributed

to the sampling process with the FASTTEXT model, which seems to sample fake identifiers

214

7.6. RESULTS

100 X X ;
| | H Models
1 1 1
80 1 1 1 4 SYNTAXPT
: : : - Generative
T 60 5 : ! l ! - I InCoDER
a ! ! ! SYNTAXPT
< 1 1 1
S 40 : ? : % :] . Discriminative
o | i ! ! [GRAPHCODEBERT
20 | 1 1 1]
T 1 1 % 1 I Random
ive Discriminati 1 Discrimir | Generative Discriminative | Generative Discriminative
0 1 1 1
(a) Syntax (b) Vocabulary (c) Data Type (d) Method Name

Figure 7.7: Variation of the MAP scores across guideline categories for the different models.

that are effective to detect these types of guideline violations. This hypothesis is supported
by a manual inspection of the FASTTEXT model, where it could be observed that the
model often replaces identifiers with their singular/plural forms. A simple regex check
showed that among 306k replacements in the training set of the discriminative model,
approximately 1.8% involved replacing a plural form with a singular (3.3k) or a singular
with its plural form (2.1k). Furthermore, character n-grams such as get and set are
prevalent in the FASTTEXT training data, and the model often samples a similar identifier
prefixed with these characters. Obviously, the sampled identifier is then a direct violation
of guideline 22 or 24. The frequent occurrence of both types of replacements and their
direct relation to the guidelines make it easier for the model to learn these guidelines. This
suggests potential for further improving the performance of the discriminative model by
exploring other fake identifier sampling approaches that are more closely aligned with the

specific guidelines (i.c., a better representation of the counterclass distribution).

As previously explained, many syntax-based guidelines could be detected using simple
regular expressions, but most other guidelines require a more fine-grained understanding
of the code and semantic reasoning about the context in which the identifier is used.
Interestingly, Table 7.7 shows that violations of supposedly easier guidelines, such as those
prohibiting double underscores (guideline 4), single-letter abbreviations (guideline 3),
or restrictions on the length of identifiers (guidelines 7 and 8), are not detected better
than guidelines requiring more complex reasoning. For example, guideline 13 (use a
large vocabulary) is detected better than guideline 3 (expand single-letter names) by
the generative model, even though the latter is considered easier (75% vs. 46% MAP).
This result can be considered promising, as it opens the possibility of combining LM-
based scoring with a rule-based approach. Such an approach could be implemented in a
post-processing step, where the LM identifies potential guideline violations, which are
then checked by a rule-based system. Alternatively, with the previous analysis in mind,
which indicated that the fake identifier sampling process of the discriminative model

seems to be a good fit for specific guidelines, a rule-based system could be used during

215

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

fine-tuning dataset construction to ensure a sufficient number of guideline violations
for each guideline. By integrating this into the fake identifier sampling process of the
discriminative model the performance on these types of guidelines could be improved.
For instance, the discriminative models struggle with guideline 4 (double underscores)
and guideline 3 (single-letter abbreviations), possibly due to the FASTTEXT model rarely
sampling identifiers with these characteristics. To address this, a rule-based system could
be employed to generate fake identifiers that more frequently violate these guidelines,

which would improve their representation in the training data.

When analyzing the guidelines where the generative model struggles the most, it can be
seen that those are guidelines that are likely to be violated frequently in practice. The
frequency of guideline violations in the training data is a key factor in the generative model’s
performance. This observation aligns with the finding that the discriminative model
performs well on guidelines frequently violated in its training data, while the inverse holds
true for the generative model. The more often a guideline is violated in the pretraining
dataset of the generative model, the worse the model performs on that guideline, as
reflected in the inverse relationship between perplexity and the model’s probability. For
example, the model struggles with Guidelines 3 (avoid single-letter abbreviations), 14
(omit type information), and 21 (don’t use get / is / has for methods with side effects),
which are likely violated frequently in practice. Hence, the generative model performs
poorly on these guidelines, as shown in Table 7.7. Again, a more fine-grained and guideline-

specific rule-based filtering of the pretraining dataset could help to address this issue.

7.7 CONCLUSION AND FUTURE WORK

This chapter presented a novel approach to assess the quality of code identifiers using
transformer-based LMs, such as the SYNTAXPT model introduced earlier in this thesis. A
particularly novel contribution is framing the task as detecting violations of established
identifier naming guidelines. This allowed to objectively compare scoring functions for
identifiers, including ones that have been proposed by related work (Allamanis et al. 2014).
Two primary strategies for scoring identifiers were explored: a generative approach that
uses likelihood estimates from the SYNTAXPT model, and a discriminative approach that

fine-tunes the model to distinguish between original and replaced identifiers.

To evaluate these methods, the first benchmark dedicated to identifier quality assessment
was introduced, comprising 6,203 annotations across 28 naming guidelines. Experimental
results demonstrated that the generative approach, particularly the Likelihood-Ratio
scoring method with the Mask-Single strategy, outperformed the other methods and state-
of-the-art LMs such as GRAPHCODEBERT and INCODER. Also, the guideline-specific
analysis revealed that the SYNTAXPT effectively identifies complex guideline violations

that require semantic understanding.

216

7.7. CONCLUSION AND FUTURE WORK

e Generative Discriminative
Guideline Random

Code- In- Code- Code-
Doctor Coder Doctor BERT

1 Apply standard case with rigorous consistency. 65.9 20.3 50.0 39.4 17.0
2 Use dictionary words and no (uncommon) abbreviations. 49.4 32.7 37.0 34.1 25.1
3 Expand single-letter names (except for control variables). 45.6 26.9 30.2 28.9 18.2
4 Only use one underscore at a time. 83.0 34.9 453 41.3 17.8
5 Only use underscores between words. 68.4 24.0 65.2 56.6 18.1
6 Name constant values. 52.7 24.9 60.8 40.8 15.4
7 Limit name character length to 20. 64.2 43.1 29.7 24.1 19.1
8 Limit name word count to four. 70.5 37.7 444 36.1 14.8
9 Qualify values with suffixes. 63.9 24.9 41.8 34.2 18.3
Average performance on syntax guidelines 62.6 29.9 44.9 37.3 18.2
10 Use a descriptive name that conveys a recognizable concept. 59.7 18.2 439 40.0 17.1
11 Be precise by identifying specific information and purpose. 42.6 19.5 35.6 32,5 20.6
12 Use standard language, avoid humor and ambiguity. 82.7 28.9 63.5 48.1 20.1
13 Use a large vocabulary: replace phrases with specific terms. 75.2 37.4 59.8 46.2 22.5
14 Don’t use prefixes or suffixes that encode the data type. 49.6 29.9 43.6 40.1 17.0
Average performance on vocabulary guidelines 62.0 26.8 49.3 414 19.5
15 Use singular names for values. 47.5 39.8 66.4 58.0 189
16 Use plural names for collections. 39.5 15.1 39.0 46.5 17.2
17 Use Boolean variable names that imply true or false. 52.1 15.2 443 35.5 21.2
18 Use positive Boolean names. 73.2 26.5 53.8 51.1 143
19 Attribute name and type should be consistent. 70.0 25.1 65.4 57.8 18.5
Average performance on data type guidelines 56.5 24.3 53.8 49.8 18.0
20 Use a verb-phrase name. 48.7 17.2 40.0 429 18.6
21 Don’tuse get, is or has prefixes for methods with side-effects. 50.4 20.5 43.5 39.8 17.5
22 Onlyuse get prefix for field accessors that return a value. 74.5 18.9 82.5 48.8 17.3
23 Onlyuse is and has prefixes for Boolean field accessors. 90.7 28.7 84.5 83.0 20.8
24 Onlyuse set prefix for field accessors that don’t return a value. 53.9 22.5 60.5 65.5 15.4
25 Use transformation verbs only for methods that return a trans- 73.8 143 57.0 45.8 21.8
formed value.
26 Expecting and getting single instance. 57.3 12.4 32.3 47.2 14.0
27 Expecting and getting a collection. 75.8 27.6 82.6 70.8 18.3
28 Method name and return type should not contradict. 73.1 20.5 69.1 61.9 185
Average performance on method naming guidelines 66.5 20.3 61.3 56.2 18.0
Overall 62.6 253 52.6 46.3 18.3

Table 7.7: Detailed guideline-specific analysis of the models’ performance. The MAP score is reported for each guideline.
The best performing model for each guideline is highlighted in bold. The GRAPHCODEBERT model is named CODEBERT in
the table for brevity.

217

SPOTTING IDENTIFIERS THAT VIOLATE NAMING GUIDELINES

Future work could explore the integration of rule-based systems for syntax-based guide-
lines. Such a model could be integrated in the fake identifier sampling process of the
discriminative model to improve performance on specific guidelines. Additionally, one
could think of creating weakly supervised training data for the discriminative model by
using an instruction-based LM to generate fake identifiers that specifically violate certain
guidelines. This would allow the discriminative model to learn guidelines more effec-
tively. Since the proposed dataset is build from open-source projects, further evaluation on
domain-specific codebases is needed. One could expect the model to find project-specific
coding conventions suspicious, which could be addressed by training a local model to
reduce false positives. Additionally, since this evaluation is focused on Java, it would be in-
teresting to extend the evaluation to other programming languages and coding conventions
(which SYNTAXPT supports). Another interesting direction for future work would be to
use the model to specifically assess which guideline is violated in a given identifier, rather

than just providing a score.

The findings of this chapter have implications for both research and practice. In research,
the proposed approach can be used to evaluate the quality of identifiers in source code,
and the dataset can serve as a benchmark for future research in this area. In practice, the
approach can easily be integrated into IDEs as a plugin or code linter. The availability of
multiple scoring strategies, offers flexibility in terms of speed and accuracy. For example,
developers can select the Likelihood-Ratio scoring for high-accuracy detection or opt
for faster but less precise methods depending on the use case. This chapter could also
be valuable in educational settings, in teaching students best practices for writing clean,
readable code. By integrating this system into programming exercises, educators could
provide immediate, actionable feedback to students on their identifier naming choices.
Given the probabilistic nature of the model, there will be cases where the feedback is not
perfect. This presents an opportunity to foster critical thinking, encouraging students to

reflect on both their own coding practices and the output of the model.

218

Conclusion

THIS THESIS HAS INVESTIGATED the use of AI models—specifically, transformer-
based LMs—to support software engineers with tasks in reuse and quality control. To
address these challenges, this thesis investigated several strategies to integrate the structural
properties of source code into transformer-based models. Particularly, it was explored how
Abstract Syntax Trees (ASTs) can be utilized within self-supervised learning to enhance
transformer-based models’ code understanding capabilities, learn code retrieval models,

and assist developers in practical scenarios.

The thesis began by introducing the Relative Structural Transformer (RsT), which demon-
strated that adding a structural prior to the transformer through relative positional em-
beddings and a structural loss function improves performance on code understanding and
machine translation tasks when trained without pretraining. The next chapter focussed
on improving pretraining for generative transformer models with structural tasks, where
the task identifier deobfuscation was extended and the novel task tree-based span selec-
tion introduced. The effectiveness of this structural multi-task pretraining strategy was
demonstrated with the SYNTAXPT model, which outperformed state-of-the-art models
on several CODEXGLUE benchmarks. The third model addressed code reuse by pre-
senting a novel self-supervised strategy to train code retrieval models for Contextualized
Code Search (CCS). To this end, AST-based deleaking steps for context-target pairs were
introduced, which were shown to reduce overfitting due to leakage patterns and improve
performance on CCS. These steps enabled a training without labeled data, resulting in
the SYNTAXPT-ccs model. The effectiveness of SYNTAXPT-ccs was validated both
in research benchmarks and real-world user studies, for which this thesis presented the

CoDEBUDDY prototype for practical code search. The studies revealed that even though

219

CONCLUSION

SYNTAXPT-ccs was trained on open-source data, it could be effectively applied also in
proprictary codebases. Finally, the applicability of SYNTAXPT to assess the quality of
code identifiers using the likelihoods of the LM, with established coding guidelines as a

reference, was demonstrated.

8.1 LIMITATIONS AND THREATS TO VALIDITY

This chapter provides an overview of the limitations and threats to the validity of the
research presented in this thesis. While most details have been addressed in the respective
chapters, this section provides a comprehensive overview. One limitation of the user
studies on CCS is the relatively small sample size. Also, the controlled setting in Study A
in Section 6.4 may not fully express the regular work activities of developers. Even though
the findings indicate that developers found CODEBUDDY useful, larger-scale studies are
necessary to generalize these results, and to identify potential issues that may arise in
real-world scenarios. Study B in Section 6.5 was a step in this direction, but more extensive
experiments with a larger number of participants are needed to validate the effectiveness

of CODEBUDDY in practical software development scenarios.

Data quality is another concern—as often in ML experiments. The evaluation datasets
presented in this thesis were carefully curated, with dense annotations and manual verifica-
tion. In the case of the identifier quality assessment dataset, there is a potential risk that an
annotator’s individual perception of identifier quality may have influenced the annotation
process, even though guidelines, examples, and detailed instructions were provided. To

circumvent this threat, the annotations were reviewed by another annotator.

Also, the quality of the training data used for the models is less certain, as it was sourced
from open-source repositories, and may contain errors, outdated elements, or code that
does not adhere to best practices. This may not be a significant issue for code retrieval,
because one can ensure the indexed codebase remains up-to-date and high-quality. How-
ever, for tasks like identifier quality assessment, the quality of the training data is crucial.
Surely, there is a discrepancy between coding guidelines and actual developer behavior.
Developers may intentionally deviate from guidelines for various reasons, such as project-
specific requirements or personal preferences. This factor potentially affects the model’s

effectiveness in estimating identifier quality.

Another threat to validity is the possibility of target data leakage during training. Because
of the large amount of open-source data used for training the SYNTAXPT and SYNTAXPT-
ccs models, there is a risk that the models may have seen evaluation data during training.
This is a key issue with all LLMs, as they are known to memorize examples from the

training data. This is now discussed in more detail for each chapter.

220

8.2. FUTURE WORK

o The experiments in Chapter 3 are unlikely to be affected by this issue, as the RsT
model was trained without pretraining, and the datasets were split by project to

avoid such leakage.

e For the experiments in Chapter 4 the pretraining dataset may include parts of
CoDpEXGLUE. However, the benefit of structural pretraining were not solely
determined by a comparison to the state-of-the-art, but more importantly to non-

structural baselines trained on the same data.

e Regarding Chapter 5, there is a potential risk, that data from Cocos may have
been included in the pretraining data, which could have influenced the model’s
performance. Although the same training data was used for the ablation studies on
the Cocos dataset, there remains a slight chance that the model may have learned
to associate certain contexts with specific targets during generative pretraining.

This—although unlikely—could have impacted the comparison with Bm2 5.

e Finally, for the identifier quality assessment in Chapter 7, data leakage is a serious
problem, since the model would spot manually inserted violations easily if it had
memorized the original code file. Therefore, the author of this thesis took great
care to mitigate this risk by excluding data from the same filenames and directories
during pretraining. However, this is a heuristic and may not be foolproof, and some

degree of leakage may still be unavoidable due to similar patterns across projects.

8.2 FuTture WORK

While this thesis has demonstrated the effectiveness of integrating structural information
into transformer models, there remains potential for further exploration. One promising
direction of future work is the scaling of model sizes: Larger models, as evidenced by
the ubiquity of LLMs since late 2022, have shown remarkable capabilities in code un-
derstanding and generation. Whether the benefit of structural pretraining tasks extends
to larger models remains an open question, which this thesis could not address due to

computational constraints.

Also, relying solely on code generation LLMs is not without drawbacks. Generative
transformers, come with increased computational costs and may produce less reliable
outputs. As reported by GitClear et al. (2024), with the increased used of code generation
LLMs there has been “a significant uptick in churn code [the percentage of lines that are
reverted or updated less than two weeks after being authored], and a concerning decrease
in code reuse”. Hence, tools that enable opportunistic code reuse, such as the proposed

CoDpEBUDDY prototype for CCS, remain highly relevant, even in the era of LLMs.

Therefore, it would be interesting to investigate if CODEBUDDY could be scaled in four

areas: scaling up the SYNTAXPT-ccs model, increasing the amount of negatives samples

221

CONCLUSION

in the contrastive loss, extending the context window, and exploring larger codebases. Scal-
ingup the SYNTAXPT-ccs model and the amount of negatives samples in the contrastive
loss could potentially improve their retrieval performance substantially. This potential
improvement is supported by the experiment with OpenAT’s code embeddings (OpenAl
2024b) in Section 5.6.4, which revealed that larger models can provide strong retrieval
improvements, even though the presumably much smaller SyNTAXPT-ccs model was

already competitive.

Another area for future work is extending the contextual information provided to the
models. All experiments in this thesis were conducted with a relatively limited view of
the user’s coding context, focusing on a single file (CODEBUDDY in Chapter 6) or even a
single method (in Chapters 3 to 5 and 7). Current transformer architectures are limited in
the length of input sequences they can process, which constrains their ability to consider
broader project contexts. Project structure, other files, or even the available API, along
with the API’s documentation are often equally important for understanding and reusing
code. Exploring strategies to integrate this relevant information into the models could
lead to more comprehensive code understanding and more accurate retrieval capabilities.
Even though recent larger models with larger context windows, using linear attention
(Kitaev et al. 2020) or state space model architectures (Ren et al. 2024) may alleviate this
limitation to some extent!, context windows are still limited and strategies to detect and

incorporate relevant information from project contexts are necessary.

One could also explore how well the SYNTAXPT-ccs model performs on larger codebases.
In the experiments in this thesis the codebase was medium-sized with ranging from 5,000
to 15,000 files. Web-scale codebases could potentially introduce new challenges. It would

be interesting to see how the code retrieval model performs on such large codebases.

Furthermore, the work in Chapter 7 on identifier quality touches just a small part of
the code quality spectrum, and similar strategies could be applied to many other aspects
of code quality. One could potentially utilize the token likelihoods from LMs or even
LLMs to detect code smells, bugs, design patterns, and antipatterns. This could be done
all based on the assumptions that developers are more likely to write code that adheres to
best practices and that “bad” code is less likely (to be present in LLMs training sets, and
thus less likely to be produced by the LLM). However, this would presumably require
more sophisticated strategies than the perplexity threshold used in Chapter 7 in order
to spot patterns or bugs. Also, to support inexperienced developers in understanding
their code, one could not only pinpoint areas in the code which the LLM estimates as
unlikely, but also subsequently prompt an instruction-based LLM to provide explanations
or suggestions for improvement. An IDE plugin could then present these suggestions to

the developer in a non-intrusive way, similar to code linting tools.

'For instance, the Google Gemini model has a 2 million token context window (Reid et al. 2024).

222

ParT 111

APPENDIX

223

A.1 RELATIVE STRUCTURAL TRANSFORMER

A.1.1 Hyperparameters and Datasets

Appendix to Part I

java-small java-med java-large CodeSearchNet FunCom IWSLT'14
Baseline RST Baseline RST Baseline RST Baseline RST Baseline RST Baseline RST

Warmup Updates 4000 4000 4000 4000 10000 10000 4000 4000 4000 4000 4000 4000
Max Epoch 30 30 60 60 60 60 60 60 60 60 70 70
Validation Metric F F F F F F BLEU BLEU BLEU BLEU BLEU BLEU
Validation Performance 44.84 46.19 56.05 58.61 6331 63.66 8.32* 8.92* 23.42 2391 29.69 30.07
Max Source Positions 512 512 512 512 512 512 1024 1024 512 512 1024 1024
Max Target Positions 80 80 80 80 80 80 1024 1024 30 30 1024 1024
Batch Size

8192 8192 8192 8192 8192 8192 6146 6146 6146 6146 4096 10240
(in tokens/batch/gpu)
Accumulate Gradients

8 8 8 8 8 8 6 6 6 6 -
(in batches)
Share Embeddings
Yes Yes Yes Yes No No Yes Yes No No No No

(between Encoder/Decoder)
Relationship Type - Movements - Movements - Path-Length - - - Path-Length
k - 2 - 2 - 8 - 2 - 2 - 8
Vica 03 - 03 03 - 03 03 03
Parameters (Million) 38.76 38.79 393 39.9 475 47.6 39.8 40.4 475 483 39.5 40
Average Runtime (hours) 10 12 22 25 66 71 20 23 16 19 7 9

Table A.1: Additional hyperparameters for the experiments in Tables 3.1 and 3.4. (*) denotes that a different BLEU
implementation was used during validation than for testing. For all experiments Label Smoothing=0.1, Learning Rate=5e-
4, Optimizer: Adam, Adam-Betas=0.9, 0.98 and Weight Decay=0.0001. Previously published in Villmow et al. (2021b)

©2021 IEEE.

225

APPENDIX TO PART I

java-small java-med java-large CodeSearchNet FunCom IWSLT’'14

Samples Train 665,115 3,004,536 15,344,512 908,224 1,937,136 160,239
Samples Valid 23,505 410,699 320,866 44,689 106,153 7,283
Samples Test 56,165 411,751 417,003 52,561 52,561 6,750

Table A.2: Statistics of the datasets used in the experiments for Chapter 3. Previously published in Villmow et al. (2021b)
©2021 IEEE.

A.1.2 Sample Predictions

1 public Throwable blockingGetError() {
2 if (getCount() != 0) {
3 try {
4 BlockingHelper.verifyNonBlocking();
5 await();
6 } catch(InterruptedException ex) {
7 dispose();
8 return ex;
9 }
10 }
11 return error;
12}
Model Prediction
Target Block until the latch is counted down and return the error received or null if no error happened.
Transformer Returns an error if there is one. Otherwise returns nil.
RST This method blocks until there is an error or the end of the queue is reached.
(a)
1 public static ScheduledExecutorService create(ThreadFactory factory){
2 final ScheduledExecutorService exec = Executors.newScheduledThreadPool(1, factory);
3 tryPutIntoPool(PURGE_ENABLED, exec);
4 return exec;
5 %
Model Prediction
Target Creates a ScheduledExecutorService with the given factory.
Transformer Create a new ScheduledExecutorService.
RST Creates a ScheduledExecutorService with the given ThreadFactory.

(b)

Figure A.1: Predictions with RsST for code summarization on CODESEARCHNET.

226

A.2. STRUCTURAL TRANSFORMER

A.2 STRUCTURAL TRANSFORMER

A.2.1 Datasets

SELECT lang, COUNT(*) AS repos,

ARRAY_AGG(STRUCT(name, stars, branch) ORDER BY stars DESC LIMIT 50000) AS repo
FROM (

SELECT repo.name,

1
2
3
4
5 MAX(CAST(JSON_EXTRACT_SCALAR(payload,
6 '$S.pull_request.base.repo.stargazers_count') AS INT64)) AS stars,
7 JSON_EXTRACT_SCALAR(payload,

8 '$.pull_request.base.repo.language') AS lang,

9 JSON_EXTRACT_SCALAR(payload,

10 '$S.pull_request.base.repo.default_branch') AS branch

11 FROM “githubarchive.month.202108"

12 WHERE type = 'PullRequestEvent'

13 GROUP BY repo.name, branch, lang

14)

15 WHERE stars > 10

16 GROUP BY lang

17 ORDER BY repos DESC;

Figure A.2: BigQuery SQL query to obtain repositories with more than 10 stars and active pull requests in August 2021.
A separate query is executed for every month between April and September 2021 and the results are combined.

227

APPENDIX TO PART I

A.2.2 TENSORTREE Library

Encode the Fibonacci function into a TensorTree object.
code = '''def fib(n):

if n <= 1: return n

return fib(n-1) + fib(n-2)'"'

tree: TensorTree = tokenizer.encode_to_tree(code, "python")

Access and print various structural details of the tree.
print("Node data (pre-order sequence of nodes):", tree.node_data)
Output: tensor([31314, 31298, 462, 14, 31383, 5 ...0)
print("Parent indices of each node:", tree.parents)

Output: tensor([0, 0, 1, 1, 1, 4, ...])

print("Number of descendants for each node:", tree.descendants)

Output: tensor([76, 75, 0, 0, 3, 2, ...])

Retrieve and decode the leaf nodes, which are the tokens with no children.
leaves = tree.node_data[tree.descendants == 0]

decoded_leaves = tokenizer.decode(leaves)

print("Decoded leaf nodes back to code:\n", decoded_leaves)

Output:

def fib(n):

if n <= 1: return n

return fib(n-1) + fib(n-2)

Example of modifying the tree by masking identifiers.

mask_ids = get_mask_token_ids()[1:] # e.g.| [30000, 30001, ...]
identifier_nodes = (tree.node_data == 31383).nonzero() # Id for [identifier]
masked_tree = tree.delete_nodes(

identifier_nodes.squeeze(), replacements=mask_1ids[:len(identifier_nodes)]

View the code with masked identifiers.
masked_code = tokenizer.decode(masked_tree.leaves())

print("Code with masked identifiers:\n", masked_code)

Output:

def MASKO(MASK1):

if MASK2 <= 1: return MASK3

return MASK4(MASK5-1) + MASKG6(MASK7-2)

Figure A.3: Example of a common workflow using the TENSORTREE library implementing parts of the identifier deobfus-
cation task (Section 4.4.1). First, the Fibonacci function is encoded into a TensorTree object. The leaves of this tree can
be easily selected and are used as input to the model. The tree can be decoded back to the original code. To find the
indices of identifier nodes a mask over the nodes in the tree is computed. Given the identifier indices, a bulk operation
can be used to replace every identifier subtree in a single operation with mask tokens and return a new tree with those
identifiers replaced.

228

A.2. STRUCTURAL TRANSFORMER

pretty print the tree of token IDs
masked_tree.pprint()
TensorTree():

#0. 31314

|— 1. 31298

— 2. 402

— 3. 14

— 4. 31414

— 5. 31280

| 6. 22

| b 7. 31415
| 8. 23
[= & [fooo]]

HORH O O®R W™ W™ R B

tokenizer.decode_tree(masked_tree).pprint()
TensorTree():
0. [module]
|— 1. [function_definition]
— 2. def
— 3.
|— 4. maske
— 5. [parameters]
| s ¢
| b 7. mask1
[=8
—o. :
— z10. [BPE]
[=11 1n
| b z22.
— 13. [block]
— 14. [if statement]
= 15. if
— 16.
\— 17. [comparison_operator]
|— 18. mask2
— 19.
— 20. <
— 21.
l— 22. [integer]
— 23. 1
— 24. :
— 2s5.
|— 26. [block]
— 27. [return_statement]
b— 28. return
— 29.
b— 30. mASK3
— 31. [BPE]
[=32 1n
| b 33.

|— 34. [return_statement]

R OH O O® OW™ W™ OR OFH R O® W™ W™ R OH R O™ W™ W™ R OH O™ O™ W™ W™ R OH O™ W™ W™ O™ R W

convert the tree of IDs back to a tree of strings

pretty print the tree of strings (before masking)
tokenizer.decode_tree(tree).pprint()
TensorTree():
0. [module]
|— 1. [function_definition]
— 2. def
— 3.
b— 4. [identifier]
| = 5. [BPE]
I =6 fi
|)
}— 8. [parameters]
I o9«
| b 10. [identifier]
| | F11.n
I =12.)
b— 13. :
}— 14. [BPE]
| 15. \n
| 16 -
b= 17. [block]
b— 18. [if statement]
— 19. if
b= 20. -
}— 21. [comparison_operator]
| — 22. [identifier]
[=230
| 24. -
| | 25. <=
| 2. -
| b 27. [integer]
| — 28. 1

|
\
\
|
\
\
I
\
\
I
\
| 30. -
| |— 31. [block]
| l— 32. [return_statement]
| — 33. return
| — 34.
| l— 35. [identifier]
| — 36. n
}— 37. [BPE]
| }— 38. |n
| 9 e
b— 40. [return_statement]
— 41. return
= 42. -
|— 43. [binary_operator]
— 44. [call]
| b 45. [identifier]
[|t 46. [8rE]
| b= 47. fi
[b—48. b

R OR O O® OW W™ R O R OW W™ OW™ OR O OH OH OW oW oW R OR OH O™ oW OR OR OH OW oW W OR OR OH OW oW W™ OR OR OH OW oW W™ R OR OH oW oW W

Figure A.4: Content of the two trees tree and masked_tree from Figure A.3, decoded back to trees of strings and

printed with the TENSORTREE library.

229

APPENDIX TO PART I

A.3; COCOS EXAMPLES

1 public boolean extract(File f, String folder){
2 Enumeration entries;

3 ZipFile zipFile;

4 try {

5 zipFile = new ZipFile(f);

6 entries = zipFile.getEntries();

7 I<—Ccursor

8 zipFile.close();

9 } catch (IOException ioe) {

10 this.errMsg = ioe.getMessage();

11 Malgn.errorLog(

12 "{Zip.unzip} " + ioe.getMessage()
13);

14 return false;

15 }

16 return true;

17}

1 while (entries.hasMoreElements()) {
2 ZipArchiveEntry entry = (ZipArchiveEntry)
< entries.nextElement();
3 if (entry == null) continue;
4 String path = folder + "/" +
< entry.getName().replace('\\', '/");
5 if (lentry.isDirectory()) {
6 File destFile = new File(path);
7 String parent = destFile.getParent();
8 if (parent != null) {
9 File parentFile = new File(parent);
10 if (!parentFile.exists()) {
11 parentFile.mkdirs();
12 }
13 }
14 copyInputStream(
15 zipFile.getInputStream(entry),
16 new BufferedOutputStream(
17 new FileOutputStream(destFile)
18)
19 H
20 }
21}

(a) Incomplete and masked query @ from the Cocos (b) The masked section Yy manually selected from ¢ (a). It

dataset. Code that extracts elements from a zip file needs

has been re-formatted for better readability. This is neither

to be found. part of the query nor used when evaluating (a).
1 ArchiveEntry ae = zis.getNextEntry();
2 while(ae != null) {
3 // Resolve new file
4 File newFile = new File(outputdir + File.separator + ae.getName());
5 // Create parent directories if not exists
6 if(!newFile.getParentFile().exists())
7 newFile.getParentFile().mkdirs();
8 if(ae.isDirectory()) {
9 // create if not exists
10 if(!newFile.exists()) newFile.mkdir();
11 } else { // If file, write file
12 FileOutputStream fos = new FileOutputStream(newFile);
13 int len;
14 while((len = zis.read(buffer)) > 0) {
15 fos.write(buffer, 0, len);
16 }
17 fos.close();
18 }
19 // Proceed to the next entry in the zip file
20 ae = zis.getNextEntry();
21}

(c) Possible solution, that implements the same functionality as the target in (b).

Figure A.5: Example of the Cocos dataset.

230

Appendix to Part 11

B.1 EvaLUuATING CONTEXTUALIZED CODE SEARCH IN PRACTICAL
USER STUDIES

This is the Appendix to Chapter 6.

B.1.1 Indexing Strategy

The following nonterminals in Table B.1 have been used in CODEBUDDY to discover
candidate snippets for indexing. Note that these nonterminals have been used as starting
points to build n-grams. For example, when an ExpressionStatement node (that is part
of the list) neighbors a variablebeclaration node (not part) in the AST, their n-gram is
indexed as well. The full algorithm is described in Section 6.3.3.

Nonterminal Type Nonterminal Type Nonterminal Type
IfStatement StatementBlock ClassFunction
ForStatement ExpressionStatement Function
FunctionDeclaration Program ForClause
MethodDeclaration Module IfExpression
MethodDefinition ClassBody TryExpression
Method ClassDeclaration Class
BlockArgument ClassDefinition Annotation

Block FunctionDefinition MarkerAnnotation

Table B.1: List of nonterminal types used in CODEBUDDY to detect possible targets for indexing.

231

APPENDIX TO PART II

B.1.2 Example Solutions in Study A

The following two figures show solutions for the original, unaltered exercise of the task

shown in Figure 6.7 that have been part of the search index.

VW P N U A W N R

=
S

12
13
14
15
16
17
18
19
20
21
22
23

import java.util.LinkedList;

import java.util.List;

public class Sieve {
static boolean[] sieve(int n) {
boolean[] result = new boolean[n + 1];
for (int 1 = 0; 1 <= n; i++)

result[i] = true;

for (int p = 2; p * p <= n; p++) {
// If prime[p] is not changed, then it
< 1is a prime
if (result[p] == true) {
// Update all multiples of p
for (int L =p * p; 1 <= n; 1 += p)

result[i] = false;

}

return result;

static List<Integer> primesUpTo(int n) {
List<Integer> result = new LinkedList<>();

boolean[] primeNumber = sieve(n);

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

for (int 1 = 2; 1 <= n; i++) {
if (primeNumber[i])
result.add(i);
}

return result;

static int[] primeFactors(int n) {
int[] result = new int[n];
int sqrt = (int) Math.sqgrt(n);
for (int div = 2; div * div <=
while (n % div == 0) {
n=n/ div;

System.out.println(div

}
}
if (n 1= 1) {
System.out.println(n);
}

return result;

n; div++) {

£

232

Figure B.1: A solution to the original exercise and relevant for the task shown in Figure 6.7.

B.1. EVALUATING CONTEXTUALIZED CODE SEARCH IN PrRaCTICAL USER

STUDIES
33 static ArraylList<Integer> primesUpTo(int[] o) {
< // Ihr wird das Array mit den Werten, das von
1 import java.util.Arraylist; <« list() zurickgegeben wird, als Parameter
2 < Ubergeben.
3 public class Sieve { 34 ArraylList<Integer> result = new
f THIERS sEe Gl (G o o & < ArraylList<Integer>(); //Im Methodenkérper
5 BRIVERD SEnie besleenl] or & ooy Cosleenins < wird zundchst eine leere Arraylist erzeugt,
6 < die spdter alle Primzahlen aufnimmt und in
7 static boolean[] sieve(int n) { < der Schleife werden die Zahlend von 2 bis
8 for (int k = 2; k <= n; k++) { <> 50 geprift.
9 boolean primzahl = true; 35 for (int = 2; 1 <= n; ++1) {
10 for (int L =25 1 <= k / 2; 1++) { 36 if (pr[i - 2]) { //Ist der jeweilige Wert des
11 i (k% i==0)(<> Zahlenarrays dort mit true als Primzahl
12 primzahl = false; < gekennzeichnet, so wird er in die
13 System.out.println(k + " ist keine — Arraylist eingetragen.
< Primzahl"); 37 result.add(o[il - 2]);
14 break; 38 for (int j=1*1; j<=n+1; j+=1) {
15 } 39 pr(j - 2] = false;
16 } 40 }
17 if (primzahl == true) { 41 }
18 System.out.println(k + " ist eine 42 }
s Primzahl"); 43 return result;
0) a4 }
20 } 45
21 boolean[] result = new boolean[n + 1]; 46 static int[] primeFactors(int n) {
2 return result; 47 System.out.println("------ T8
23 } 48 System.out.println("Teilfaktoren:");
24 49 for (int 1 = 2; 1 <= n; i++) {
25 private static int[] list() { // Die Methode 50 while (n % i == 0) {
< erzeugt ein int-Array, das die die Zahlen von = n=n/1
<« 2 bis zur Obergrenze speichert. 52 System.out.println(i);
26 int[] list = new int[n]; // Beim Durchlauf 33 }
< werden die Werte darin abgelegt und beim o8 }
<~ jeweiligen Index der zugehérige boolsche &2 D) resulE S aolls
<> Wert in das Hilfsarray pr eingetragen. =C R sy
27 for (int i = 2; 1 <= list.length; ++i) { // die e ¥
< 2 und alle ungeraden Zahlen als Primzahlen 58
s mit true, alle anderen bereis mit false 59 private static voild ausgeben(ArrayList<Integer>
< markiert, da gerade Zahlen als Vielfache - resﬁjlt)i{
<> von 2 keine Primzahlen sein kénnen. €0 tierr Gz © B FEST) o
o0 Ust[i - 2] = 15 61 System.out.println(i);
29 priit - 2] =i==2 || 1{%2==12 true : 62 }
< false; //Der Fragezeichen-Operator ist e }
< eine Kurzversion der If-Else-Anweisung. &
65 public static void main(String[] args) {
30 ¥ 66 sieve(50);
31 return list;
») 67 ausgeben(primesUpTo(list()));
68 primeFactors(50);
69 }
70 }

Figure B.2: A solution to the original exercise and relevant for the task shown in Figure 6.7.

B.1.3 Example Retrieval in Study A

An example of a real search request in Study A is shown in Figure B.3.

233

APPENDIX TO PART II

38 for (int 1 =2; 1 <= n; ++1) {
1 public class Primes { 39 if (pr[i - 2]) { //Ist der jeweilige Wert des
2 static boolean[] filter(int n) { < Zahlenarrays dort mit true als Primzahl
3 boolean[] array = new boolean[n + 1]; <> gekennzeichnet, so wird er in die ArraylList
4 for (int 1 = 0; 1 < array.length; i++) array[i] < eingetragen.
< = true; 40 result.add(o[i - 2]);
5 for (int j = 2; j < array.length; j++) { 41 for (int j =1 *1; j<=n+1; j+= 1){
6 I<—Cursor 42 prj - 2] = false;
7 } 43 }
8 return array; 44 }
9 } 45 }
10 } 46 return result;
(a) Search Request (b) Result 1: 103/02_Sieve.java
12 result[1] = false; 5 boolean[] ergebnis = new boolean[N + 1];
13 result[2] = true; 6 for (int 1 = 0; 1 <= N; i1++) {
14 for (int 1 = 2; 1 < result.length; i++) { 7 ergebnis[i] = true;
15 for (int j = i1 + 1; j < result.length; j++) { 8 for (int j =1 - 1; j>=2; j--) {
16 F (3 %1==0){ 9 F (L %3 ==0){
17 result[j] = false; 10 ergebnis[i] = false;
18 3 11 }
19 } 12 }
20 } 13 }
21 14 return ergebnis;
22 15 }

(c) Result 2: 105/09_Sieve. java Y Y % %k % (d) Result 3: 097/07_Foo. java
Figure B.3: On the top left, a search request for the prime number filter exercise shown in Figure 6.7. The remaining

sub-figures show the top three search results retrieved by CODEBUDDY, where the second result was rated as highly
relevant by a participant.

234

Glossary

9.1 ABBREVIATIONS

Al
API
AST

BPE
CBOW
CCS

CNN
CST
CT

DE
GEGLU
GELU
GPU
IDE

IDF
IM
TIoU

Artificial Intelligence. Pages: xiii, 1, 10,49, 52, 141, 149, 186, 207
Application Programming Interface. Pages: 126-128, 152,210

Abstract Syntax Tree. Pages: iii, v, 3-5, 11, 15-18, 50, 54, 60, 63, 70, 75,
76,78-80, 83, 84, 117, 125, 126, 145, 154, 156, 171, 207, 217

Byte Pair Encoding. Pages: 14, 53, 63, 65-68, 81, 94-96, 179
Continuous-Bag-Of-Words. Pages: 37, 38, 187

Contextualized Code Search. Pages: iii—vi, 6-8, 24, 44, 45, 120-125, 127,
128, 133, 135, 137, 139-141, 145-150, 153, 155, 157, 161-166, 171,
207-209

Convolutional Neural Network. Pages: 52

Concrete Syntax Tree. Pages: 11, 16, 18, 95-97

Cloze Task. Pages: 125,128, 135, 137, 141

dedenting. Pages: 129, 132, 136, 141, 154

Gated Gaussian Error Linear Unit. Pages: 94

Gaussian Error Linear Unit. Pages: 33

Graphics Processing Unit. Pages: 52,59, 99, 100, 103, 104, 136, 198
Integrated Development Environment. Pages: 91, 120, 121, 173, 177,
205,210

Inverse Document Frequency. Pages: 42

mutual identifier masking. Pages: 127,129, 131, 133, 136, 141, 154

Intersection over Union. Pages: 158

235

IR

IT
LCA

LLM
LM

LOC
LSTM
ML
MLM
NLP

NMS
ooV

p-p-

RelLU
REST
RNN
TS
t-SNE
Ul
UX

236

Information Retrieval. Pages: 25, 27-29, 31, 39, 40, 42—44, 125, 138,
142,153

Information Technology. Pages: 1

Lowest Common Ancestor. Pages: iii, vi, 5, 17, 51, 55-57, 59-61, 66,
70-72

Large Language Model. Pages: 3,41, 208-210

Language Model. Pages: iii, iv, vi, 5, 6, 8,9, 37, 39, 41, 44, 45, 76-81, 85,
90,92, 93, 95,99, 100, 104, 116, 117, 119, 120, 126, 145, 154, 163, 166,
167,171-175, 178-182, 185, 191, 193, 194, 196, 197, 199, 200, 202,
203,205, 207,208, 210, 231

Lines of Code. Pages: 171, 189

Long-Short-Term-Memory Network. Pages: 39, 52, 54,76, 81, 82
Machine Learning. Pages: iii, v, 2-5,7, 18,21, 22, 208

Masked Language Modeling. Pages: 39, 76-78, 81-85, 87,90, 117, 122
Natural Language Processing. Pages: iii, v, 2, 3,5, 6, 11, 13, 15, 37, 39, 44,
50-53,59, 63,75-77,80-82, 85, 122, 125, 126, 142, 157,172, 185, 187
Non-Maximum Suppression. Pages: 157

out-of-vocabulary. Pages: 13, 14, 53

percentage points. Pages: 51,67, 68,70,71,73,107,110-112, 115, 116,
125, 139, 140, 199, 201

Retrieval-Augmented Generation. Pages: 3, 140, 142, 163, 167
Rectified Linear Unit. Pages: xv, 33, 59, 60, 185, 186

Representational State Transfer. Zerms: RESTtul APL. Pages: 152
Recurrent Neural Network. Pages: 34,52, 53, 82

tree-based span selection. Pages: 129, 130, 132, 133, 135, 136, 141, 154
t-distributed Stochastic Neighbor Embedding. Pages: 137

User Interface. Pages: 147

User Experience. Pages: 151

9.2 DATASETS

Big-
CLoONEBENCH
Cocos

CODESEARCH-
NET

CoODEXGLUE

DEviGN

FunComMm

IwsLT’ 14

JAVA-LARGE

JAVA-MED

Java-smaLL

Poj-104

A clone detection dataset introduced by Svajlenko and Roy
(2015). Pages: 133

COntextualized COde Search Dataset. Contextualized Code
Search dataset introduced in Chapter 5 and by Villmow et al.
(2022). Pages: iii, vi, 7, 124, 125, 133-135, 137, 140, 141,
167,209

Code summarization dataset in six programming languages in-
troduced by Husain et al. (2019). Pages: 64, 68, 82, 90, 92, 93,
101, 104, 110, 115, 134

A code understanding benchmark that spans over various tasks,
introduced by Lu et al. (2021). Pages: xiii, 6, 20, 80, 82, 83, 92,
93,100, 102-106, 109, 111, 118, 124, 125, 135, 136, 139, 141,
145,207,209

A defect detection dataset, which is part of the CODEXGLUE
benchmark, introduced by Lu et al. (2021). Pages: 101

Code summarization dataset for Java functions introduced by
LeClair and McMillan (2019). Pages: 64, 67

A machine translation dataset introduced by Cettolo et al. (2014).
Pages: 65

Large version of a method naming dataset introduced by Alon
ctal. (2019a) (10000 repositories). Pages: 64, 66

Medium version of a method naming dataset introduced by Alon
ctal. (2019a) (1200 repositories). Pages: 64, 66, 69

Small version of a method naming dataset introduced by Alon
etal. (2019a) (100 repositories). Pages: 64, 66

Clone detection dataset, which is part of the CODEXGLUE bench-
mark. Pages: 101,105,116

237

9.3 METRICS

accuracy

AP

BLEU

EM

F1-score

MAP

MRR

nDCG

P@1

P@10

P@3

238

Proportion of examples for which the model predicted the cor-
rect output (Goodfellow et al. 2016, p. 103). Defnition: Equa-
tion (2.23). Pages: 27,28, 102-105, 107, 109, 110, 112, 125,
139, 140

Average Precision. IR metric that measures the area under
the precision-recall curve. Definition: Equation (2.29). Pages:
30, 195

Bilingual Evaluation Understudy. Measures similarity between a
machine-generated sequence and one or more human reference
sequences by computing the n-gram overlap between them. Defi-
nition: Equation (2.25). Pages: xiii, 27-29, 36, 64, 65, 68, 102,
104, 107,109-111, 115

Exact Match. Exact match metric that measures the fraction of
examples for which the model predicted the correct sequence.
Synonym for accuracy. Pages: 102, 107, 109-112

The F1-score is the harmonic mean of precision and recall. Def
inition: Equation (2.22). Pages: 27,28, 51, 64, 66, 67,70, 71,
73,198

Mean Average Precision. IR metric that measures the average
of the AP over multiple queries. Definition: Equation (2.30).
Pages: 27,30, 105-107, 109, 110, 115, 116, 125, 134, 136-141,
194-196, 198-202

Mean Reciprocal Rank. IR metric that measures the average
of the reciprocal ranks of the first relevant instance. Definition:
Equation (2.31). Pages: 27, 30, 136, 162-164

Normalized Discounted Cumulative Gain. IR metric that mea-
sures the quality of a ranking by considering non-binary relevance
ratings. Definition: Equation (2.33). Pages: 27, 31, 134, 136,
140, 141

Precision at 1. IR metric that measures the fraction of relevant
documents in the top 1 retrieved document. see Prec@k. Pages:
136-138, 140, 141

Precision at 10. IR metric that measures the fraction of relevant
documents in the top 10 retrieved documents. see Prec@k. Pages:
136, 141

Precision at 3. IR metric that measures the fraction of relevant
documents in the top 3 retrieved documents. see Prec@k. Pages:

136, 138, 140, 141

Prec@k

precision
recall

Recall@k

TE-IDF

Precision at k. IR metric that measures the fraction of relevant
documents in the top k retrieved documents. Definition: Equa-
tion (2.27). Pages: 29, 30, 134

Fraction of retrieved instances that are relevant. Definition: Equa-
tion (2.20). Pages: 27-29, 64, 66,71

Fraction of retrieved relevant instances. Definition: Equa-
tion (2.21). Pages: 27-29, 64, 66,71

Recall at k. IR metric that measures the fraction of all relevant
documents in the top k retrieved documents. Definition: Equa-
tion (2.28). Pages: 30

Term Frequency-Inverse Document Frequency. A numerical
statistic that reflects the importance of a word in a document
relative to a collection of documents. Defnition: Equation (2.47).
Pages: 42,43

239

9.4 MODELS

ABSOLUTE
TREE TRANS-
FORMER
AROMA

AsT-
ATTENDGRU
ATTENDGRU
BERT

BiL-
STM+GNN-
LSTM

BM2s

A transformer that uses absolute positional tree embeddings in-

troduced by Shiv and Quirk (2019). Pages: 55, 62, 66,71

A non-neural CCS approach introduced by Luan et al. (2019).
Pages: 115,128,139
Model introduced by LeClair et al. (2019). Pages: 68

Model introduced by LeClair and McMillan (2019). Pages: 68
A transformer encoder LM introduced by Devlin et al. (2019).
Pages: xiii, 39, 44, 50, 53, 54, 76, 81, 82, 86, 129

Model introduced by Fernandes et al. (2019). Pages: 68

A industry standard probabilistic IR model introduced by Robert-
son and Zaragoza (2009). Pages: 7, 42—44, 124, 125, 135-138,
141, 145,209, 231

CopE+GNN+BILSTMModel introduced by LeClair et al. (2020). Pages: 68

2HOPS
CODE2SEQ

CODE2VEC

CODEBERT

CopEBuUDDY

CoODERE-
TRIEVER
CopETs

CONVATTEN-

TION

ConNvV-SEQ2SEQ

240

A sequence-to-sequence code model that encodes pathes in ASTs
introduced by Alon et al. (2019a). Pages: 50, 54, 66-68, 83

A path-based code embedding model introduced by Alon et al.
(2019b). Pages: 50, 66, 115, 139

A transformer encoder code-LM pretrained with a discriminative
objective introduced by Feng et al. (2020). Pages: 3, 39, 53, 54,
65,68,77,82,83,87,96,111-113, 115, 116, 126,128,139, 178,
185, 196

The self-supervised CCS model described in Chapter 5 and in-
troduced in Villmow et al. (2022). Pages: iv,vi, 4, 8, 10, 148153,
158-167,169,171,207-210, 217

A code retrieval model introduced by Li et al. (2022). Pages: 126,
127,139

A transformer encoder-decoder code-LM introduced by Wang
etal. (2021b). Pages: 3, 14,40, 78,79, 83, 87, 90, 94, 104, 105,
111-113,115,116, 126, 139,178,197

Introduced by Allamanis et al. (2016) as a model that combines
convolutional and attentional mechanisms to encode code. Pages:
54, 66, 67

Model introduced by Gehring et al. (2017). Pages: 65

CORDER
CoTexT
Disco
DyNnamic CoN-
VOLUTION
FASTTEXT
GPT

GPT-2
GRAPH2SEQ
GRrRAPHCODE-
BERT
HIERARCHICAL

TRANSFORMER
INCODER

PLBART

REGULARPT

RoBERTA

ROBERTA-

CODE

RsT

A transformer encoder code-LM pretrained by augmenting code
introduced by Bui et al. (2021). Pages: 127

A variant of the Ts model fine-tuned for code introduced by
Phan et al. (2021). Pages: 83,112,113, 115, 116, 126, 139

A transformer encoder code-LM pretrained on automatically
created buggy and augmented versions of code introduced by
Ding et al. (2022). Pages: 127,139

Model introduced by Wu et al. (2019). Pages: 65

A word embedding model that uses sub-word information in-
troduced by Bojanowski et al. (2017). Pages: 39, 179, 185, 187,
188,202,203

A transformer decoder LM introduced by Radford et al. (2018).
Pages: 39, 40, 53, 81

A transformer decoder LM introduced by Radford et al. (2019).
Pages: 14, 82, 83

Modelintroduced by (DBLP:journals/corr/abs-1804-00823).
Pages: 68

A transformer encoder code-LM introduced by Guo et al. (2021).
Pages: 83,111,112, 115, 116, 126, 139, 173, 194, 196, 199-203
Model introduced by Nguyen et al. (2020). Pages: 55, 65, 69,73

A transformer decoder code-LM that has been trained by infilling
and autoregressive generation introduced by Fried et al. (2023).
Pages: 9,40, 173,175,178, 194, 196, 197, 199-203, 232

A transformer encoder-decoder code-LM pretrained by denois-
ing code introduced by Ahmad et al. (2021). Pages: 82, 111-113,
115,116,139

Baseline for the SYNTAXPT model from Chapter 4 trained with-
out syntax-aware objectives. Pages: 92,93, 107, 110-113, 115
A transformer encoder LM for NLP that is a variant of BERT
introduced by Liu et al. (2019). Pages: 39, 53, 68,76, 81, 82, 96,
97,100

A variant of the ROBERTA model fine-tuned for code on
CoDESEARCHNET by Feng et al. (2020). Pages: 82, 111-113,
115,139

Relative Structural Transformer. The relative structural trans-
former model presented in Chapter 3 and in Villmow et al.
(2021b). Pages: 5, 6,51, 62, 67-69, 72,73,75, 93, 110, 113,
207,209

241

SYNCOBERT

SYNTAXPT

SYNTAXPT

SyNTAXPT-ccs

SYNTAX-

PTdiscriminative

Ts

TRANSFORMER

TRANSFORMER
(no PT)
TREE2SEQ
TREeLSTM

UNIXCODER

242

A transformer encoder code-LM pretrained with a contrastive
objective in addition to a denoising objective introduced by Wang
etal. (2021a). Pages: 83,111, 115, 116, 126, 127, 139

The SyntaxPT model proposed in Chapter 7 and in Villmow"
etal. (2023b). Pages: 193,200-202

A transformer encoder-decoder code-LM pretrained with a self-
supervised syntax-tree-aware multi-task objective introduced in
Chapter 4. Pages: iii, iv, vi, 4, 6-9, 79, 80, 91-93, 107, 108,
110-113, 115-119, 129, 135, 136, 139, 141, 145, 146, 165,
171-175,178, 179, 193, 194, 196-201, 203, 205, 207, 208

A transformer encoder-decoder code-LM pretrained with a self-
supervised syntax-tree-aware multi-task objective introduced in
Chapter 4. Pages: iii, iv, vi, 4, 7, 8, 137, 139-142, 145-148,
151-154, 157, 166,207-210

A fine-tuned transformer encoder model proposed in Chapter 7
and in Villmow* et al. (2023b) based on the SYNTAXPT model.
Pages: 179,200, 201

A transformer encoder-decoder LM for NLP introduced by Raf-
fel et al. (2020). Pages: 15, 31, 33, 36, 39, 40, 77-79, 81, 83, 90,
93,94, 112,113,115, 165

This refers to the original transformer encoder-decoder archi-
tecture introduced by Vaswani et al. (2017), which is trained
end-to-end without pretraining. Pages: 62, 65, 66, 68, 69,71

A transformer baseline used in Chapter 4 that is trained end-
to-end without pretraining. Pages: 92,93, 110-113, 115
Model introduced by Shi et al. (2018). Pages: 65

A recursive neural network architecture that recursively encodes
a tree by computing a node’s representation based on its children
using an LSTM unit. The architecture has been introduced by
Tai et al. (2015). Pages: 54, 66

A transformer code-LM introduced by Guo et al. (2022). Pages:
126,127,139

9.5 TERMS

beam search

clone detection

cloze task

code refinement

code summariza-

tion

code translation

dedenting

defect detection

dropout

ElasticSearch

A search algorithm that explores the most likely paths in a search
space by keeping track of the k most likely candidates at each step.
Introduced in Section 2.2.2. Pages: 23, 24, 66, 102, 181
Retrieval task that aims to detect code clones or duplicate code
snippets in a codebase. It is part of the CODEXGLUE bench-
mark. Introduced in Section 4.5.7. Pages: 7,24, 25,53, 101, 103,
105-109, 116, 120-122, 124, 125, 135, 139, 141, 164

A type of language modeling task where a token is masked in a
sentence, and the model is trained to predict the masked token.
Pages: 37,45, 122,124,125, 128, 129, 135, 137, 141, 142
Sequence-to-sequence task that aims to automatically fix bugs
in code snippets. It is part of the CODEXGLUE benchmark.
Introduced in Section 4.5.7. Pages: 101, 109
Sequence-to-sequence task that aims to generate a concise descrip-
tion of a code snippet (e.g., for documentation or code search).
It is part of the CODEXGLUE benchmark. Introduced in Sec-
tions 3.4.3 and 4.5.7. Pages: 5, 6, 15,23, 51, 53, 62-64, 67,73,
75,78,79, 83,88, 89,92,93,101, 107, 110, 115
Sequence-to-sequence task that aims to translate code snippets
from one programming language to another. It is part of the
CoDpEXGLUE benchmark. Introduced in Section 4.5.7. Pages:
90,101, 102,107,109, 111,118

Deleaking step that probabilistically sets the indentation level
of the code snippet to zero. This technique is introduced in
Section 5.3.1. Pages: 165

Classification task that aims to detect defects or bugs in code.
It is part of the CODEXGLUE benchmark. Introduced in Sec-
tion 4.5.7. Pages: 7, 83, 101, 104, 106, 107, 116, 118, 125, 135,
139, 140

Regularization technique for neural networks that randomly
sets a fraction of the input units to zero during training (usually
around 10%). At test time, the output is scaled by the dropout
rate. Pages: xiii, xv, 15, 21, 45, 66, 89, 94, 101, 105, 127

A distributed, RESTtul search engine for text that uses the Okapi
BM25§ ranking function. https://www.elastic.co/elasticsearch/.

Pages: 43,137,138

243

https://www.elastic.co/elasticsearch/

end-to-end

GitHub

identifier deob-

fuscation

machine transla-

tion

method naming

mutual identifier

masking

n—gram

repository

RESTful API
TENSORTREE

tree-based file

truncation

244

This thesis refers to end-to-end training as training a model on a
downstream task without pretraining on a large corpus of unla-
beled data. Pages: 5,43, 49, 51, 53, 60, 62, 63, 65, 68,75, 76, 92,
101, 109, 110, 118, 127

A web-based platform for version control and collaboration us-
ing Git. It contains source code repositories, issue tracking, and
project management tools. https://github.com. Pages: 3, 6, 16,
52, 64, 80, 82, 98,99, 119, 120, 125, 146, 149, 161, 166, 172,
174, 178, 184, 188, 199

Structural pretraining task for code understanding introduced by
Lachaux et al. (2021) that replaces identifiers in a code snippet
with unique tokens and trains a encoder-decoder model to predict
the original identifiers. Pages: iii, 5, 6, 78-80, 85, 87, 88, 90, 94,
97,117,207

Automated process of translating text or speech from one lan-
guage to another using computer algorithms. Pages: 18,23, 28,
49,51, 53, 62,63, 65-68,73

Sequence-to-sequence task that aims to predict the method name
for a code function. Introduced in Section 3.4.3. Pages: 5,51, 62,
63,67,70,73,75,79, 178,189, 191, 194, 204

Deleaking step for a pair of code that analyzes the pairs ASTs
to probabilistically mask identifiers that are shared between the
two code snippets. This technique is introduced in Section 5.3.1.
Pages: 165

A contiguous (sub-)sequence of n words or tokens. Pages: 23,
28,29, 39, 64, 66, 82, 157, 174, 177,178,202, 217

A collection of source code files of the size of a software project
or system. Typically, a repository is used to version control code
projects for example using Git on GitHub. Pages: 2, 16, 52, 98,
99, 146, 149, 150, 164, 172,174, 178,197, 198

A type of API that follows the principles of REST. Pages:
Python library that enables developers to work with tree tensors
in PyTorch, developed for this thesis and open-sourced at GitHub
and PyPI (Villmow 2021). Pages: 6,80, 97,98, 131

Method to truncate a code file by removing large elements, based
on its AST. This technique is introduced in Section 4.4.2. Pages:
6,79,80,131,132

https://github.com

tree-based span se- Method to sample a span of code-tokens by traversing its AST.

lection This technique is introduced in Section 4.4.1, and adapted to
CCS in Section 5.3.1. Pages: iii, 5, 6,79, 80, 87, 88, 90, 91, 94,
117, 130, 154, 157, 165,207

tree-sitter A parser generator tool and an incremental parsing library that
builds ASTs and CSTs for code snippets (Brunsfeld 2023). Pages:
15,16, 18,63,95,99

245

246

Figure 1.1

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19

Listing of Figures

Thesisoutline 4
A Python function that computes the n-th Fibonacci number. . 14
The AST of the function shown in Figure 2.1. 18
The CST of the function shown in Figure 2.1. 20
Positional information in the transformer architecture. 34
Relative distances in a sequence of tokens. 38
The Relative Structural Transformer (RsT) architecture. 57
Hierarchical node relationships in a tree structure. 58
Matrices used to compute the movement patterns. 60
Memory usage and speed comparison. 72

Visualization of the transformer model’s output representations

with and without structuralloss. 74
Visualization of MLM and regular span maskingon code. . .. 87
Visualization of identifier deobfuscationoncode. 88
Training pipeline for structural pretraining. 90
Visualization of tree-based span selectiononcode. 91
The tree-tokenization process. 98
Example of the code translationtask. 105
Example of the code refinementtask. 107
Example of the code summarizationtask. 107
Example of the defect detectiontask. 109
Examples of the clone detectiontask. 110

Training losses of the structural and regular pretrained models. 113
Validation performance on the fine-tuning tasks. 114

Example of a successful translation in the code translation task. 117

Example of a failed translation in the code translation task. . . . 117
Example predictions of the code refinement task. 120
Example failed predictions of the code refinement task. 120
Confusion matrix for the clone detection task. 123
Heatmap of the confusion matrix for the clone detection task. . 123

Example code snippets for problem 100 in the Poj-104 dataset. 124

248

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9

Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7

Figure A.1
Figure A.2
Figure A.3
Figure A .4
Figure A.5

Figure B.1
Figure B.2
Figure B.3

Example of the Contextualized Code Search (CCS) task. . . . 129

Leakage patterns in CT-based CCS. 131
Approach for training self-supervised CT-based CCS. 132
Visualization of the tree-based span selection technique. 139
Training pipeline for CCS. 140
Examples from the implementation of the training pipeline. . . 142
Examples from the Cocos dataset. 144
T-SNE visualization of the learned embeddings on Cocos. . . 148
CopeBubpDY’sweb-frontend. 163
CopeBuppny’s IntelliJ-plugin. 164
Software Stack usedin CopeBuppy. 165
Robustness-enhanced training pipeline for CCS. 167
Example of a context-target pair in self-supervised CCS. 168
Examples of the changes to the training pipeline. 168
Example of the programming exercises used in Study A. 173
Comparison of the performance with & without CopEBuppy. 175
Results of the questionnaire in Study A. 177
Approaches to identifier quality assessment. 186
Examples of masking strategies with identifier deobfuscation. . 194
Input file for training the FASTTEXT model. 199
Annotation process of the manually annotated dataset. 204

Example of a code snippet from the manually annotated dataset. 205
Variation of scores for the different models. 214

Variation of scores for the different models across guideline cat-

EEOTIES. v v v v i e 215
Predictions with RsT for code summarization. 226
Query used to obtain the pretraining dataset. 227
Example of a common workflow using the TENSORTREE library. 228
Printing of trees in TENSORTREE library. 229
Example of the Cocos dataset. 230
Solution forataskinStudyB. L. 232
Solution forataskinStudyB. L oL 233
Real search request and top three results in Study A. 234

Table 2.1

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5

Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9
Table 4.10

Table 5.1
Table 5.2
Table 5.3
Table 5.4

Table 6.1

Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table 7.5
Table 7.6
Table 7.7

Table A.1
Table A.2

Listing of Tables

Number of nonterminals per programming language. 19
Comparison with state-of-the-art on method naming. 69
Code summarization results on the FUNCoM dataset. 70

Code summarization results on the CODESEARCHNET dataset. 70

Machine translation results on the Iwsrt’14 dataset. 71
Ablation study on JAVA-MED. 73
Statistics of the pretrainingdataset. 101
Statistics of the CODEXGLUE fine-tuning datasets. 104
Comparison of regular vs. structural pretraining on CODEXGLUE. 112
Comparison with end-to-end trainingon CODEXGLUE. 115
Comparison of RST and SYNTAXPT on code summarization. . 115
Comparison against state-of-the-art on code translation. 116
Comparison against state-of-the-art on code refinement. 118
Comparison against state-of-the-art on code summarization. . . 119
Comparison against state-of-the-art on defect detection. 121
Comparison against state-of-the-art on clone detection. 121
Statistics about the Cocos dataset. 143
Comparison with BM2 5 and ablation study on Cocos. 147
Comparison against state-of-the-art encoders on CODEXGLUE. 150
Comparison with OpenAlI’s text embeddings on Cocos. 151
List of programming exercises used in Study A. 174
Complexity of the generative scoring methods. 194
Statistics about the datasets used in this chapter. 198
Software projects in the manually annotated dataset. 201
Guidelines used to assess the quality of identifiers. 202
Comparison of scoring functions for identifier quality assessment. 211
Comparison against state-of-the-art models. 213
Comparison of the models’ performance on each guideline. . . . 217
Hyperparameters for the experiments in Tables 3.1 and 3.4. . . . 225
Statistics of the datasets used in the experiments for Chapter 3. . 226

249

Table B.1 Nonterminal types used as possible targets in CopEBUDDY. . . 231

250

References

Abadi, Martin, Ashish Agarwal, et al. (2016). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems. In CoRR abs/1603.04467. arXiv: 1603.04467 (cited on
page 100).

Abelson, Harold and Gerald J. Sussman (1985). Structure and Interpretation of Computer
Programs. MIT Press. 1SBN: 0-262-51036-7 (cited on page 13).

Ahmad, Wasi Uddin, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang (2021). Unified Pre-
training for Program Understanding and Generation. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, pp. 2655-2668 (cited on pages 5,
85 sq., 241).

Allamanis, Miltiadis, Earl T. Barr, Christian Bird, and Charles Sutton (2014). Learning natural
coding conventions. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014,
Pp- 281-293 (cited on pages 56, 186, 189, 216).

Allamanis, Miltiadis, Earl T. Barr, Christian Bird, and Charles Sutton (2015). Suggesting accurate
method and class names. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, pp. 38—49 (cited
on pages 55, 190).

Allamanis, Miltiadis, Earl T. Barr, Premkumar T. Devanbu, and Charles Sutton (2018). A Survey
of Machine Learning for Big Code and Naturalness. In ACM Comput. Surv. 51.4, 81:1-81:37
(cited on pages 55, 189).

Allamanis, Miltiadis, Hao Peng, and Charles Sutton (2016). A Convolutional Attention Network
for Extreme Summarization of Source Code. In Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016. Vol. 48. JMLR
Workshop and Conference Proceedings, pp. 2091-2100 (cited on pages 56, 66, 240).

Allamanis, Miltiadis and Charles Sutton (2013). Mining source code repositories at massive scale
using language modeling. In Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR ’13, San Francisco, CA, USA, May 18-19, 2013, pp.207-216 (cited on
page 84).

Alon, Uri, Shaked Brody, Omer Levy, and Eran Yahav (2019a). code2seq: Generating Sequences
from Structured Representations of Code. In 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (cited on pages 5, 17, 52 sq.,
55 sq., 64 sqq., 69, 237, 240).

Alon, Uri, Meital Zilberstein, Omer Levy, and Eran Yahav (2019b). code2vec: learning distributed
representations of code. In Proc. ACM Program. Lang. 3.POPL, 40:1-40:29 (cited on pages 17,
52,240).

251

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695
http://proceedings.mlr.press/v48/allamanis16.html
http://proceedings.mlr.press/v48/allamanis16.html
https://doi.org/10.1109/MSR.2013.6624029
https://doi.org/10.1109/MSR.2013.6624029
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353

Amershi, Saleema, Andrew Begel, et al. (2019). Software engineering for machine learning: a case
study. In Proceedings of the 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-31, 2019, pp. 291-
300 (cited on page 2).

Andaloussi, Amine Abbad, Thierry Sorg, and Barbara Weber (2022). Estimating developers’
cognitive load at a fine-grained level using eye-tracking measures. In Proceedings of the 30th
IEEE/ACM International Conference on Program Comprehension, ICPC 2022, Virtual Event,
May 16-17, 2022, pp. 111-121 (cited on page 188).

Andriantiana, Eric O. D., Kenneth Dadedzi, and Stephan Wagner (2018). The ancestral matrix of
arooted tree. In math abs/1809.03364. arXiv: 1809.03364 [math.co] (cited on page 61).

Arnaoudova, Venera, Massimiliano Di Penta, and Giuliano Antoniol (2016). Linguistic an-
tipatterns: what they are and how developers perceive them. In Empir. Soffw. Eng. 21.1, pp. 104-
158 (cited on pages 184 sq., 188,202 sq.).

Ba, Lei Jimmy, Jamie Ryan Kiros, and Geoffrey E. Hinton (2016). Layer Normalization. In CoRR
abs/1607.06450. arXiv: 1607.06456 (cited on page 35).

Babii, Hlib, Andrea Janes, and Romain Robbes (2019). Modeling Vocabulary for Big Code
Machine Learning. In CoRR abs/1904.01873. arXiv: 1904.01873 (cited on page 65).

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). Neural Machine Translation by
Jointly Learning to Align and Translate. In 37d International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (cited
on page 55).

Bajracharya, Sushil Krishna and Cristina Videira Lopes (2012). Analyzing and mining a code
search engine usage log. In Empir. Softw. Eng. 17.4-5, pp. 424-466 (cited on pages 161 sq.).

Bajracharya, Sushil Krishna, Joel Ossher, and Cristina Videira Lopes (2010). Leveraging usage
similarity for effective retrieval of examples in code repositories. In Proceedings of the 18th ACM
SIGSOFT International Symposium on Foundations of Soffware Engineering, 2010, Santa Fe,
NM, USA, November 7-11, 2010, pp. 157-166 (cited on pages 44, 135).

Bardes, Adrien, Jean Ponce, and Yann LeCun (2022). VICReg: Variance-Invariance-Covariance
Regularization for Self-Supervised Learning. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022 (cited on pages 28 sq.).

Bavishi, Rohan, Michael Pradel, and Koushik Sen (2018). Context2Name: A Deep Learning-Based
Approach to Infer Natural Variable Names from Usage Contexts. In CoRR abs/1809.05193.
arXiv: 1809.05193 (cited on page 190).

Baxter, Ira D., Andrew Yahin, et al. (1998). Clone Detection Using Abstract Syntax Trees. In 1998
International Conference on Software Maintenance, ICSM 1998, Bethesda, Maryland, USA,
November 16-19, 1998, pp. 368377 (cited on page 55).

Bengio, Yoshua, Réjean Ducharme, and Pascal Vincent (2000). A Neural Probabilistic Language
Model. In Advances in Neural Information Processing Systems 13, Papers from Neural Information
Processing Systems (NIPS) 2000, Denver, CO, USA, pp. 932-938 (cited on page 47).

Bichsel, Benjamin, Veselin Raychev, Petar Tsankov, and Martin T. Vechev (2016). Statistical
Deobfuscation of Android Applications. In Proceedings of the 2016 ACM SIGSAC Conference

252

https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1145/3524610.3527890
https://doi.org/10.1145/3524610.3527890
https://arxiv.org/abs/1809.03364
https://arxiv.org/abs/1809.03364
https://arxiv.org/abs/1809.03364
https://doi.org/10.1007/s10664-014-9350-8
https://doi.org/10.1007/s10664-014-9350-8
http://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1904.01873
http://arxiv.org/abs/1904.01873
https://arxiv.org/abs/1904.01873
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.1007/s10664-010-9144-6
https://doi.org/10.1007/s10664-010-9144-6
https://doi.org/10.1145/1882291.1882316
https://doi.org/10.1145/1882291.1882316
https://openreview.net/forum?id=xm6YD62D1Ub
https://openreview.net/forum?id=xm6YD62D1Ub
http://arxiv.org/abs/1809.05193
http://arxiv.org/abs/1809.05193
https://arxiv.org/abs/1809.05193
https://doi.org/10.1109/ICSM.1998.738528
https://proceedings.neurips.cc/paper/2000/hash/728f206c2a01bf572b5940d7d9a8fa4c-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/728f206c2a01bf572b5940d7d9a8fa4c-Abstract.html
https://doi.org/10.1145/2976749.2978422
https://doi.org/10.1145/2976749.2978422

on Computer and Communications Security, Vienna, Austria, October 24-28, 2016, pp. 343-355
(cited on page 55).

Bielik, Pavol, Veselin Raychev, and Martin T. Vechev (2016). PHOG: Probabilistic Model for
Code. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016. Vol. 48. JMLR Workshop and Conference
Proceedings, pp. 2933-2942 (cited on page 55).

Binder, Felix, Johannes Villmow, and Adrian Ulges (2020). Bidirectional Transformer Language
Models for Smart Autocompletion of Source Code. In 50. Jahrestagung der Gesellschaft fiir
Informatik, INFORMATIK 2020 - Back to the Future, Karlsrube, Germany, 28. September - 2.
Oktober 2020. Vol. P-307. LNI, pp. 915-922 (cited on page 10).

Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomés Mikolov (2017). Enriching Word
Vectors with Subword Information. In Trans. Assoc. Comput. Linguistics 5, pp. 135-146 (cited
on pages 41, 191, 197, 199, 241).

Borges, Hudson and Marco Tulio Valente (2018). What’s in a GitHub Star? Understanding
Repository Starring Practices in a Social Coding Platform. In J. Syst. Soffw. 146, pp. 112—129
(cited on page 102).

Bromley, Jane, Isabelle Guyon, et al. (1993). Signature Verification Using a Siamese Time Delay
Neural Network. In Advances in Neural Information Processing Systems 6, [7th NIPS Conference,
Denver, Colorado, USA, 1993], pp. 737-744 (cited on pages 27 sq.).

Brooks, Ruven E. (1983). Towards a Theory of the Comprehension of Computer Programs. In
Int. . Man Mach. Stud. 18.6, pp. 543-554 (cited on pages 80, 184, 188).

Brown, Tom B., Benjamin Mann, et al. (2020). Language Models are Few-Shot Learners. In
Advances in Neural Information Processing Systems 33: Annual Conference on Newral Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual (cited on pages 43,79,
127).

Bui, Nghi D. Q., Yijun Yu, and Lingxiao Jiang (2021). Self-Supervised Contrastive Learning for
Code Retrieval and Summarization via Semantic-Preserving Transformations. In SIGIR 21:
The 44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, Virtual Event, Canada, July 11-15, 2021, pp. 511-521 (cited on pages 135, 241).

Buse, Raymond P. L. and Westley Weimer (2010). Learning a Metric for Code Readability. In
IEEE Trans. Software Eng. 36.4, pp. 546-558 (cited on page 189).

Butler, Simon, Michel Wermelinger, Yijun Yu, and Helen Sharp (2010). Exploring the Influence
of Identifier Names on Code Quality: An Empirical Study. In 14th European Conference on
Software Maintenance and Reengineering, CSMR 2010, 15-18 March 2010, Madrid, Spain,
pp- 156-165 (cited on pages 184 sq., 188 sq., 202 sq.).

Canny, John F. (1986). A Computational Approach to Edge Detection. In IEEE Trans. Pattern
Anal. Mach. Intell. 8.6, pp. 679-698 (cited on page 171).

Caprile, Bruno and Paolo Tonella (2000). Restructuring Program Identifier Names. In 2000
International Conference on Software Maintenance, ICSM 2000, San Jose, California, USA,
October 11-14, 2000, pp. 97-107 (cited on pages 184, 189).

253

http://proceedings.mlr.press/v48/bielik16.html
http://proceedings.mlr.press/v48/bielik16.html
https://doi.org/10.18420/inf2020_83
https://doi.org/10.18420/inf2020_83
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1016/j.jss.2018.09.016
http://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network
http://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network
https://doi.org/10.1016/S0020-7373(83)80031-5
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1145/3404835.3462840
https://doi.org/10.1145/3404835.3462840
https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1109/CSMR.2010.27
https://doi.org/10.1109/CSMR.2010.27
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/ICSM.2000.883022

Cettolo, Mauro, Jan Niehues, et al. (2014). Report on the 11th IWSLT evaluation campaign. In
Proceedings of the 11th International Workshop on Spoken Language Translation: Evaluation
Campaign@IWSLT 2014, Lake Tahoe, CA, USA, December 4-5, 2014 (cited on pages 67,
237).

Chatterjee, Shaunak, Sudeep Juvekar, and Koushik Sen (2009). SNIFF: A Scarch Engine for
Java Using Free-Form Queries. In Fundamental Approaches to Software Engineering, 12th
International Conference, FASE 2009, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings. Vol. 5503.
Lecture Notes in Computer Science, pp. 385-400 (cited on pages 44, 135).

Chen, Fang, Jianlong Zhou, et al. (2016). Robust Multimodal Cognitive Load Measurement.
Human-Computer Interaction Series. Springer. ISBN: 978-3-319-31698-7 (cited on page 188).

Chen, Mark, Jerry Tworek, et al. (2021). Evaluating Large Language Models Trained on Code. In
CoRR abs/2107.03374. arXiv: 2107.03374 (cited on pages 3, 43, 127, 184).

Chen, Qibin, Jeremy Lacomis, et al. (2022). VarCLR: Variable Semantic Representation Pre-
training via Contrastive Learning. In 44th IEEE/ACM 44th International Conference on
Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, pp. 2327-2339
(cited on pages 187, 190, 212).

Chen, Ting, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton (2020). A Simple
Framework for Contrastive Learning of Visual Representations. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event.
Vol. 119. Proceedings of Machine Learning Research, pp. 1597-1607 (cited on pages 28 sq.).

Ciniselli, Matteo, Nathan Cooper, et al. (2022). An Empirical Study on the Usage of Transformer
Models for Code Completion. In IEEE Trans. Software Eng. 48.12, pp. 48184837 (cited on
pages 83, 190).

Clark, Kevin, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning (2019). What Does
BERT Look at? An Analysis of BERT’s Attention. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLB, BlackboxNLP@ACL
2019, Florence, Italy, August 1, 2019, pp. 276-286 (cited on page 138).

Clark, Kevin, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning (2020). ELECTRA:
Pre-training Text Encoders as Discriminators Rather Than Generators. In 8h International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020
(cited on pages 79, 83, 197).

Conneau, Alexis, Kartikay Khandelwal, et al. (2020). Unsupervised Cross-lingual Representation
Learningat Scale. In Proceedings of the S8th Annual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 8440-8451 (cited on pages 16, 130).

Corbo, Filippo, Concettina Del Grosso, and Massimiliano Di Penta (2007). Smart Formatter:
Learning Coding Style from Existing Source Code. In 237d IEEE International Conference on
Software Maintenance (ICSM 2007), October 2-5, 2007, Paris, France, pp. 525-526 (cited on
page 189).

Craswell, Nick, Bhaskar Mitra, et al. (2020). Overview of the TREC 2019 deep learning track. In
CoRR abs/2003.07820. arXiv: 2003.07820 (cited on pages 166, 177).

254

https://aclanthology.org/2014.iwslt-evaluation.1
https://doi.org/10.1007/978-3-642-00593-0_26
https://doi.org/10.1007/978-3-642-00593-0_26
https://doi.org/10.1007/978-3-319-31700-7
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3510003.3510162
https://doi.org/10.1145/3510003.3510162
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.1109/TSE.2021.3128234
https://doi.org/10.1109/TSE.2021.3128234
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.1109/ICSM.2007.4362682
https://doi.org/10.1109/ICSM.2007.4362682
https://arxiv.org/abs/2003.07820
https://arxiv.org/abs/2003.07820

Dahal, Samip, Adyasha Maharana, and Mohit Bansal (2022). Scotch: A Semantic Code Search
Engine for IDEs. In Deep Learning for Code Workshop (cited on pages 129, 137, 159).

Dam, Hoa Khanh, Truyen Tran, John C. Grundy, and Aditya K. Ghose (2016). DeepSoft: a
vision for a deep model of software. In Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016, pp. 944-947 (cited on page 84).

Dauphin, Yann N., Angela Fan, Michael Auli, and David Grangier (2017). Language Modeling with
Gated Convolutional Networks. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. Vol. 70. Proceedings of
Machine Learning Research, pp. 933-941 (cited on page 54).

Deerwester, Scott C., Susan T. Dumais, et al. (1990). Indexing by Latent Semantic Analysis. In J.
Am. Soc. Inf. Sci. 41.6, pp. 391-407 (cited on page 46).

Deissenboeck, Florian and Markus Pizka (2006). Concise and consistent naming, In Soffw. Qual.
J- 14.3, pp. 261-282 (cited on pages 2, 187, 189).

Devlin,]acob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019). BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pp. 4171-4186 (cited on pages 3, 16, 41, 55,78 sq., 86, 113,
240).

Dhar, Payal (2020). The carbon impact of artificial intelligence. In Nat. Mach. Intell. 2.8, pp. 423~
425 (cited on page 128).

Ding, Yangruibo, Luca Buratti, et al. (2022). Towards Learning (Dis)-Similarity of Source Code
from Program Contrasts. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27,
2022, pp. 6300-6312 (cited on pages 136, 241).

Dohmke, Thomas, Marco Iansiti, and Greg Richards (2023). Sea Change in Software Develop-
ment: Economic and Productivity Analysis of the Al-Powered Developer Lifecycle. In CoRR
abs/2306.15033. arXiv:2306.15033 [econ, q-fin] (cited on page 161).

Dong, Li, Nan Yang, et al. (2019). Unified Language Model Pre-training for Natural Language
Understanding and Generation. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pp. 13042-13054 (cited on page 83).

Douze, Matthijs, Alexandr Guzhva, et al. (2024). The Faiss library. In CoRR abs/2401.08281.
arXiv: 2401.08281 (cited on pages 27, 165).

Dubey, Abhimanyu, Abhinav Jauhri, et al. (2024). The Llama 3 Herd of Models. In CoRR
abs/2407.21783. arXiv: 2407.21783 (cited on page 43).

Fakhoury, Sarah, Devjeet Roy, et al. (2020). Measuring the impact of lexical and structural
inconsistencies on developers’ cognitive load during bug localization. In Empir. Softw. Eng.

25.3, pp. 21402178 (cited on pages 2, 80, 184, 187 sq.).

255

https://openreview.net/forum?id=rSxfCiOZk-c
https://openreview.net/forum?id=rSxfCiOZk-c
https://doi.org/10.1145/2950290.2983985
https://doi.org/10.1145/2950290.2983985
http://proceedings.mlr.press/v70/dauphin17a.html
http://proceedings.mlr.press/v70/dauphin17a.html
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6%5C%3C391::AID-ASI1%5C%3E3.0.CO;2-9
https://doi.org/10.1007/s11219-006-9219-1
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1038/s42256-020-0219-9
https://doi.org/10.18653/v1/2022.acl-long.436
https://doi.org/10.18653/v1/2022.acl-long.436
http://arxiv.org/abs/2306.15033
http://arxiv.org/abs/2306.15033
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://doi.org/10.48550/arXiv.2401.08281
https://arxiv.org/abs/2401.08281
https://doi.org/10.48550/arXiv.2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1007/s10664-019-09751-4
https://doi.org/10.1007/s10664-019-09751-4

Falleri, Jean-Rémy, Floréal Morandat, et al. (2014). Fine-grained and accurate source code differ-
encing. In ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014, pp. 313-324 (cited on page 17).

Fan, Angela, David Grangier, and Michael Auli (2018). Controllable Abstractive Summarization.
In Proceedings of the 2nd Workshop on Neural Machine Translation and Generation, NMT@ACL
2018, Melbourne, Australia, July 20, 2018, pp. 45-54 (cited on pages 51, 55).

Feng, Zhangyin, Daya Guo, et al. (2020). CodeBERT: A Pre-Trained Model for Programming and
Natural Languages. In Findings of the Association for Computational Linguistics: EMINLP 2020,
Online Event, 16-20 November 2020. Vol. EMNLP 2020. Findings of ACL, pp. 15361547
(cited on pages 3, 5,41, 55 sq., 67, 70,79, 81, 84, 113, 119, 125, 240 sq.).

Fernandes, Patrick, Miltiadis Allamanis, and Marc Brockschmidt (2019). Structured Neural
Summarization. In 7¢h International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019 (cited on pages 56, 240).

Ferrante, Jeanne, Karl J. Ottenstein, and Joe D. Warren (1987). The Program Dependence Graph
and Its Use in Optimization. In ACM Trans. Program. Lang. Syst. 9.3, pp. 319-349 (cited on
page 17).

Firth, J. (1957). A Synopsis of Linguistic Theory 1930-1955. In Studies in Linguistic Analysis
(cited on page 39).

Fischer, Gerhard, Scott Henninger, and David F. Redmiles (1991). Cognitive tools for locating and
comprehending software objects for reuse. In Proceedings of the 13th International Conference on
Software Engineering, Austin, TX, USA, May 13-17, 1991, pp. 318-328 (cited on page 134).

Fowler, Martin (1999). Refactoring - Improving the Design of Existing Code. Addison Wesley
object technology series. Addison-Wesley. 1SBN: 978-0-201-48567-7 (cited on page 51).

Frakes, William B. and Christopher J. Fox (1996). Quality Improvement Using A Software Reuse
Failure Modes Model. In IEEE Trans. Software Eng. 224, pp. 274-279 (cited on page 128).

Frakes, William B. and Brian A. Nejmeh (1987). Software Reuse Through Information Retrieval.
In COMPCON'’87, Digest of Papers, Thirty-Second IEEE Computer Society International Con-
ference, San Francisco, California, USA, February 23-27, 1987, pp. 380384 (cited on pages 2,
134).

Franks, Christine, Zhaopeng Tu, Premkumar T. Devanbu, and Vincent J. Hellendoorn (2015).
CACHECA: A Cache Language Model Based Code Suggestion Tool. In 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015,
Volume 2, pp.705-708 (cited on page 84).

Fried, Daniel, Armen Aghajanyan, et al. (2023). InCoder: A Generative Model for Code Infilling
and Synthesis. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023 (cited on pages 42, 190, 208, 210, 213, 241).

Fritz, Thomas, Andrew Begel, et al. (2014). Using psycho-physiological measures to assess task

difficulty in software development. In 36th International Conference on Software Engineering,
ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, pp. 402-413 (cited on page 188).

Gao, Leo, Stella Biderman, et al. (2021a). The Pile: An 800GB Dataset of Diverse Text for Language
Modeling. In CoRR abs/2101.00027. arXiv: 2101.00027 (cited on page 3).

256

https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.18653/v1/w18-2706
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://openreview.net/forum?id=H1ersoRqtm
https://openreview.net/forum?id=H1ersoRqtm
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
http://portal.acm.org/citation.cfm?id=256664.256813
http://portal.acm.org/citation.cfm?id=256664.256813
http://martinfowler.com/books/refactoring.html
https://doi.org/10.1109/32.491652
https://doi.org/10.1109/32.491652
https://doi.org/10.1109/ICSE.2015.228
https://openreview.net/pdf?id=hQwb-lbM6EL
https://openreview.net/pdf?id=hQwb-lbM6EL
https://doi.org/10.1145/2568225.2568266
https://doi.org/10.1145/2568225.2568266
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027

Gao, Tianyu, Xingcheng Yao, and Dangi Chen (2021b). SimCSE: Simple Contrastive Learning of
Sentence Embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, EMINLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, pp. 6894-6910 (cited on pages 28 sq., 47, 136, 138).

Gehring, Jonas, Michael Auli, et al. (2017). Convolutional Sequence to Sequence Learning, In
Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017. Vol. 70. Proceedings of Machine Learning Research,
pp- 1243-1252 (cited on pages 54 sq., 67, 240).

Gellenbeck, Edward M and Curtis R Cook (1991). An investigation of procedure and variable
names as beacons during program comprehension. In Empirical studies of programmers: Fourth

workshop. Ablex Publishing, Norwood, NJ, pp. 65-81 (cited on page 188).

Gillick, Daniel, Alessandro Presta, and Gaurav Singh Tomar (2018). End-to-End Retrieval in
Continuous Space. In CoRR abs/1811.08008. arXiv: 1811.68008 (cited on page 46).

Goldberg, Yoav (2016). A Primer on Neural Network Models for Natural Language Processing.
In J. Artif Intell. Res. 57, pp. 345-420 (cited on page 54).

Goodfellow, Ian J., Yoshua Bengio, and Aaron C. Courville (2016). Deep Learning. Adaptive
computation and machine learning. MIT Press. 1SBN: 978-0-262-03561-3 (cited on pages xvii,
11,13,21-24, 26,39, 157,197, 238).

Goodfellow, Ian J., Mehdi Mirza, et al. (2014). An Empirical Investigation of Catastrophic For-
geting in Gradient-Based Neural Networks. In 2rd International Conference on Learning
Representations, ICLR 2014, Banff;, AB, Canada, April 14-16, 2014, Conference Track Proceed-
ings (cited on page 104).

Grazia, Luca Di and Michael Pradel (2023). Code Search: A Survey of Techniques for Finding
Code. In ACM Comput. Surv. 55.11,220:1-220:31 (cited on pages 161 sq.).

Grechanik, Mark, Kevin M. Conroy, and Katharina Probst (2007). Finding Relevant Applications
for Prototyping. In Fourth International Workshop on Mining Software Repositories, MSR 2007
(ICSE Workshop), Minneapolis, MN, USA, May 19-20, 2007, Proceedings, p. 12 (cited on
pages 2,44, 134 sq.).

Grechanik, Mark and Denys Poshyvanyk (2008). Evaluating recommended applications. In
Proceedings of the 2008 International Workshop on Recommendation Systems for Software En-
gineering, RSSE 2008, Atlanta, GA, USA, November 9, 2008, pp. 33-35 (cited on pages 44,
135).

Gu, Xiaodong, Hongyu Zhang, and Sunghun Kim (2018). Deep code search. In Proceedings of the
40¢h International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May
27 - June 03, 2018, pp. 933-944 (cited on pages 51, 55).

Guo, Daya, Shuai Lu, et al. (2022). UniXcoder: Unified Cross-Modal Pre-training for Code
Representation. In Proceedings of the 60th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pp. 7212~
7225 (cited on pages 86, 121, 135 sq., 149, 242).

257

https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
http://proceedings.mlr.press/v70/gehring17a.html
http://arxiv.org/abs/1811.08008
http://arxiv.org/abs/1811.08008
https://arxiv.org/abs/1811.08008
https://doi.org/10.1613/jair.4992
http://www.deeplearningbook.org/
http://arxiv.org/abs/1312.6211
http://arxiv.org/abs/1312.6211
https://doi.org/10.1145/3565971
https://doi.org/10.1145/3565971
https://doi.org/10.1109/MSR.2007.9
https://doi.org/10.1109/MSR.2007.9
https://doi.org/10.1145/1454247.1454258
https://doi.org/10.1145/3180155.3180167
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499

Guo, Daya, Shuo Ren, et al. (2021). GraphCodeBERT: Pre-training Code Representations with
Data Flow. In 9th International Conférence on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021 (cited on pages 17,52, 85, 113, 135, 208 sq., 241).

Guu, Kelvin, Kenton Lee, et al. (2020). REALM: Retrieval-Augmented Language Model Pre-
Training. In CoRR abs/2002.08909. arXiv: 2002.68969 (cited on page 47).

He, Kaiming, Haoqi Fan, et al. (2020). Momentum Contrast for Unsupervised Visual Represen-
tation Learning. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp. 9726-9735 (cited on pages 28 sq., 152).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). Deep Residual Learning for
Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp.770-778 (cited on page 35).

Hellendoorn, Vincent J. and Premkumar T. Devanbu (2017). Are deep neural networks the best
choice for modeling source code? In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, pp. 763—
773 (cited on pages 56, 84).

Hevner, Alan, Alan R, et al. (2004). Design Science in Information Systems Research. In Manage-
ment Information Systems Quarterly 28, pp. 75— (cited on pages 11, 160).

Hilton, Peter and Felienne Hermans (2017). Naming Guidelines for Professional Programmers.
In Proceedings of the 28th Annual Workshop of the Psychology of Programming Interest Group,
PPIG 2017, Delfi, The Netherlands, July 1-3, 2017, p. 19 (cited on pages 184 sq., 188,202 sq.).

Hindle, Abram, Earl T. Barr, et al. (2012). On the naturalness of software. In 34¢h International
Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, pp. 837
847 (cited on pages 3, 84, 189 sq.).

Hochreiter, Sepp and Jiirgen Schmidhuber (1997). Long Short-Term Memory. In Neural Comput.
9.8, pp. 1735-1780 (cited on page 54).

Hofmann, Thomas (1999). Probabilistic Latent Semantic Indexing. In SIGIR ’99: Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, August 15-19, 1999, Berkeley, CA, USA, pp. 50-57 (cited on page 46).

Holmes, Reid and Gail C. Murphy (2005). Using structural context to recommend source code
examples. In 27t International Conference on Software Engineering (ICSE 2005), 15-21 May
2005, St. Louis, Missouri, USA, pp. 117-125 (cited on page 136).

Holmes, Reid, Robert J. Walker, and Gail C. Murphy (2005). Strathcona example recommendation
tool. In Proceedings of the 10th European Software Engineering Conference beld jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2005,
Lisbon, Portugal, September 5-9, 2005, pp. 237-240 (cited on page 136).

Holtzman, Ari, Jan Buys, et al. (2020). The Curious Case of Neural Text Degeneration. In 85
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020 (cited on page 25).

Hosang, Jan Hendrik, Rodrigo Benenson, and Bernt Schiele (2017). Learning Non-maximum
Suppression. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pp. 64696477 (cited on page 171).

258

https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/3106237.3106290
https://ppig.org/papers/2017-ppig-28th-hilton/
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/312624.312649
https://doi.org/10.1145/1062455.1062491
https://doi.org/10.1145/1062455.1062491
https://doi.org/10.1145/1081706.1081744
https://doi.org/10.1145/1081706.1081744
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.1109/CVPR.2017.685
https://doi.org/10.1109/CVPR.2017.685

Hu, Xing, Ge Li, et al. (2018). Deep code comment generation. In Proceedings of the 26th
Conference on Program Comprehension, ICPC 2018, Gothenburg, Sweden, May 27-28, 2018,
pp- 200-210 (cited on page 56).

Hu, Yaojie, Xingjian Shi, Qiang Zhou, and Lee Pike (2022). Fix Bugs with Transformer through
a Neural-Symbolic Edit Grammar. In CoRR abs/2204.06643. arXiv: 2204.06643 (cited on
page 118).

Huang, Gao, Chuan Guo, et al. (2016). Supervised Word Mover’s Distance. In Advances in Neural

Information Processing Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pp. 4862-4870 (cited on page 54).

Huang, Lei, Weijiang Yu, et al. (2023). A Survey on Hallucination in Large Language Models:
Principles, Taxonomy, Challenges, and Open Questions. In CoRR abs/2311.05232. arXiv:
2311.05232 (cited on pages 3, 177).

Huang, Po-Sen, Xiaodong He, et al. (2013). Learning deep structured semantic models for web
search using clickthrough data. In 22nd ACM International Conference on Information and
Knowledge Management, CIKM’13, San Francisco, CA, USA, October 27 - November I, 2013,
pp- 2333-2338 (cited on page 46).

Humeau, Samuel, Kurt Shuster, Marie-Anne Lachaux, and Jason Weston (2020). Poly-encoders:
Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020 (cited on page 46).

Husain, Hamel, Ho-Hsiang W, et al. (2019). CodeSearchNet Challenge: Evaluating the State of
Semantic Code Search. In CoRR abs/1909.09436. arXiv: 1969.09436 (cited on pages 67, 104,
107, 128, 133, 135, 144, 237).

Izacard, Gautier, Mathilde Caron, et al. (2022). Unsupervised Dense Information Retrieval with
Contrastive Learning. In Trans. Mach. Learn. Res. 2022 (cited on page 152).

Izacard, Gautier and Edouard Grave (2021). Distilling Knowledge from Reader to Retriever for
Question Answering. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021 (cited on page 47).

Izacard, Gautier, Fabio Petroni, et al. (2020). A Memory Efficient Baseline for Open Domain
Question Answering. In CoRR abs/2012.15156. arXiv: 2012.15156 (cited on page 152).

Jablonski, Patricia and Daqing Hou (2007). CReN: a tool for tracking copy-and-paste code
clones and renaming identifiers consistently in the IDE. In Proceedings of the 2007 OOPSLA
workshop on Eclipse Technology eXchange, ETX 2007, Montreal, Quebec, Canada, October 21,
2007, pp. 16-20 (cited on page 189).

Jain, Paras, Ajay Jain, et al. (2021). Contrastive Code Representation Learning. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 5954-5971 (cited
on page 135).

Jiang, Xue, Zhuoran Zheng, et al. (2021). TreeBERT: A tree-based pre-trained model for pro-
gramming language. In Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial

259

https://doi.org/10.1145/3196321.3196334
https://doi.org/10.48550/arXiv.2204.06643
https://doi.org/10.48550/arXiv.2204.06643
https://arxiv.org/abs/2204.06643
https://proceedings.neurips.cc/paper/2016/hash/10c66082c124f8afe3df4886f5e516e0-Abstract.html
https://doi.org/10.48550/arXiv.2311.05232
https://doi.org/10.48550/arXiv.2311.05232
https://arxiv.org/abs/2311.05232
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://arxiv.org/abs/2012.15156
https://arxiv.org/abs/2012.15156
https://arxiv.org/abs/2012.15156
https://doi.org/10.1145/1328279.1328283
https://doi.org/10.1145/1328279.1328283
https://doi.org/10.18653/v1/2021.emnlp-main.482
https://proceedings.mlr.press/v161/jiang21a.html
https://proceedings.mlr.press/v161/jiang21a.html

Intelligence, UAI 2021, Virtual Event, 27-30 July 2021. Vol. 161. Proceedings of Machine
Learning Research, pp. 54-63 (cited on page 85).

Jones, Karen Sparck, Steve Walker, and Stephen E. Robertson (2000). A probabilistic model
of information retrieval: development and comparative experiments - Part 1. In Inf Process.

Manag. 36.6, pp. 779-808 (cited on pages 147 sq.).

Joulin, Armand, Edouard Grave, et al. (2016). FastText.zip: Compressing text classification models.
In CoRR abs/1612.03651. arXiv: 1612.03651 (cited on page 199).

Jurafsky, Dan and James H. Martin (2009). Speech and Language Processing: an Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition, 2nd
Edition. Prentice Hall series in artificial intelligence. Prentice Hall, Pearson Education In-

ternational. ISBN: 9780135041963 (cited on pages 13, 15, 25 sq., 35, 42, 45, 192).

Kanade, Aditya, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi (2020). Learning and
Evaluating Contextual Embedding of Source Code. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Vol. 119.
Proceedings of Machine Learning Research, pp. 5110-5121 (cited on page 84).

Kaplan, Jared, Sam McCandlish, et al. (2020). Scaling Laws for Neural Language Models. In
CoRR abs/2001.08361. arXiv: 2001.08361 (cited on page 127).

Karpukhin, Vladimir, Barlas Oguz, et al. (2020). Dense Passage Retrieval for Open-Domain
Question Answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing, EMINLP 2020, Online, November 16-20, 2020, pp. 67696781 (cited
on pages 27, 46).

Kim, Kisub, Dongsun Kim, et al. (2018). FaCoY: a code-to-code search engine. In Proceedings of
the 40th International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, pp. 946957 (cited on page 137).

Kim, Seohyun, Jinman Zhao, Yuchi Tian, and Satish Chandra (2021). Code Prediction by Feeding
Trees to Transformers. In 43rd IEEE/ACM International Conference on Software Engineering,
ICSE 2021, Madyid, Spain, 22-30 May 2021, pp. 150-162 (cited on page 56).

Kim, Yoon (2014). Convolutional Neural Networks for Sentence Classification. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doba, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL,
pp- 17461751 (cited on page 54).

Kingma, Diederik P. and Jimmy Ba (2015). Adam: A Method for Stochastic Optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings (cited on pages 22, 68).

Kipf, Thomas N. and Max Welling (2017). Semi-Supervised Classification with Graph Con-
volutional Networks. In Sth International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings (cited on page 54).

Kitaev, Nikita, Lukasz Kaiser, and Anselm Levskaya (2020). Reformer: The Efficient Transformer.
In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020 (cited on page 222).

260

https://doi.org/10.1016/S0306-4573(00)00015-7
https://doi.org/10.1016/S0306-4573(00)00015-7
http://arxiv.org/abs/1612.03651
https://arxiv.org/abs/1612.03651
https://www.worldcat.org/oclc/315913020
https://www.worldcat.org/oclc/315913020
https://www.worldcat.org/oclc/315913020
http://proceedings.mlr.press/v119/kanade20a.html
http://proceedings.mlr.press/v119/kanade20a.html
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3180155.3180187
https://doi.org/10.1109/ICSE43902.2021.00026
https://doi.org/10.1109/ICSE43902.2021.00026
https://doi.org/10.3115/v1/d14-1181
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=rkgNKkHtvB

Ko, Amy J., Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung (2006). An Exploratory
Study of How Developers Seck, Relate, and Collect Relevant Information during Software
Maintenance Tasks. In IEEE Trans. Software Eng. 32.12, pp. 971-987 (cited on pages 161 sq.).

Kudo, Taku (2018). Subword Regularization: Improving Neural Network Translation Models
with Multiple Subword Candidates. In Proceedings of the 56th Annual Meeting of the Association
Sfor Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume I:
Long Papers, pp. 66-75 (cited on pages 16 sq.).

Kudo, Taku and John Richardson (2018). SentencePiece: A simple and language independent sub-
word tokenizer and detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, EMINLP 2018: System Demonstrations,
Brussels, Belgium, October 31 - November 4, 2018, pp. 6671 (cited on page 17).

Kusupati, Aditya, Gantavya Bhatt, et al. (2022). Matryoshka Representation Learning, In Advances
in Newral Information Processing Systems 3S: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022 (cited
on page 150).

Lachaux, Marie-Anne, Baptiste Roziere, Marc Szafraniec, and Guillaume Lample (2021). DOBF:
A Deobfuscation Pre-Training Objective for Programming Languages. In Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 14967-14979 (cited on pages 6,79 sq.,
82, 86, 88,91 sq., 123, 244).

Lacomis, Jeremy, Pengcheng Yin, etal. (2019). DIRE: A Neural Approach to Decompiled Identifier
Naming. In 34¢th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2019, San Diego, CA, USA, November 11-15, 2019, pp. 628-639 (cited on page 190).

Lan, Zhenzhong, Mingda Chen, etal. (2020). ALBERT: A Lite BERT for Self-supervised Learning
of Language Representations. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020 (cited on page 83).

Lawrie, Dawn J., Christopher Morrell, Henry Feild, and David W. Binkley (2006). What's in a
Name? A Study of Identifiers. In 14th International Conference on Program Comprehension
(ICPC 2006), 14-16 June 2006, Athens, Greece, pp. 3-12 (cited on pages 187 sq.).

LeClair, Alexander, Sakib Haque, Lingfei Wu, and Collin McMillan (2020). Improved Code
Summarization via a Graph Neural Network. In ICPC 20: 28th International Conference on
Program Comprehension, Seoul, Republic of Korea, July 13-15, 2020, pp. 184-195 (cited on
pages 56,70, 240).

LeClair, Alexander, Siyuan Jiang, and Collin McMillan (2019). A neural model for generating
natural language summaries of program subroutines. In Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
pp- 795-806 (cited on pages 56, 240).

LeClair, Alexander and Collin McMillan (2019). Recommendations for Datasets for Source Code
Summarization. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologiess NAACL-HLT 2019,
Minneapolis, MIN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 3931-3937
(cited on pages 66 sq., 70, 237, 240).

261

https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1109/TSE.2006.116
https://aclanthology.org/P18-1007/
https://aclanthology.org/P18-1007/
https://doi.org/10.18653/v1/d18-2012
https://doi.org/10.18653/v1/d18-2012
http://papers.nips.cc/paper%5C_files/paper/2022/hash/c32319f4868da7613d78af9993100e42-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2021/hash/7d6548bdc0082aacc950ed35e91fcccb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7d6548bdc0082aacc950ed35e91fcccb-Abstract.html
https://doi.org/10.1109/ASE.2019.00064
https://doi.org/10.1109/ASE.2019.00064
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.1109/ICPC.2006.51
https://doi.org/10.1109/ICPC.2006.51
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.18653/v1/n19-1394
https://doi.org/10.18653/v1/n19-1394

LeCun, Yann, Yoshua Bengio, and Geoffrey E. Hinton (2015). Deep learning. In Naz. 521.7553,
pp- 436-444 (cited on page 54).

Lee, Kenton, Ming-Wei Chang, and Kristina Toutanova (2019). Latent Retrieval for Weakly
Supervised Open Domain Question Answering. In Proceedings of the S7th Conference of the
Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019,
Volume 1: Long Papers, pp. 6086-6096 (cited on pages 7, 47, 130, 138, 140).

Lewis, Mike, Marjan Ghazvininejad, et al. (2020a). Pre-training via Paraphrasing. In Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual (cited on page 47).

Lewis, Mike, Yinhan Liu, et al. (2020b). BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Comprehension. In Proceedings of the S8th
Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10,
2020, pp.7871-7880 (cited on pages 43,78, 83, 91).

Li, Guangjie, Hui Liu, and Ally S. Nyamawe (2021). A Survey on Renamings of Software Entities.
In ACM Comput. Surv. 53.2,41:1-41:38 (cited on pages 184, 188).

Li, Jian, Yue Wang, Michael R. Lyu, and Irwin King (2018). Code Completion with Neural
Attention and Pointer Networks. In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, [[CAI 2018, July 13-19, 2018, Stockholm, Sweden, pp.4159-
4165 (cited on page 84).

Li, Raymond, Loubna Ben Allal, et al. (2023). StarCoder: may the source be with you! In Trans.
Mach. Learn. Res. 2023 (cited on pages 17, 42, 119).

Li, Xiaonan, Yeyun Gong, etal. (2022). CodeRetriever: A Large Scale Contrastive Pre-Training
Method for Code Search. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022,
pp- 2898-2910 (cited on pages 135 sq., 240).

Likert, Rensis (1932). A Technique for the Measurement of Attitudes. In Archives of Psychology
140, pp. 1-55 (cited on page 175).

Lin, Bin, Simone Scalabrino, et al. (2017). Investigating the Use of Code Analysis and NLP to
Promote a Consistent Usage of Identifiers. In 17#h IEEE International Working Conference
on Source Code Analysis and Manipulation, SCAM 2017, Shanghai, China, September 17-18,
2017, pp. 81-90 (cited on pages 184, 189).

Linstead, Erik, Sushil Krishna Bajracharya, et al. (2009). Sourcerer: mining and searching internet-
scale software repositories. In Data Min. Knowl. Discov. 18.2, pp. 300-336 (cited on page 135).

Liu, Fang, Ge Li, Yunfei Zhao, and Zhi Jin (2020). Multi-task Learning based Pre-trained Language
Model for Code Completion. In 35th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020, pp. 473-485
(cited on page 84).

Liu, Fang, Ge Li, et al. (2022). Learning to Recommend Method Names with Global Context. In
44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pittsburgh,
PA, USA, May 25-27, 2022, pp. 1294-1306 (cited on page 190).

262

https://doi.org/10.1038/nature14539
https://doi.org/10.18653/v1/p19-1612
https://doi.org/10.18653/v1/p19-1612
https://proceedings.neurips.cc/paper/2020/hash/d6f1dd034aabde7657e6680444ceff62-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1145/3379443
https://doi.org/10.24963/ijcai.2018/578
https://doi.org/10.24963/ijcai.2018/578
https://openreview.net/forum?id=KoFOg41haE
https://doi.org/10.18653/v1/2022.emnlp-main.187
https://doi.org/10.18653/v1/2022.emnlp-main.187
https://doi.org/10.1109/SCAM.2017.17
https://doi.org/10.1109/SCAM.2017.17
https://doi.org/10.1007/s10618-008-0118-x
https://doi.org/10.1007/s10618-008-0118-x
https://doi.org/10.1145/3324884.3416591
https://doi.org/10.1145/3324884.3416591
https://doi.org/10.1145/3510003.3510154

Liu, Jiacheng, Sewon Min, et al. (2024). Infini-gram: Scaling Unbounded n-gram Language
Models to a Trillion Tokens. In CoRR abs/2401.17377. arXiv: 2401.17377 (cited on page 41).

Liu, Shangqing, Bozhi W, et al. (2023). ContraBERT: Enhancing Code Pre-trained Models via
Contrastive Learning, In 45th IEEE/ACM International Conference on Software Engineering,
ICSE 2023, Melbourne, Australia, May 14-20, 2023, pp. 2476-2487 (cited on pages 121,
135 sq., 149).

Liu, Yinhan, Myle Ott, et al. (2019). RoBERTa: A Robustly Optimized BERT Pretraining
Approach. In CoRR abs/1907.11692. arXiv: 1907.11692 (cited on pages 41, 55,70, 79, 83, 99,
103, 114, 241).

Loshchilov, Ilya and Frank Hutter (2019). Decoupled Weight Decay Regularization. In 7zb
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019 (cited on pages 22, 105, 146).

Lu, Shuai, Nan Duan, et al. (2022). ReACC: A Retrieval-Augmented Code Completion Frame-
work. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pp. 6227-6240 (cited
on pages 133, 137).

Lu, Shuai, Daya Guo, et al. (2021). CodeXGLUE: A Machine Learning Benchmark Dataset
for Code Understanding and Generation. In Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December
2021, virtual (cited on pages 6, 82, 94, 103-106, 108 sq., 115, 123, 127, 134, 149, 237).

Luan, Sifei, Di Yang, et al. (2019). Aroma: code recommendation via structural code search. In

Proc. ACM Program. Lang. 3.00PSLA, 152:1-152:28 (cited on pages 137, 240).

Luan, Yi, Jacob Eisenstein, Kristina Toutanova, and Michael Collins (2021). Sparse, Dense, and
Attentional Representations for Text Retrieval. In Trans. Assoc. Comput. Linguistics 9, pp. 329—
345 (cited on page 46).

Ly, Fei, Hongyu Zhang, et al. (2015). CodeHow: Effective Code Search Based on API Under-
standing and Extended Boolean Model (E). In 30th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015,
pp- 260-270 (cited on pages 44, 135).

Malkov, Yury A. and Dmitry A. Yashunin (2020). Efficient and Robust Approximate Nearest
Neighbor Search Using Hierarchical Navigable Small World Graphs. In IEEE Trans. Pattern
Anal. Mach. Intell. 42.4, pp. 824-836 (cited on pages 27, 165, 170).

Mani, Senthil, Anush Sankaran, and Rahul Aralikatte (2019). Deepltiage: Exploring the Effec-
tiveness of Deep Learning for Bug Triaging. In Proceedings of the ACM India Joint International
Conference on Data Science and Management of Data, COMAD/CODS 2019, Kolkata, India,
January 3-5, 2019, pp. 171-179 (cited on pages 51, 55).

Mann, H. B. and D. R. Whitney (1947). On a Test of Whether one of Two Random Variables is
Stochastically Larger than the Other. In The Annals of Mathematical Statistics 18.1, pp. 50-60
(cited on page 175).

263

https://doi.org/10.48550/arXiv.2401.17377
https://doi.org/10.48550/arXiv.2401.17377
https://arxiv.org/abs/2401.17377
https://doi.org/10.1109/ICSE48619.2023.00207
https://doi.org/10.1109/ICSE48619.2023.00207
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2022.acl-long.431
https://doi.org/10.18653/v1/2022.acl-long.431
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://doi.org/10.1145/3360578
https://doi.org/10.1162/tacl%5C_a%5C_00369
https://doi.org/10.1162/tacl%5C_a%5C_00369
https://doi.org/10.1109/ASE.2015.42
https://doi.org/10.1109/ASE.2015.42
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1145/3297001.3297023
https://doi.org/10.1145/3297001.3297023
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schiitze (2008). Introduction to
Information Retrieval. Cambridge University Press. 1SBN: 978-0-521-86571-5 (cited on
pages 13, 32 sq., 44).

Manning, Christopher D., Mihai Surdeanu, et al. (2014). The Stanford CoreNLP Natural Lan-
guage Processing Toolkit. In Proceedings of the S2nd Annual Meeting of the Association for
Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, System Demon-
strations, pp. 55-60 (cited on page 67).

Mastropaolo, Antonio, Emad Aghajani, Luca Pascarella, and Gabriele Bavota (2022). Automated
Variable Renaming: Are We There Yet? In CoRR abs/2212.05738. arXiv: 2212.05738 (cited on
page 185).

Mastropaolo, Antonio, Emad Aghajani, Luca Pascarella, and Gabriele Bavota (2023). Automated
variable renaming: are we there yet? In Empir. Softw. Eng. 28.2, p. 45 (cited on page 190).

Maynez, Joshua, Shashi Narayan, Bernd Bohnet, and Ryan T. McDonald (2020). On Faithfulness
and Factuality in Abstractive Summarization. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 1906-1919
(cited on page 128).

McCann, Bryan, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher (2018). The Natural
Language Decathlon: Multitask Learning as Question Answering. In CoRR abs/1806.08730.
arXiv: 1806.08730 (cited on page 54).

Mielke, Sabrina J., Zaid Alyafeai, et al. (2021). Between words and characters: A Brief History
of Open-Vocabulary Modeling and Tokenization in NLP. In CoRR abs/2112.10508. arXiv:
2112.10508 (cited on page 17).

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013a). Efficient Estimation of Word
Representations in Vector Space. In Ist International Conference on Learning Representations,
ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings (cited on
pages 40, 54).

Mikolov, Tomds, Edouard Grave, et al. (2018). Advances in Pre-Training Distributed Word
Representations. In Proceedings of the Eleventh International Conference on Language Resources
and Evaluation, LREC 2018, Miyazaki, Japan, May 7-12, 2018 (cited on page 54).

Mikolov, Tomds, Ilya Sutskever, et al. (2013b). Distributed Representations of Words and Phrases
and their Compositionality. In Advances in Neural Information Processing Systems 26: 27th
Annunal Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held
December 5-8, 2013, Lake Tahoe, Nevada, United States, pp. 3111-3119 (cited on pages 27,
47,62,199).

Mikolov, Tomds, Wen-tau Yih, and Geoffrey Zweig (2013c). Linguistic Regularities in Continuous
Space Word Representations. In Human Language Technologies: Conference of the North
American Chapter of the Association of Computational Linguistics, Proceedings, June 9-14, 2013,
Westin Peachtree Plaza Hotel, Atlanta, Georgia, USA, pp.746-751 (cited on pages 40, 54).

Mishne, Alon, Sharon Shoham, and Eran Yahav (2012). Typestate-based semantic code search
over partial programs. In Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH
2012, Tucson, AZ, USA, October 21-25, 2012, pp. 997-1016 (cited on pages 129, 136).

264

https://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf
https://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf
https://doi.org/10.3115/v1/p14-5010
https://doi.org/10.3115/v1/p14-5010
https://doi.org/10.48550/arXiv.2212.05738
https://doi.org/10.48550/arXiv.2212.05738
https://arxiv.org/abs/2212.05738
https://doi.org/10.1007/s10664-022-10274-8
https://doi.org/10.1007/s10664-022-10274-8
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
http://arxiv.org/abs/1806.08730
http://arxiv.org/abs/1806.08730
https://arxiv.org/abs/1806.08730
https://arxiv.org/abs/2112.10508
https://arxiv.org/abs/2112.10508
https://arxiv.org/abs/2112.10508
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://www.lrec-conf.org/proceedings/lrec2018/summaries/721.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/721.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://aclanthology.org/N13-1090/
https://aclanthology.org/N13-1090/
https://doi.org/10.1145/2384616.2384689
https://doi.org/10.1145/2384616.2384689

Mitra, Bhaskar and Nick Craswell (2018). An Introduction to Neural Information Retrieval. In
Found. Trends Inf- Retr. 13.1, pp. 1-126 (cited on pages 44, 46).

Mou, Lili, Ge Li, et al. (2016). Convolutional Neural Networks over Tree Structures for Pro-
gramming Language Processing. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pp. 1287-1293 (cited on pages 104,
109 sq.).

Mukherjee, Rohan, Chris Jermaine, and Swarat Chaudhuri (2020). Searchinga Database of Source
Codes Using Contextualized Code Search. In Proc. VLDB Endow. 13.10, pp. 1765-1778
(cited on pages 7, 129, 137, 159).

Murali, Vijayaraghavan, Letao Qi, Swarat Chaudhuri, and Chris Jermaine (2018). Neural Sketch
Learning for Conditional Program Generation. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings (cited on page 137).

Neelakantan, Arvind, Tao Xu, et al. (2022). Text and Code Embeddings by Contrastive Pre-
Training. In CoRR abs/2201.10005. arXiv: 2201.10005 (cited on pages 150 sq.).

Nguyen, Anh Tuan and Tien N. Nguyen (2015). Graph-Based Statistical Language Model for
Code. In 37th IEEE/ACM International Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume I, pp. 858-868 (cited on page 84).

Nguyen, Tri, Mir Rosenberg, et al. (2016). MS MARCO: A Human Generated MAchine Reading
COmprehension Dataset. In Proceedings of the Workshop on Cognitive Computation: Integrating
neural and symbolic approaches 2016 co-located with the 30th Annual Conference on Neural
Information Processing Systems (NIPS 2016), Barcelona, Spain, December 9, 2016. Vol. 1773.
CEUR Workshop Proceedings (cited on pages 46, 130).

Nguyen, Xuan-Phi, Shafiq R. Joty, Steven C. H. Hoi, and Richard Socher (2020). Tree-Structured
Attention with Hierarchical Accumulation. In 8#h International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020 (cited on pages 52,57,
67 sq.,71 sq., 241).

Nogueira, Rodrigo Frassetto, Wei Yang, Kyunghyun Cho, and Jimmy Lin (2019). Multi-Stage
Document Ranking with BERT. In CoRR abs/1910.14424. arXiv: 1916. 14424 (cited on
page 46).

Oord, Aidron van den, Yazhe Li, and Oriol Vinyals (2018). Representation Learning with Con-
trastive Predictive Coding, In CoRR abs/1807.03748. arXiv: 1807.03748 (cited on page 28).

OpenAl (2023). GPT-4 Technical Report. In CoRR abs/2303.08774. arXiv: 2303.08774 (cited on
page 43).

Ott, Myle, Sergey Edunov, et al. (2019). fairseq: A Fast, Extensible Toolkit for Sequence Modeling,
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Demonstrations, pp. 4853 (cited on page 68).

Ouyang, Long, Jeffrey W, et al. (2022). Training language models to follow instructions with
human feedback. In Advances in Neural Information Processing Systems 35: Annual Conference on

265

https://doi.org/10.1561/1500000061
https://doi.org/10.1609/aaai.v30i1.10139
https://doi.org/10.1609/aaai.v30i1.10139
http://www.vldb.org/pvldb/vol13/p1765-mukherjee.pdf
http://www.vldb.org/pvldb/vol13/p1765-mukherjee.pdf
https://openreview.net/forum?id=HkfXMz-Ab
https://openreview.net/forum?id=HkfXMz-Ab
https://arxiv.org/abs/2201.10005
https://arxiv.org/abs/2201.10005
https://arxiv.org/abs/2201.10005
https://doi.org/10.1109/ICSE.2015.336
https://doi.org/10.1109/ICSE.2015.336
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://openreview.net/forum?id=HJxK5pEYvr
https://openreview.net/forum?id=HJxK5pEYvr
http://arxiv.org/abs/1910.14424
http://arxiv.org/abs/1910.14424
https://arxiv.org/abs/1910.14424
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/n19-4009
http://papers.nips.cc/paper%5C_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html

Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022 (cited on page 43).

Pan, Bing, Helene Hembrooke, et al. (2007). In Google We Trust: Users” Decisions on Rank,
Position, and Relevance. InJ. Comput. Mediat. Commun. 12.3, pp. 801-823 (cited on page 170).

Panchenko, Oleksandr, Hasso Plattner, and Alexander Zeier (2011). What do developers search
for in source code and why. In Proceedings of the 3rd International Workshop on Search-Driven
Development: Users, Infrastructure, Tools, and Evaluation. SUITE ’11. Whaikiki, Honolulu, HI,
USA, pp. 33-36. 1sBN: 9781450305976 (cited on page 162).

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu (2002). Bleu: a Method for
Automatic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA, pp.311-318
(cited on page 31).

Parvez, Md. Rizwan, Wasi Uddin Ahmad, et al. (2021). Retrieval Augmented Code Generation
and Summarization. In Findings of the Association for Computational Linguistics: EMINLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 16-20 November, 2021, pp. 2719-2734
(cited on page 133).

Paszke, Adam, Sam Gross, et al. (2019). PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 8024-8035 (cited on pages 22, 54, 68, 82, 100, 103 sq.).

Paul, Santanu and Atul Prakash (1994). A Framework for Source Code Search Using Program
Patterns. In JEEE Trans. Software Eng. 20.6, pp. 463-475 (cited on page 17).

Paulus, Romain, Caiming Xiong, and Richard Socher (2018). A Deep Reinforced Model for
Abstractive Summarization. In 62h International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings (cited on
page 25).

Peng, Sida, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer (2023). The Impact of Al on
Developer Productivity: Evidence from GitHub Copilot. In CoRR abs/2302.06590. arXiv:
2302.06590 (cited on page 161).

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014). Glove: Global Vectors
for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMINLP 2014, October 25-29, 2014, Doba, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pp. 1532-1543 (cited on pages 47, 54).

Peters, Matthew E., Mark Neumann, et al. (2018). Deep Contextualized Word Representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans,
Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pp. 2227-2237 (cited on pages 41,
83).

Phan, LongN., Hieu Tran, et al. (2021). ColexT: Multi-task Learning with Code-Text Transformer.
In CoRR abs/2105.08645. arXiv: 2165.08645 (cited on pages 85 sq., 118, 135, 241).

266

https://doi.org/10.1111/j.1083-6101.2007.00351.x
https://doi.org/10.1111/j.1083-6101.2007.00351.x
https://doi.org/10.1145/1985429.1985438
https://doi.org/10.1145/1985429.1985438
https://aclanthology.org/P02-1040/
https://aclanthology.org/P02-1040/
https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1109/32.295894
https://doi.org/10.1109/32.295894
https://openreview.net/forum?id=HkAClQgA-
https://openreview.net/forum?id=HkAClQgA-
https://doi.org/10.48550/arXiv.2302.06590
https://doi.org/10.48550/arXiv.2302.06590
https://arxiv.org/abs/2302.06590
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.18653/v1/n18-1202
https://arxiv.org/abs/2105.08645
https://arxiv.org/abs/2105.08645

Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever (2018). Improving language
understanding by generative pre-training. en. In Opendl blog (cited on pages 3, 22, 41 sq., 55,
78 sq., 241).

Radford, Alec, Jeffrey W, et al. (2019). Language Models are Unsupervised Multitask Learners.
In OpenAl blog 1.8, p. 9 (cited on pages 17,79, 99, 241).

Raffel, Colin, Noam Shazeer, et al. (2020). Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer. In J. Mach. Learn. Res. 21, 140:1-140:67 (cited on pages 17,
33,35,37 sq. 41, 43,79 5q., 83, 85 5q., 88, 91,93, 96, 103, 242).

Rahman, Md. Masudur, Jed Barson, et al. (2018). Evaluating how developers use general-purpose
web-search for code retrieval. In Proceedings of the 15th International Conference on Mining
Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018, pp. 465-475 (cited
on page 162).

Ram, Ori, Yoav Levine, et al. (2023). In-Context Retrieval-Augmented Language Models. In
Trans. Assoc. Comput. Linguistics 11, pp. 1316-1331 (cited on page 3).

Ray, Baishakhi, Vincent J. Hellendoorn, et al. (2016). On the "naturalness” of buggy code. In
Proceedings of the 38th International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016, pp. 428-439 (cited on page 189).

Raychev, Veselin (2016). Learning from Large Codebases. PhD thesis. ETH Zurich, Ziirich,
Switzerland (cited on page 84).

Raychev, Veselin, Pavol Bielik, and Martin T. Vechev (2016). Probabilistic model for code with
decision trees. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH
2016, Amsterdam, The Netherlands, October 30 - November 4, 2016, pp. 731-747 (cited on
page 55).

Raychev, Veselin, Martin T. Vechev, and Andreas Krause (2019). Predicting program properties
from ’big code’. In Commun. ACM 62.3, pp. 99-107 (cited on page 55).

Raychev, Veselin, Martin T. Vechev, and Eran Yahav (2014). Code completion with statistical
language models. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, pp. 419-428
(cited on page 55).

Raymond, Eric S. (1998). The Cathedral and the Bazaar. In First Monday 3.3 (cited on page 1).

Reid, Machel, Nikolay Savinov, et al. (2024). Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context. In CoRR abs/2403.05530. arXiv: 2403.05530 (cited on
page 222).

Reimers, Nils and Iryna Gurevych (2019). Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks. In Proceedings of the 2019 Confeérence on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Processing,
EMNLP-[JCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 3980-3990 (cited on
page 46).

267

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://api.semanticscholar.org/CorpusID:160025533
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1145/3196398.3196425
https://doi.org/10.1145/3196398.3196425
https://doi.org/10.1162/tacl%5C_a%5C_00605
https://doi.org/10.1145/2884781.2884848
https://hdl.handle.net/20.500.11850/121456
https://doi.org/10.1145/2983990.2984041
https://doi.org/10.1145/2983990.2984041
https://doi.org/10.1145/3306204
https://doi.org/10.1145/3306204
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.5210/fm.v3i2.578
https://doi.org/10.48550/arXiv.2403.05530
https://doi.org/10.48550/arXiv.2403.05530
https://arxiv.org/abs/2403.05530
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

Ren, Liliang, Yang Liu, et al. (2024). Samba: Simple Hybrid State Space Models for Efficient
Unlimited Context Language Modeling. In CoRR abs/2406.07522. arXiv: 2406.07522 (cited
on page 222).

Ren, Ruiyang, Yingqi Qu, et al. (2021). RocketQAv2: A Joint Training Method for Dense Passage
Retrieval and Passage Re-ranking. In Proceedings of the 2021 Conférence on Empirical Methods in
Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic,
7-11 November, 2021, pp. 2825-2835 (cited on pages 29, 138).

Ren, Shuo, Daya Guo, et al. (2020). CodeBLEU: a Method for Automatic Evaluation of Code
Synthesis. In CoRR abs/2009.10297. arXiv: 2009.16297 (cited on page 133).

Robertson, Stephen E., Steve Walker, et al. (1994). Okapi at TREC-3. In Proceedings of The Third
Text REtrieval Conference, TREC 1994, Gaithersburg, Maryland, USA, November 2-4, 1994.
Vol. 500-225. NIST Special Publication, pp. 109-126 (cited on pages 44 sq.).

Robertson, Stephen E. and Hugo Zaragoza (2009). The Probabilistic Relevance Framework:
BM25 and Beyond. In Found. Trends Inf. Retr. 3.4, pp. 333-389 (cited on pages 7, 44, 133,
145, 148, 240).

Roy, Chanchal Kumar and James R Cordy (2007). A Survey on Software Clone Detection Research.
In Queen’s School of computing TR 541.115, pp. 64—68 (cited on page 143).

Sadowski, Caitlin, Kathryn T. Stolee, and Sebastian G. Elbaum (2015). How developers search
for code: a case study. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, pp. 191-201
(cited on page 162).

Sahavechaphan, Naiyana and Kajal T. Claypool (2006). XSnippet: Mining For Sample Code. In
Proceedings of the 21th Annual ACM SIGPLAN Confeérence on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006, Portland, Oregon,
USA, pp.413-430 (cited on page 136).

See, Abigail, Peter J. Liu, and Christopher D. Manning (2017). Get To The Point: Summarization
with Pointer-Generator Networks. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers, pp. 1073-1083 (cited on page 55).

Sengamedu, Srinivasan and Hanggqi Zhao (2022). Neural language models for code quality
identification. In Proceedings of the 6th International Workshop on Machine Learning Techniques
Jor Software Quality Evaluation, MaLTeSQuE 2022, Singapore, Singapore, 18 November 2022,
pp- 5-10 (cited on page 190).

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2016). Neural Machine Translation of Rare
Words with Subword Units. In Proceedings of the S4th Annual Meeting of the Association for

Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers (cited on pages 16 sq., 55, 65).

Shah, Haseeb, Johannes Villmow, and Adrian Ulges (2020). Relation Specific Transformations
for Open World Knowledge Graph Completion. In Proceedings of the Graph-based Methods for
Natural Language Processing (TextGraphs). Barcelona, Spain (Online), pp. 79-84 (cited on
page 10).

268

https://doi.org/10.48550/arXiv.2406.07522
https://doi.org/10.48550/arXiv.2406.07522
https://arxiv.org/abs/2406.07522
https://doi.org/10.18653/v1/2021.emnlp-main.224
https://doi.org/10.18653/v1/2021.emnlp-main.224
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1145/1167473.1167508
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.1145/3549034.3561175
https://doi.org/10.1145/3549034.3561175
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.18653/v1/p16-1162
https://aclanthology.org/2020.textgraphs-1.9
https://aclanthology.org/2020.textgraphs-1.9

Shah, Haseeb*, Johannes Villmow*, et al. (2019). An Open-World Extension to Knowledge
Graph Completion Models. In The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp. 3044-3051 (cited on
pages 10,27).

Shanahan, Murray (2024). Talking about Large Language Models. In Commun. ACM 67.2,
pp- 68-79 (cited on page 78).

Shaw, Peter, Jakob Uszkoreit, and Ashish Vaswani (2018). Self-Attention with Relative Position
Representations. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Langnage Technologies, NAACL-HLT, New
Orleans, Louisiana, USA, June 1-6, 2018, Volume 2 (Short Papers), pp.464-468 (cited on
pages 36 sqq., 52, 58 sq.).

Shazeer, Noam (2020). GLU Variants Improve Transformer. In CoRR abs/2002.05202. arXiv:
2002.05202 (cited on page 96).

Shazeer, Noam and Mitchell Stern (2018). Adafactor: Adaptive Learning Rates with Sublinear
Memory Cost. In Proceedings of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmdissan, Stockholm, Sweden, July 10-15, 2018. Vol. 80. Proceedings of Machine
Learning Research, pp. 4603-4611 (cited on page 22).

Shi, Haoyue, Hao Zhou, Jiaze Chen, and Lei Li (2018). On Tree-Based Neural Sentence Modeling.
In Proceedings of the 2018 Conférence on Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018, pp. 4631-4641 (cited on pages 67, 242).

Shiv, Vighnesh Leonardo and Chris Qu'irk (2019). Novel positional encodings to enable tree-based
transformers. In Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Inﬁzrmation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 12058-12068 (cited on pages 52, 56, 64 sq., 69, 72, 240).

Siegmund, Janet, Norman Peitek, et al. (2017). Measuring neural efficiency of program compre-
hension. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, pp. 140-150 (cited on pages 184,
188).

Sim, Susan Elliott, Medha Umarji, Sukanya Ratanotayanon, and Cristina V. Lopes (2011). How

Well Do Search Engines Support Code Retrieval on the Web? In ACM Trans. Softw. Eng.
Methodol. 21.1, 4:1-4:25 (cited on page 162).

Sindhgatta, Renuka (2006). Using an information retrieval system to retrieve source code samples.
In 28th International Conference on Software Engineering (ICSE 2006), Shanghai, China, May
20-28, 2006, pp. 905-908 (cited on pages 44, 134).

Singer, Janice, Timothy C. Lethbridge, Norman G. Vinson, and Nicolas Anquetil (1997). An
examination of software engineering work practices. In Proceedings of the 1997 conference of the
Centre for Advanced Studies on Collaborative Research, November 10-13, 1997, Toronto, Ontario,
Canada, p. 21 (cited on page 161).

Socher, Richard, Dangi Chen, Christopher D. Manning, and Andrew Y. Ng (2013). Reasoning
With Neural Tensor Networks for Knowledge Base Completion. In Advances in Neural Infor-
mation Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems

269

https://doi.org/10.1609/aaai.v33i01.33013044
https://doi.org/10.1609/aaai.v33i01.33013044
https://doi.org/10.1145/3624724
https://doi.org/10.18653/v1/n18-2074
https://doi.org/10.18653/v1/n18-2074
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
http://proceedings.mlr.press/v80/shazeer18a.html
http://proceedings.mlr.press/v80/shazeer18a.html
https://doi.org/10.18653/v1/d18-1492
https://proceedings.neurips.cc/paper/2019/hash/6e0917469214d8fbd8c517dcdc6b8dcf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6e0917469214d8fbd8c517dcdc6b8dcf-Abstract.html
https://doi.org/10.1145/3106237.3106268
https://doi.org/10.1145/3106237.3106268
https://doi.org/10.1145/2063239.2063243
https://doi.org/10.1145/2063239.2063243
https://doi.org/10.1145/1134285.1134448
https://dl.acm.org/citation.cfm?id=782031
https://dl.acm.org/citation.cfm?id=782031
https://proceedings.neurips.cc/paper/2013/hash/b337e84de8752b27eda3a12363109e80-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/b337e84de8752b27eda3a12363109e80-Abstract.html

2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States,
pp- 926-934 (cited on page 54).

Sohn, Kihyuk (2016). Improved Deep Metric Learning with Multi-class N-pair Loss Objective. In
Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 1849-1857 (cited on
page 29).

Sparck Jones, Karen (1972). A statistical interpretation of term specificity and its application in
retrieval. In Journal of documentation 28.1, pp. 11-21 (cited on page 44).

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014). Sequence to Sequence Learning with Neural
Networks. In Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pp- 3104-3112 (cited on pages 54 sq.).

Svajlenko, Jeffrey and Chanchal K. Roy (2015). Evaluating clone detection tools with Big-
CloneBench. In 2015 IEEE International Conference on Software Maintenance and Evolution,
ICSME 2015, Bremen, Germany, September 29 - October 1, 2015, pp. 131-140 (cited on
pages 128, 133, 143, 237).

Svyatkovskiy, Alexey, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan (2020). IntelliCode
compose: code generation using transformer. In ESEC/FSE "20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
Virtual Event, USA, November 8-13, 2020, pp. 1433-1443 (cited on pages 84, 127).

Sweller, John (2011). CHAPTER TWO - Cognitive Load Theory. In vol. 55. Psychology of
Learning and Motivation, pp. 37-76 (cited on page 188).

Tai, Kai Sheng, Richard Socher, and Christopher D. Manning (2015). Improved Semantic Repre-
sentations From Tree-Structured Long Short-Term Memory Networks. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing of the Asian Federation of Natural Language
Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pp. 1556-1566
(cited on pages 54, 56, 242).

Takang, Armstrong A., Penny A. Grubb, and Robert D. Macredie (1996). The effects of com-
ments and identifier names on program comprehensibility: an experimental investigation. In J.
Program. Lang. 4.3, pp. 143167 (cited on pages 187 sq.).

Taylor, Wilson L. (1953). “Cloze Procedure”: A New Tool for Measuring Readability. In Journalism
LQuarterly 304, pp. 415-433. eprint: https://doi.org/16.1177/107769905303000401 (cited on
page 131).

Thies, Andreas and Christian Roth (2010). Recommending rename refactorings. In Proceedings of
the 2nd International Workshop on Recommendation Systems for Software Engineering, RSSE
2010, Cape Town, South Africa, May 4, 2010, pp. 1-5 (cited on page 189).

Tipirneni, Sindhu, Ming Zhu, and Chandan K. Reddy (2024). StructCoder: Structure-Aware
Transformer for Code Generation. In ACM Trans. Knowl. Discov. Data 18.3,70:1-70:20
(cited on page 116).

270

https://proceedings.neurips.cc/paper/2016/hash/6b180037abbebea991d8b1232f8a8ca9-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.1109/ICSM.2015.7332459
https://doi.org/10.1109/ICSM.2015.7332459
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058
https://www.sciencedirect.com/science/article/pii/B9780123876911000028
https://doi.org/10.3115/v1/p15-1150
https://doi.org/10.3115/v1/p15-1150
http://compscinet.dcs.kcl.ac.uk/JP/jp040302.abs.html
http://compscinet.dcs.kcl.ac.uk/JP/jp040302.abs.html
https://doi.org/10.1177/107769905303000401
https://doi.org/10.1177/107769905303000401
https://doi.org/10.1145/1808920.1808921
https://doi.org/10.1145/3636430
https://doi.org/10.1145/3636430

Tu, Zhaopeng, Zhendong Su, and Premkumar T. Devanbu (2014). On the localness of software.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014, pp. 269-280 (cited on
page 84).

Tufano, Michele, Cody Watson, et al. (2019). An Empirical Study on Learning Bug-Fixing Patches
in the Wild via Neural Machine Translation. In ACM Trans. Softw. Eng. Methodol. 28.4,19:1-
19:29 (cited on pages 104, 106 sq.).

Vaswani, Ashish, Noam Shazeer, et al. (2017). Attention is All you Need. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998-6008 (cited on pages 2,31, 33-37,
41,51 sqq., 55, 58, 67 sq., 96, 242).

Villmow, Johannes, Viola Campos, Adrian Ulges, and Ulrich Schwanecke (2022). Addressing
Leakage in Self-Supervised Contextualized Code Retrieval. In Proceedings of the 29th Interna-
tional Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea,
October 12-17, 2022, pp. 1006-1013 (cited on pages 10, 77, 127, 159, 237, 240, 279).

Villmow, Johannes*, Viola Campos®, et al. (2023b). How Well Can Masked Language Models
Spot Identifiers That Violate Naming Guidelines? In 237d IEEE International Working Con-
Jference on Source Code Analysis and Manipulation, SCAM 2023, Bogotd, Colombia, October 2-3,
2023, pp. 131-142 (cited on pages 10,77, 183, 186, 242, 279).

Villmow, Johannes, Jonas Depoix, and Adrian Ulges (2021a). ConTest: A Unit Test Completion
Benchmark featuring Context. In Proceedings of the 1st Workshop on Natural Language Processing
for Programming (NLP4Prog 2021). Online, pp. 17-25 (cited on page 11).

Villmow, Johannes, Adrian Ulges, and Ulrich Schwanecke (2021b). A Structural Transformer
with Relative Positions in Trees for Code-to-Sequence Tasks. In International Joint Conference
on Neural Networks, [[CNN 2021, Shenzhen, China, July 18-22, 2021, pp. 1-10 (cited on
pages 9,51, 57, 69 sq., 73 sq., 225 sq., 241, 279).

Villmow, Johannes, Adrian Ulges, and Ulrich Schwanecke (2024). Evaluating Contextualized
Code Search in Practical User Studies. In INFORMATIK 2024, Wiesbaden, Germany, 24.
September — 26. September 2024. Vol. 352. LN, pp. 1393-1403. 1SBN: 978-3-88579-746-3
(cited on pages 10, 279).

Villmow, Johannes, Marco Wrzalik, and Dirk Krechel (2018). Automatic Keyphrase Extraction
Using Recurrent Neural Networks. In Machine Learning and Data Mining in Pattern Recog-
nition - 14th International Conference, MLDM 2018, New York, NY, USA, July 15-19, 2018,
Proceedings, Part II. Vol. 10935. Lecture Notes in Computer Science, pp. 210-217 (cited on
page 10).

Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly (2015). Pointer Networks. In Advances in
Neural Information Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pp.2692-2700 (cited on
pages 16, 55).

Viola, Paul A. and Michael J. Jones (2004). Robust Real-Time Face Detection. In Inz. J. Comput.
Vis. 57.2, pp. 137-154 (cited on page 171).

271

https://doi.org/10.1145/2635868.2635875
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/2022.coling-1.84
https://aclanthology.org/2022.coling-1.84
https://doi.org/10.1109/SCAM59687.2023.00023
https://doi.org/10.1109/SCAM59687.2023.00023
https://aclanthology.org/2021.nlp4prog-1.2
https://aclanthology.org/2021.nlp4prog-1.2
https://doi.org/10.1109/IJCNN52387.2021.9533717
https://doi.org/10.1109/IJCNN52387.2021.9533717
https://doi.org/10.18420/inf2024_122
https://doi.org/10.18420/inf2024_122
https://doi.org/10.1007/978-3-319-96133-0_16
https://doi.org/10.1007/978-3-319-96133-0_16
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://doi.org/10.1023/B:VISI.0000013087.49260.fb

Wang, Alex, Amanpreet Singh, et al. (2019). GLUE: A Multi-Task Benchmark and Analysis
Platform for Natural Language Understanding. In 7#h International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (cited on page 78).

Wang, Changhan, Kyunghyun Cho, and Jiatao Gu (2020). Neural Machine Translation with
Byte-Level Subwords. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, LAAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pp. 9154-9160 (cited on page 16).

Wang, Xin, Yasheng Wang, et al. (2021a). CLSEBERT: Contrastive Learning for Syntax Enhanced
Code Pre-Trained Model. In CoRR abs/2108.04556. arXiv: 2108.04556 (cited on pages 85,
242).

Wang, Yue, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi (2021b). CodeT'S: Identifier-aware
Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation. In Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 8696-8708
(cited on pages 16, 43,79 sqq., 86, 92 sq., 103, 114, 209, 240).

Weimer, Westley, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest (2009). Automatically
finding patches using genetic programming. In 31st International Conference on Software
Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings, pp.364-374
(cited on page 17).

White, Martin, Christopher Vendome, Mario Linares Visquez, and Denys Poshyvanyk (2015).
Toward Deep Learning Software Repositories. In 12th IEEE/ACM Working Confeérence on
Mining Software Repositories, MSR 2015, Florence, Italy, May 16-17, 2015, pp. 334-345 (cited
on page 84).

Wilcoxon, Frank (1945). Individual Comparisons by Ranking Methods. In Biometrics Bulletin
1.6, pp. 80-83. 1sSN: 00994987 (cited on page 175).

Williams, Ronald J. and David Zipser (1989). A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks. In Newral Comput. 1.2, pp. 270-280 (cited on page 26).

Wrzalik, Marco, Julian Eversheim, et al. (2023). Value Stream Repair Using Graph Structure
Learning. In Advances and Trends in Artificial Intelligence. Theory and Applications - 36th
International Conference on Industrial, Engineering and Other Applications of Applied Intelligent
Systems, IEA/AIE 2023, Shanghai, China, July 19-22, 2023, Proceedings, Part II. Vol. 13926.
Lecture Notes in Computer Science, pp. 15-32 (cited on page 11).

Wrzalik, Marco and Dirk Krechel (2021). CoRT: Complementary Rankings from Transformers.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June
6-11, 2021, pp. 4194-4204 (cited on page 29).

W, Felix, Angela Fan, et al. (2019). Pay Less Attention with Lightweight and Dynamic Con-
volutions. In 7#h International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019 (cited on pages 67, 241).

Xia, Congying, Chenwei Zhang, et al. (2019). Multi-grained Named Entity Recognition. In
Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019,

272

https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1609/aaai.v34i05.6451
https://doi.org/10.1609/aaai.v34i05.6451
https://arxiv.org/abs/2108.04556
https://arxiv.org/abs/2108.04556
https://arxiv.org/abs/2108.04556
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/MSR.2015.38
http://www.jstor.org/stable/3001968
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1007/978-3-031-36822-6_2
https://doi.org/10.1007/978-3-031-36822-6_2
https://doi.org/10.18653/v1/2021.naacl-main.331
https://openreview.net/forum?id=SkVhlh09tX
https://openreview.net/forum?id=SkVhlh09tX
https://doi.org/10.18653/v1/p19-1138

Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 1430-1440 (cited on
page 171).

Xu, Xiaojun, Chang Liu, and Dawn Song (2017). SQLNet: Generating Structured Queries
From Natural Language Without Reinforcement Learning. In CoRR abs/1711.04436. arXiv:
1711.04436 (cited on pages 51, 55).

Ye, Yunwen and Gerhard Fischer (2002). Supporting reuse by delivering task-relevant and person-
alized information. In Proceedings of the 24th International Conference on Software Engineering,
ICSE 2002, 19-25 May 2002, Orlando, Florida, USA, pp. 513-523 (cited on pages 134, 136).

Yin, Pengcheng and Graham Neubig (2017). A Syntactic Neural Model for General-Purpose Code
Generation. In Proceedings of the S5th Annual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pp. 440—
450 (cited on page 56).

Yu, Hao, Wing Lam, et al. (2019). Neural detection of semantic code clones via tree-based
convolution. In Proceedings of the 27th International Conference on Program Comprehension,
ICPC 2019, Montreal, QC, Canada, May 25-31, 2019, pp.70-80 (cited on page 51).

Zhang, Dongxu and Dong Wang (2015). Relation Classification via Recurrent Neural Network.
In CoRR abs/1508.01006. arXiv: 1568.01006 (cited on page 54).

Zhang, Jingqing, Yao Zhao, Mohammad Saleh, and Peter J. Liu (2020). PEGASUS: Pre-training
with Extracted Gap-sentences for Abstractive Summarization. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Vol. 119.
Proceedings of Machine Learning Research, pp. 11328-11339 (cited on page 83).

Zhao, Wayne Xin, Kun Zhou, et al. (2023). A Survey of Large Language Models. In CoRR
abs/2303.18223. arXiv: 2303.18223 (cited on page 78).

Zhou, Yaqin, Shangging Liu, et al. (2019). Devign: Effective Vulnerability Identification by
Learning Comprehensive Program Semantics via Graph Neural Networks. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 10197-10207
(cited on pages 51, 104, 108 sq.).

Ziegler, Albert, Eirini Kalliamvakou, et al. (2024). Measuring GitHub Copilot’s Impact on Pro-
ductivity. In Commun. ACM 67.3, pp. 54-63 (cited on page 161).

273

http://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1711.04436
https://doi.org/10.1145/581339.581402
https://doi.org/10.1145/581339.581402
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.1109/ICPC.2019.00021
https://doi.org/10.1109/ICPC.2019.00021
http://arxiv.org/abs/1508.01006
https://arxiv.org/abs/1508.01006
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
https://doi.org/10.48550/arXiv.2303.18223
https://arxiv.org/abs/2303.18223
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://doi.org/10.1145/3633453
https://doi.org/10.1145/3633453

274

Software

Babelfish, Babelfish 2020. URL: https: //github.con/bblfsh, (visited on 07/31/2024) (cited on
page 19).

Biewald, Lukas, Experiment Tracking with Weights and Biases 2024. URL: https: //www.wandb.com/,
(visited on 06/07/2024) (cited on pages 23, 105).

Brunsfeld, Max, tree-sitter version v0.20.0, 2023. URL: https://github.com/tree-sitter/tree-sitter,
(visited on 12/27/2023) (cited on pages 17, 98, 245).

Falcon, William and The PyTorch Lightning Team, PyTorch Lightning version v1.4, 2019. DoI:
10.5281/zenodo. 3828935, (cited on pages 103 sq.).

OpenAl ChatGPT version GPT-40, 2024. URL: https://chatgpt.com, (visited on 05/28/2024)
(cited on pages 3, 43, 127, 181).

OpenAl OpenAl Text Embedding Models version text-embedding-3-{small,large}, 2024. URL:
https : / / platform . openati . com/ docs / guides / embeddings, (Visitcd on 09/27/2024) (Citcd on
pages 150 sq., 222).

Ramirez, Sebastiin, FastAPI version 0.88, 2023. URL: https://fastapi.tiangolo.com, (Visited on
09/01/2024) (cited on page 164).

Stanford NLP Group, Stanford CoreNLP version 3.9.2,2018. URL: https://stanfordnlp.github.i
o/CoreNLP, (visited on 10/05/2018) (cited on page 67).

Thunes, Chris, javalang version v0.12.0, 2023. URL: https://github.com/c2nes/javalang, (visited on
12/27/2023) (cited on page 17).

Villmow, Johannes, Tensortree version v0.2.0, 2021. URL: https://github.com/villmow/tensortree,
(visited on 09/07/2024) (cited on pages 6, 82, 100 sq., 244).

Villmow, Johannes, Contextualized Code Search Replication Package 2022. URL: https://githu
b.com/villmow/coling-cocos, (visited on 10/04/2024) (cited on page 7).

Villmow, Johannes, CodeBuddy 2024. URL: https://github.con/villmow/codebuddy, (visited on
10/04/2024) (cited on page 8).

Villmow, Johannes, Viola Campos, et al., CodeDoctor Replication Package 2023. DOTI: 10.5281/2
enodo. 7612762, (cited on pages 9, 187).

You, Evan, Vue,js - The Progressive JavaScript Framework version 3.2.45, 2024. URL: https://vuej
s.org/, (visited on 09/01/2024) (cited on page 164).

Zayarni, André, Qdrant - High-performance, massive-scale Vector Database version v1.6.1, 2023.
URL: https://github.com/qdrant/qdrant, (Visited on 05/07/2024) (Cited on pages 27, 165).

275

https://github.com/bblfsh
https://github.com/bblfsh
https://www.wandb.com/
https://www.wandb.com/
https://github.com/tree-sitter/tree-sitter
https://github.com/tree-sitter/tree-sitter
https://github.com/Lightning-AI/lightning
https://doi.org/10.5281/zenodo.3828935
https://chatgpt.com
https://chatgpt.com
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://fastapi.tiangolo.com
https://fastapi.tiangolo.com
https://stanfordnlp.github.io/CoreNLP
https://stanfordnlp.github.io/CoreNLP
https://stanfordnlp.github.io/CoreNLP
https://github.com/c2nes/javalang
https://github.com/c2nes/javalang
https://github.com/villmow/tensortree
https://github.com/villmow/tensortree
https://github.com/villmow/coling-cocos
https://github.com/villmow/coling-cocos
https://github.com/villmow/coling-cocos
https://github.com/villmow/codebuddy
https://github.com/villmow/codebuddy
https://doi.org/10.5281/zenodo.7612762
https://doi.org/10.5281/zenodo.7612762
https://doi.org/10.5281/zenodo.7612762
https://vuejs.org/
https://vuejs.org/
https://vuejs.org/
https://github.com/qdrant/qdrant
https://github.com/qdrant/qdrant

276

Web References

Bitkom (2024). Mangel an IT-Fachkriften droht sich dramatisch zu verschirfen. de. URL: https://w
ww.bitkom.org/Presse/Presseinformation/Mangel-an-IT-Fachkraeften-droht-sich-zu-verschaerfen
(visited on 10/04/2024) (cited on page 1).

Gage, Philip (1994). FEB94 A New Algorithm for Data Compression. URL: http://wan.pennelynn
.con/Docunents/CUJ/HTHL/94HTML /19940045 . HTH (visited on 08/16/2024) (cited on page 16).

GitClear, Harding William, and Matthew Kloster (2024). Coding on Copilot: 2023 Data Suggests
Downward Pressure on Code Quyality. URL: https://www.gitclear.com/coding_on_copilot_data_s

hows_ats_downward_pressure_on_code_quality (visited on 10/15/2024) (cited on pages 158, 221).

GitHub (2024). GitHub Copilot - Your Al pair programmer. URL: https://github.com/features/c
opilot (visited on 05/28/2024) (cited on pages 3,42 sq., 127, 161, 181, 184).

GitHub Inc. (2024). GitHub Activity Data — Marketplace — Google Cloud Console. URL: https:
//console. cloud. google . con/marketplace /details/github/github-repos (visited on 04/28/2024)
(cited on page 102).

Lopes, C., S. Bajracharya, J. Ossher, and P. Baldi (2010). UCI Source Code Data Sets. URL:
https://ics.uci.edu/~lopes/datasets/index.htnl (visited on 01/24/2024) (cited on page 66).

Munroe, Randall (2020). XKCD Comic #2309: X. URL: https: //xked . con/2309/ (visited on
08/28/2024) (cited on page 183).

NetBSD (2024). NetBSD Commit Guidelines. URL: https://www.netbsd.org/developers/conmit-g
uidelines.htnl (visited on 05/18/2024) (cited on page 128).

Oracle (2024). How to Write Doc Comments for the Javadoc Tool. URL: https: //www.oracle
.com/technical-resources/articles/java/javadoc-tool.html (Visited on 02/01/2024) (Cited on
page 66).

Salva, Ryan J. (2023). Introducing Code Referencing for GitHub Copilot. URL: https://githu
b.blog/2023-08-03- introducing-code-referencing-for-github-copilot/ (visited on 05/28/2024)
(cited on pages 128, 161, 181).

Tabnine (2024). Tabnine Al code assistant. en-US. URL: https: //www. tabnine.com/ (visited on
10/16/2024) (cited on page 43).

The Standish Group (2013). Chaos Manifesto: Think Big, Act Small. URL: https://larlet.fr/sta
tic/david/stream/ChaosManifesto2013.pdf (visited on 10/04/2024) (cited on pages 1 Sq.).

277

https://www.bitkom.org/Presse/Presseinformation/Mangel-an-IT-Fachkraeften-droht-sich-zu-verschaerfen
https://www.bitkom.org/Presse/Presseinformation/Mangel-an-IT-Fachkraeften-droht-sich-zu-verschaerfen
https://www.bitkom.org/Presse/Presseinformation/Mangel-an-IT-Fachkraeften-droht-sich-zu-verschaerfen
http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM
http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM
http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM
https://www.gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality
https://www.gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality
https://www.gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality
https://www.gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://console.cloud.google.com/marketplace/details/github/github-repos
https://console.cloud.google.com/marketplace/details/github/github-repos
https://console.cloud.google.com/marketplace/details/github/github-repos
https://ics.uci.edu/~lopes/datasets/index.html
https://ics.uci.edu/~lopes/datasets/index.html
https://xkcd.com/2309/
https://xkcd.com/2309/
https://www.netbsd.org/developers/commit-guidelines.html
https://www.netbsd.org/developers/commit-guidelines.html
https://www.netbsd.org/developers/commit-guidelines.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://github.blog/2023-08-03-introducing-code-referencing-for-github-copilot/
https://github.blog/2023-08-03-introducing-code-referencing-for-github-copilot/
https://github.blog/2023-08-03-introducing-code-referencing-for-github-copilot/
https://www.tabnine.com/
https://www.tabnine.com/
https://larlet.fr/static/david/stream/ChaosManifesto2013.pdf
https://larlet.fr/static/david/stream/ChaosManifesto2013.pdf
https://larlet.fr/static/david/stream/ChaosManifesto2013.pdf

278

List of tools used for this dissertation:

DeepL (https://www.deepl.com/)

DeepL Write (https://www.deepl.com/en/urite)
ChatGPT (https://chat.openai.con/)
Grammarly (https://www.grannarly.con/)
Zotero (https://www.zotero.org/)

DBLP (https://dblp.org/)

Python

Matplotlib

TikZ (PGFPlots)

KEIEX

Tools

279

https://www.deepl.com/
https://www.deepl.com/en/write
https://chat.openai.com/
https://www.grammarly.com/
https://www.zotero.org/
https://dblp.org/

280

Own Contributions

The following list provides a list of my contributions to the work presented in the chapters

of this dissertation:

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

This work was completely done by me and first presented in A4 Structural
Transformer with Relative Positions in Trees for Code-to-Sequence Tasks” (Vill-
mow, Ulges, and Schwanecke 2021b). Adrian Ulges provided guidance and
together with Ulrich Schwanecke proofread the document.

This work was completely done by me and not yet published.

The work to this chapter was first presented in “Addressing Leakage in Self-
Supervised Contextualized Code Retrieval” (Villmow, Campos, Ulges, and
Schwanecke 2022). Compared to the original paper, I added additional
details, examples, figures, and experiments, hoping to provide a more com-
prehensive demonstration of the approach. This research project was a col-
laborative effort primarily led by me. I want to greatly thank Viola Campos
for her help in annotating half of the dataset and implementing the BM2 5
baseline. I wrote all other code, also collected the dataset, and ran the ex-
periments. In the publication, co-author Viola Campos contributed to the
related work section and proofread the document, and Adrian Ulges also

provided proofreading

This work was completely done by me and first presented in “Evaluating
Contextualized Code Search in Practical User Studies” (Villmow, Ulges, and
Schwanecke 2024). Adrian Ulges proofread the paper.

This work was first presented in “How Well Can Masked Language Models
Spot Identifiers That Violate Naming Guidelines?” (Villmow", Campos®,
Petry, Andaloussi, Ulges, and Weber 2023b). This research project was a col-
laboration with the Soffware Systems Programming and Development group
at the University of St.Gallen. Many thanks to my co-authors Viola Campos,
Jean Petry, Amine Abbad-Andaloussi, Adrian Ulges, and Barbara Weber for
their valuable contributions to this work. Amine Abbad-Andaloussi and
Barbara Weber provided guidance on the cognitive aspects of source code,
including the identification of naming guidelines. Also, both contributed
to the methodology of the experiments (particularly, the selection of suit-

able guidelines) and to the related work about the comprehension of source

281

282

code. The dataset was annotated by a team of students from the RbeinMain
University of Applied Sciences. 1 had the idea to estimate the likelihood of
an identifier using an Language Model (LM), trained the generative LM,
and developed and implemented the initial framework for the approach
for detecting, masking, and scoring variables. This includes the perplexity-
based scoring functions and the evaluation procedure for the dataset. Viola
Campos had the idea to the likelihood-ratio scoring function, and added
the INCODER baseline to the framework. Jean Petry implemented the dis-
criminative scoring function advised by Adrian Ulges and me. All authors
contributed to the manuscript, and the final version of the manuscript was
reviewed by all authors. Compared to the work published in this paper, I
added a new scoring function, extended the description of approach and

dataset, and discussed the results in more detail.

Erklarung

Hiermit erklire ich, Johannes Villmow, dass ich die vorliegende Dissertation zur Erlangung

des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) mit dem Titel
Self-Supervised Learning on Source Code to Assist Software Developers

selbstindig, ohne fremde Hilfe und nur mit den angegebenen Hilfsmitteln angefertigt
habe. Alle Textstellen, die wortlich oder sinngemiafl aus veroffentlichten Werken iibernom-
men wurden, sowie alle Aussagen, die auf miindlichen Informationen beruhen, sind als

solche gekennzeichnet. Die Grundsitze guter wissenschaftlicher Praxis wurden beachtet.

Wiesbaden, 23. Oktober 2024

Johannes Villmow

283

284

HIS THESIS WAS TYPESET using BTEX,
’Friginally developed by Leslie Lamport and
based on Donald Knuth’s TEX. The body
text is set in 11 point Adobe Garamond, a revival
of Claude Garamont’s humanist typeface. A tem-
plate that can be used to format a PhD dissertation
with this look ¢ feel has been released under the
permissive AGPL license, and can be found on-
line at github.com/suchow/Dissertate or from its
lead author, Jordan Suchow, at suchow@post.har-
vard.edu.

https://github.com/suchow/Dissertate
mailto:suchow@post.harvard.edu
mailto:suchow@post.harvard.edu

	Abstract
	Zusammenfassung
	Contents
	Dedication
	Introduction and Motivation
	Contributions and Outline
	part:models: Models and Techniques
	part:applications: Applications

	Publications
	Methodology

	Fundamentals
	Text and Code Processing and Representations
	Tokenization and Vocabulary
	Representations of Source Code

	Machine Learning Fundamentals
	Training
	Machine Learning Tasks
	Evaluation Metrics

	Transformer Model
	Multi-Head Attention
	Positional Embeddings

	Self-Supervised Learning and Language Models
	Word Embeddings
	Contextualized Language Models
	Large Language Models

	Information Retrieval
	Keyword-Based Information Retrieval
	Distributional Semantics

	Part I: Models and Techniques
	Relative Structural Transformers
	Introduction and Motivation
	Contributions

	Related Work
	Natural Language Processing
	Machine Learning in Software Engineering

	Approach
	Relative Position Representations for Trees
	Efficient Computation
	Structural Loss

	Experimental Setup
	Research Questions
	Pre-Processing Trees
	Tasks and Datasets
	Hyperparameters and Setup

	Results
	Comparison against State-of-the-Art
	Ablation Study

	Conclusion and Future Work

	Structural Pretraining Tasks for Generative Transformer Models
	Introduction and Motivation
	Contributions

	Related Work
	Pretraining Strategies in Natural Language Processing
	Language Models for Source Code
	Structural Pretraining for Source Code

	Background
	Masked Language Modeling
	Regular Span Masking
	Identifier Deobfuscation

	Approach
	Pretraining Tasks
	Tree-based File Truncation

	Experimental Setup
	Research Questions
	Model Architecture
	Baseline
	Tokenizer
	Pretraining Dataset
	Pretraining Hyperparameters and Setup
	Fine-Tuning Tasks and Datasets

	Results
	 Comparison of Structural and Regular Pretraining
	Benefit of Pretraining on Code
	Structural Pretraining vs. Relative Structural Transformer
	Comparison with State-of-the-Art

	Conclusion and Future Work

	Contrastive Pretraining for Contextualized Code Search
	Introduction and Motivation
	The Contextualized Code Search Task
	Contributions

	Related Work
	Natural Language Code Search
	Self-Supervised Contrastive Learning for Code
	Contextualized Code Search

	Approach
	Deleaking Steps
	Training Pipeline

	Evaluation Dataset for Contextualized Code Search
	Evaluation Protocol: Zero-shot Code Retrieval

	Experimental Setup
	Research Questions
	Hyperparameters and Setup

	Results
	Performance of Self-Supervised Contextualized Code Search
	Comparison to Statistical Baselines
	General Encoder Quality
	Comparison with OpenAI

	Conclusion and Future Work

	Part II: Applications
	Evaluating Contextualized Code Search in Practical User Studies
	Introduction and Motivation
	Contributions

	Related Work
	Approach
	Demo Application
	Model Enhancements
	Indexing and Retrieval

	Study A: Programming Exercises
	Experimental Setup
	Results

	Study B: Corporate Scenario
	Results

	Conclusion and Future Work

	 Spotting Identifiers that Violate Naming Guidelines
	Introduction
	Contributions

	Related Work
	Impact of Identifier Naming on Code Comprehension
	Naming Guidelines
	Automatic Improvement of Identifier Names

	Approach
	Generative Rating
	Probabilistic Interpretation
	Discriminative Rating

	Datasets
	Fine-Tuning Dataset
	Manually Annotated Dataset

	Experimental Setup
	Research Questions
	Evaluation Procedure
	Implementation of Other Language Models
	Hardware and Training

	Results
	Comparison of Scoring Methods
	Comparison to State-of-the-Art Language Models
	Guideline-specific Analysis

	Conclusion and Future Work

	Conclusion
	Limitations and Threats to Validity
	Future Work

	Part III: Appendix
	Appendix to Part I
	Relative Structural Transformer
	Hyperparameters and Datasets
	Sample Predictions

	Structural Transformer
	Datasets
	Tensortree Library

	COCOS Examples

	Appendix to Part II
	Evaluating Contextualized Code Search in Practical User Studies
	Indexing Strategy
	Example Solutions in Study A
	Example Retrieval in Study A

	Glossary
	Abbreviations
	Datasets
	Metrics
	Models
	Terms

	Listing of Figures
	Listing of Tables
	References

The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

