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Abstract: With the advent of Industry 4.0, the manufacturing industry is facing unprece-
dented data challenges. Sensors, PLCs, and various types of automation equipment in
smart factories continue to generate massive amounts of heterogeneous data, but existing
systems generally have bottlenecks in data collection standardization, real-time processing
capabilities, and system scalability, which make it difficult to meet the needs of efficient
collaboration and dynamic decision making. This study proposes a multi-level industrial
data processing framework based on edge computing that aims to improve the response
speed and processing ability of manufacturing sites to data and to realize real-time decision
making and lean management of intelligent manufacturing. At the edge layer, the OPCUA
(OPC Unified Architecture) protocol is used to realize the standardized collection of het-
erogeneous equipment data, and a lightweight edge-computing algorithm is designed to
complete the analysis and processing of data so as to realize a visualization of the manufac-
turing process and the inventory in a production workshop. In the storage layer, Apache
Kafka is used to implement efficient data stream processing and improve the throughput
and scalability of the system. The test results show that compared with the traditional
workshop, the framework has excellent performance in improving the system throughput
capacity and real-time response speed, can effectively support production process judg-
ment and status analysis on the edge side, and can realize the real-time monitoring and
management of the entire manufacturing workshop. This research provides a practical
solution for the industrial data management system, not only helping enterprises improve
the transparency level of manufacturing sites and the efficiency of resource scheduling but
also providing a practical basis for further research on industrial data processing under the
“edge-cloud collaboration” architecture in the academic community.

Keywords: intelligent manufacturing; OPC UA; edge computing; high concurrency;
real time

1. Introduction

Industry 4.0, first proposed in Germany, aims to create new intelligent factories; inte-
grate traditional factories with intelligent equipment, the Internet of Things, artificial intel-
ligence, big data technology, and cloud computing; and promote the transformation of the
traditional manufacturing industry toward flexible manufacturing, green manufacturing,
and intelligent manufacturing [1].
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With the support of digital twins, CPS, intelligent technology, big data technology,
and cloud computing, virtual modeling of the production line in a manufacturing work-
shop can be achieved, and the production line can be monitored in real time using big
data technology, truly realizing the industrial potential of the manufacturing factory [2].
Through research on intelligent technology for factories, the manufacturing efficiency of
the production line in a manufacturing workshop can be improved, which is significant for
research on intelligent factories [3]. The intelligent factory takes the cyber—physical produc-
tion system (CPPS) as the core and is characterized by the deep integration of information
technology and manufacturing technology. It embeds the new generation of information
technology, such as the Internet of Things, big data, and cloud computing, into different
links of the manufacturing process to achieve the efficient production of intelligent prod-
ucts characterized by customization [4].

For smart factories, the introduction of intelligent equipment has made the processes
within systems more convenient, but at the same time, the presence of a large number of
devices such as sensors in the workshop will lead to the generation of massive amounts of
datainreal time, so it is still challenging to build a real-time data transmission management
system. In addition, due to the large scale and relatively scattered production workshops
of modern factories, and the fact that factories generally use intranets to control the entire
workshop system to ensure security, the existing production collection system has limita-
tions in processing big data. How to efficiently and securely integrate and manage this
information has been a difficult problem faced by factories undergoing digital transforma-
tion in recent years [5].

The efficiency of traditional workshop production line data processing can no longer
meet production needs. With the rapid development of technologies such as the Inter-
net of Things and Al in recent years, the amount of data from edge devices in workshop
production lines has doubled, which has brought huge challenges to the centralized big
data processing mode of traditional cloud computing. Massive data need to be transmit-
ted through the network to the computing center for centralized processing, resulting in
inefficient data processing of edge devices, which reduces the real-time capabilities and
scalability of the entire system [6].

Moshiri [7] pointed out that OPC UAover TSN (Time Sensitive Network), can sup-
port horizontal and vertical communication in smart factories, effectively reducing com-
munication latency and improving system performance, providing a powerful solution
for control-level communication in Industry 4.0. Trifonov [8] proposed an industrial IoT
fieldbus solution based on OPC UA over TSN, and the experimental results verified the po-
tential of OPC UA over TSN to achieve sub-millisecond latency in smart factory scenarios,
meaning that it can meet the stringent requirements of smart factories in terms of the high
real-time performance of industrial IoT. These studies show that the introduction of TSN
technology significantly enhances the real-time performance of OPC UA in edge scenarios,
but most of the studies focus on the communication level, and discussions of combination
with intelligent inference or a data processing layer are limited.

Lai [9] and Takefusa [10] systematically evaluated Kaftka, MQTT, and REST API in
terms of latency, throughput, scalability, and replication performance. The results show
that Kafka has advantages in partition scalability, throughput capacity, and ease of multi-
node deployment, making it particularly suitable for real-time data processing needs in
high-concurrency and distributed scenarios. Therefore, Kafka, with its strong scalability,
natural support for partitioning mechanisms, and superior performance in large-scale dis-
tributed scenarios, has become an ideal choice for real-time data collection, transmission,
and processing in edge computing environments.
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Sharanya [11] studied the application of edge and fog computing in intelligent man-
ufacturing, emphasized the importance of predictive maintenance as one of the core goals
of Industry 4.0, and pointed out that edge Al technology has higher feasibility and ap-
plication value to realize equipment condition monitoring and fault prediction in small-
and medium-sized manufacturing enterprises. Han [12] studied the application of edge
artificial intelligence (Edge-Al) in smart factories. He pointed out that it has significant ad-
vantages in real-time data collection, analysis, and prediction and can realize low-latency
data transmission and risk warning between different devices. Li [13] proposed a smart
factory reference framework that integrates digital twin and cloud-fog-edge collaborative
computing (CFE), aiming to improve the efficiency of process data processing and enhance
the generality and intelligent decision-making ability of the system. Singh [14] provides a
comprehensive analysis of Al methods and functions related to edge computing or edge
Al opening up new possibilities for real-time decision making, data confidentiality, and
system security in smart factories. Long [15] proposed the introduction of edge comput-
ing in the intelligent robot factory (iRobot-Factory), which effectively improves the pro-
duction efficiency and automation level and has important reference value for the devel-
opment of intelligent manufacturing. Although the above research confirms the broad
prospects of Edge-Al in the manufacturing industry, there is still a lack of a systematic
framework and verifiable practice cases on efficiently integrating edge-side inference ca-
pabilities with underlying reliable data communication architectures (such as Kafka and
OPC UA) in actual deployment.

With the Industrial Internet of Things (IIoT) and cyber—physical systems (CPS) boom-
ing, manufacturing systems are moving toward higher levels of connectivity and intelli-
gence. However, the current data management solutions have obvious shortcomings in
communication bandwidth, processing capabilities for asynchronous data streams, and
the collection and analysis of high-frequency heterogeneous data sources, which make
it difficult to meet the increasingly complex data requirements in the new manufactur-
ing environment. Despite the growing adoption of the OPC UA protocol as a standard
for machine-to-machine communication, its default client-server model lacks an effective
mechanism for large-scale real-time data streams. Similarly, traditional data-transfer pro-
tocols such as MQTT and RESTful APIs have limitations in handling high-throughput sce-
narios and ensuring strict real-time guarantees. This research aims to address these limita-
tions by proposing a distributed real-time data management framework based on OPC UA
and Apache Kafka and deploying it at the edge. Kafka’'s publish—-subscribe architecture
and persistence make it particularly suitable for high-concurrency and high-throughput
industrial data transfers.

The research content of this paper is as follows:

1. Aiming at the difficulty of heterogeneous data collection in smart factories, a data-
collection system based on the OPC UA protocol is developed. By modeling the work-
shop equipment with OPC UA or indirectly using PLC and other devices to commu-
nicate with the OPC UA client, real-time data collection of the underlying equipment
is realized.

2. Based on edge computing technology, a data management framework for manufac-
turing production edge measurement is proposed. By arranging algorithm programs
on the edge, the collected data are analyzed, processed, and then sent to the cloud to
realize multi-platform sharing and storage of data. Compared with sending all data
to the cloud, this not only relieves the pressure on the cloud but also improves the
real-time data processing efficiency of the system.

3. The current big data transmission technology is analyzed, and a big data transmission
framework for manufacturing workshops based on Kafka is designed. The Kafka
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Topic is reasonably divided to improve the data transmission performance of the
system. Finally, the database table structure is reasonably designed to optimize the
data reading and storage speed and realize the persistent storage of manufacturing
process data.

The remainder of this paper is organized as follows: Section 2 is a literature review,
Section 3 introduces the proposed framework and research methodology, Section 4 dis-
cusses the experimental results, and Section 5 summarizes the thesis and outlines future
research directions.

2. Review

With the development of intelligent industrial equipment, the importance of auto-
matic detection and control is increasing, and the unified OPC UA architecture is rapidly
popularized in modern intelligent manufacturing systems [16]. Due to the complex pro-
duction process in the workshop, the various internal equipment and the difficulty of com-
munication between the old and new equipment, many pieces of equipment have not been
updated for a long time and do not support the new software, and the replacement is too
expensive for the factory, so the OPC UA protocol is often used to solve the above prob-
lems. Ruben [17] proposed that OPC UA is a set of secure, reliable, manufacturer- and
platform-independent data-exchange specifications for industrial communication, with a
cross-platform service architecture, that enables communication between equipment and
manufacturing floor systems. Ramesh [18] proposed a traditional device data integration
system based on the OPC UA architecture, which can push data from the traditional PLC
to the cloud to achieve remote data control.

In terms of data processing, smart factories can adopt a centralized structure based
on traditional cloud computing and a decentralized structure based on edge computing.
Cloud computing and edge computing both play a key role in the future development of
the smart Internet of Things. The main differences between cloud computing and edge
computing are shown in Table 1. The advantage of cloud computing architecture is that it
stores large amounts of data on a central server, thus supporting large-scale data analysis
using machine learning, data mining, and deep learning. However, it has the disadvan-
tages of high cost and time latency due to the increase in network paths for transmitting
data from the lowest layer to the highest layer. In the edge computing architecture, the
cloud is deployed near the device layer, and data are not sent directly to the central server
but processed at the middle layer, which reduces the communication path and input data
transmitted to the central server [19]. Since edge computing is a structure suitable for man-
ufacturing environments that require real-time data processing and rapid response, many
studies have considered edge computing as an optimized platform technology for building
smart factories.

Table 1. Main differences between cloud computing and edge computing.

Applications Network Bandwidth Real-Time Computing Mode
Pressure
Cloud computing Overall More High Centralized processing at scale
Computing Local Less Low Small-scale centralized processing

When traditional factories are gradually upgraded to smart factories, due to the large
amountof intelligent equipment, the high concurrency and high throughput of data in the
manufacturing workshops lead to information congestion and delay in the entire collection
system. The traditional system integrates data collection and processing. When process-
ing large amounts of data (such as machine log data, sensor data, etc.), there are prob-
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lems of poor versatility, insufficient flexibility, and scalability. How to efficiently transmit
data and improve the system’s rapid feedback capability is an urgent problem that the cur-
rent manufacturing industry needs to solve. A distributed system (Cluster) is a promising
method in big data research. The number of integrated server computers processes data in
parallel, which reduces the coupling between the various parts of the system and reduces
data redundancy. The main purpose of the distributed framework is to eliminate heteroge-
neous data by using a unified data transmission pipeline between the various components,
thereby realizing data transmission and sharing of the entire framework.

As the information management center of the entire system, the message middleware
mustbear a considerableamount of data exchange when facing massive data, so it still has
deficiencies in throughput, delay, reliability, etc. With the continuous development of
Internet technology, distributed message middleware came into being to solve the short-
comings of traditional message middleware in these scenarios. Different from traditional
message middleware, distributed message middleware has significant advantages in data
bandwidth, processing performance, reliability, fault tolerance, etc. due to its distributed
architecture, enabling it to efficiently and reliably handle massive message data transmis-
sion. Its main advantages are as follows:

1. Entity decoupling: Producers and consumers do not need to know each other; they
only need to communicate and interact with the message middleware.

2. Time decoupling: Producers and consumers do not need to be online simultaneously
to participate in the communication.

3. Synchronous decoupling: The producer or consumer publish/subscribe infrastruc-
ture does not need to synchronously block the creator or consumer execution thread,
allowing the maximum utilization of the processor resources of the creator and consumer.

Apache Kafka is a popular open-source distributed stream processing platform
widely used to build network data flow platforms [20]. As a publish/subscribe system
for network data flow, Apache Kafka provides a highly scalable and fault-tolerant solu-
tion with the potential to easily process large amounts of data [21]. Sangil [22] proposed
a data collection and stable exchange system based on Apache Kafka to address the prob-
lems of production bases scattered around the world and information exchange difficulties.
Hesse [23] and Atri [24] conducted a comprehensive performance analysis of the Apache
Kakfa platform. The experimental results show that it has scalability, distribution, and
reliability with high throughput.

3. Materials and Methods

In the context of the rapid development of intelligent manufacturing, the data gener-
ated on industrial sites present the characteristics of large data volume, multiple types, and
strong real-time performance, which puts forward higher requirements for data collection,
processing, and transmission capabilities. At present, industrial communication protocols
such as OPC UA have been widely used in the data collection of underlying devices; how-
ever, there are still challenges in multi-source heterogeneous device access, communica-
tion delay, and data integration. The traditional cloud computing model has limitations in
real-time and bandwidth utilization. The introduction of edge computing effectively alle-
viates these problems, realizes local processing and rapid response of data, and improves
the stability and intelligence level of the system. However, edge devices still need to be
further optimized in terms of computing power, protocol adaptation, and collaboration
with the cloud. Therefore, this study designs and implements an edge data collection and
transmission framework based on OPC UA and Kafka around the high-concurrency data
collection and processing requirements in intelligent manufacturing scenarios to improve
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the system’s data processing capabilities and response efficiency and provide support for
the efficient use of industrial big data.

As shown in Figure 1, the architecture includes a data collection layer, a data process-
ing layer, a data transmission layer, and a data application layer, which is mainly com-
posed of PDC (Production Data Collection) components, edge-computing modules, Kafka
clusters, databases, and Web front ends. At the edge node layer, the OPC UA protocol is
used to collect equipment production data in a standardized manner. The edge-computing
algorithm is used to process and analyze the raw data, and the results are forwarded to the
distributed Kafka service cluster for persistent storage. At the storage layer, PostgreSQL
is used to manage user and equipment metadata, and the Kafka cluster is used to store
a large amount of process data produced by equipment to achieve scalable and reliable
storage of large-scale data and to share key data through the cloud.
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Figure 1. Real-time data acquisition and processing architecture based on the OPC UA protocol.

3.1. Design of Data Acquisition Module Based on OPC UA Protocol
3.1.1. Building an OPC UA Server

In this article, the custom-written OPC UA Server and OPC UA Client are deployed
on the same PC (computer) and are responsible for the data collection of the devices on this
unit. Therefore, the OPC UA server is used to realize the object modeling and construction
of the internal equipment of the production workshop, and the OPC UA server can model
the internal equipment of the production workshop and expose the equipment data for
users to access in a unified manner.

The design idea of the data acquisition module based on the OPC UA protocol is as
follows: firstly, it is classified according to the communication protocol of all devices in the
production workshop, and the equipment with built-in OPC UA server or the equipment
that can communicate indirectly through the PLC node can directly use the customized
OPC UA client to communicate with it. Suppose the device does not support the OPC UA
server. In this case, the device is modeled using OPC UA, and the OPC UA node is mapped
one by one to achieve unified OPC UA communication across the entire manufacturing
workshop, as shown in Figure 2.
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Figure 2. OPC UA information modeling.

The data collection layer includes an OPC UA server and the data collection program.
The OPC UA communication module can collect data, equipment status information, and
actual processing status information of the bottom-level equipment in the manufacturing
workshop, such as PLCs, sensors, and motors, and send them to the upper layer of the
system. The OPC UA server module establishes a node address space model for those de-
vices that do not support the OPC UA protocol, thereby realizing unified communication
of the entire manufacturing workshop based on the OPC UA protocol. The code is shown
in Appendix A. The specific development process is as follows:

1. Define the device type. Before creating an OPC UA object for the device, the device
type must be defined.

2. Define the device object. According to the previous device object model, encapsulate
the device object model, reference the device and the parameters and methods related
to the device by node, and then create a namespace for the device so that users can
access the target device through this address space.

3. Bind real-time data, connect to the OPC UA server, bind the device parameters to the
data tags in the OPC UA server, and provide real-time data for the device parameters.
Develop a read—write interface and a historical read interface. For other systems to
obtain device data, a data access interface needs to be developed.

4.  Develop access interfaces, including read/write interfaces and historical read inter-
faces. Through these interfaces, users can browse the device’s specific parameters.

5. Create a public data access address. By configuring the OPC UA server, specify the
public address for data access. This address is used for other systems to establish
communication connections with the data center.

6. Data storage management. In order to extract more value from device parameter
information, the device’s real-time data needs to be saved.

3.1.2. Data Acquisition Module Based on the Python Language

With the widespread introduction of intelligent equipment in smart factories, the
number of data sources, including CNC machine tools, industrial robots, programmable
logic controllers (PLCs), automatic guided vehicles (AGVs), and various sensors, has in-
creased significantly. The diversity of communication protocols and interfaces used by
these devices has led to the demand for customized communication solutions, which not
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only increases the complexity of data collection but also poses a significant challenge to
the production efficiency and development of smart manufacturing workshops. There-
fore, this study proposes a distributed framework that uses different PDC components for
devices with different communication protocols to achieve distributed data collection of
underlying devices in the workshop, thereby improving the efficiency of the data collec-
tion of the entire workshop equipment, as shown in Figure 3.

Edge devices 1 [_§ PDC-1 (OPC Client) (opCClient) [_§ PDC-2 Edge devices 2
PLC .
E OPC UA Information
(OPC Server) Modeling
AGV Industrial robots [
<25 : Sensor D ndustrial robots |
:":2 eyiinder (Modbus) -~ - <7 (EtherNet/IP) (Profinet) 4

Figure 3. Distributed data acquisition architecture diagram based on the OPC UA protocol.

This article uses the OPC UA library to design a PDC component, which integrates the
OPC UA client function and can communicate with the equipment in the manufacturing
workshop through the URL address. The design process of the PDC component mainly
includes the following steps:

1. Start the Kafka service locally. Then, create a new topic named “query” and subscribe
to it to receive the list of node identifiers provided by the database for monitoring. At
this stage, the database side acts as the Producer of Kafka, sending the data informa-
tion to be monitored pre-written by the workshop, and the PDC side receives this
information as the Consumer of Kafka.

2. When PDC can pull data from “query”, it will process the data, filter out the URL
address of the PLC to be detected and all nodes under the address, and integrate the
above information into the form of an object in Python. It will then traverse and read
all objects, connect to the OPC UA server through the URL, process the node to be
detected, obtain the address space index of the node, and then integrate it into a list
with NS (Namespacelndex) and I (Identifier) values.

3. Subscribe to all the node states in the above list through the subscription function.
When the value of the node changes, the sending function in the PDC component will
be called. At this time, PDC plays the role of Kafka Producer and sends the message
to the corresponding topic.

3.2. Production Monitoring and Inventory Management Based on Edge Computing

In the previous chapter, the data collection of the underlying equipment in the man-
ufacturing workshop was realized, and if all the equipment data information collected is
sent to the cloud for unified processing, it will create greater computing pressure in the
cloud system, and at the same time, it is impossible to ensure the real-time monitoring and
control of the entire system equipment, so the framework of rule reasoning (RBR)—edge
computing (edge computing) suitable for industrial production lines is proposed, which
can quickly judge the production status and update the inventory locally without complex
calculations. This is shown in Figure 4. Using the OPC UA client as the edge computing
device, an edge-computing program at the edge end is designed, which initially analyzes
and processes the collected data to realize station status identification and inventory up-
date. Finally, the results are sent to the cloud in a unified manner, which reduces the
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pressure on the cloud server, improves the computing power and transmission capacity
of the server, and ensures the real-time data of the entire system. Even if the network con-
nection is disconnected, the edge can ensure the normal operation of the real-time data
acquisition program without downtime, reduce the data flow during transmission, and
ensure the security of plant data.

Data Transmission ‘ -'-':E-\ Production monitoring platform

cloud

Rule reasoning + Lightweight decision engine

Data Action
pretreatment detect

Data Processin,
S Rule State Abnormal
reasoning manage alarm

OPC UA data acquisition

Data Acquisition

[ Actuator } [ Production
status. signals

Sensor data

Figure 4. Diagram of data processing architecture based on edge computing.

The actuator equipment that needs to be detected by the platform includes stepper mo-
tors, sensors, cylinders, etc. However, these devices themselves do not support the OPC
UA communication protocol, so the state data of the actuator can be obtained indirectly
with the help of an intermediate relay when the PLC program diagram of the experimental
platform is designed to realize the data acquisition work of the entire experimental plat-
form. Among them, the experimental platform is divided into two categories according
to the information to be detected: one is the action of feeding, which needs to update the
inventory information in real time, and the other is the action of installation, which needs
to monitor the production progress of the production process in real time. The analysis of
the production process found that the experimental platform has a total of three stations
related to materials, namely, the device for pushing the bottom (BM), the feeding device
(KM) for releasing beads, and the device for pushing the upper cover (DM), so this study
uses the intermediate relay of PLC to obtain data. As shown in Figure 5, when designing
the program of the feeding device (KM) of the second station to release the beads, the origi-
nal design idea is to control the power-on and power-off of the enabling signal of the pulse
signal through the timer switch. This study adds an intermediate relay %M1.0 set pro-
gram block in the middle of the timer and the pulse module. When the button switch KM
is pressed, the intermediate relay %M1.0 will be set to 1, and the enable signal of the pulse
generator will also be set to True. When the timer is disconnected, the intermediate relay
% M1.0 reset is 0; at the same time, the pulse generator will also be powered off. Therefore,
the intermediate relay %M1.0 and the stepper motor pulse for on and off is the same. By
detecting the intermediate relay %M1.0 to obtain the state of the stepper motor, real-time
data acquisition and monitoring objectives of the station can be achieved, and at the same
time, it can reflect the material inventory data by the number of times the station action is
completed. The device (BM) at the bottom of the station and the device (DM) on the top
of the station push can also realize real-time data collection and inventory monitoring in
this way.
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Figure 5. PLC programming of the loading device (KM) to release the beads.

According to the above method, by detecting the data changes of the specified nodes,
data collection and inventory monitoring can be realized. Therefore, this article uses
Python language to write a real-time data monitoring program for the manufacturing
workshop based on the edge data collection terminal PC. By analyzing the functions of dif-
ferent workstations and designing corresponding data processing and analysis programs,
the entire production process and inventory information can be comprehensively judged.

3.3. Stream Processing and Storage of Manufacturing Data
3.3.1. Kafka System Overall Design

The data stream processing framework of this article is shown in Figure 6. All servers
used for data collection, storage, or visualization are organized into a Kafkacluster. Each
edge server that integrates the PDC component acts as a Kafka producer responsible for
data collection and message sending in different manufacturing units.

Producer Kafka Cluster

Broke UUy, Broker-N

Broker-0 ORON0

[ C Group A
Topic A TopicA L onsumer Group
Partition 0 Partition 0 ™~
(Follower) (Follower) J [ Consumer 0
Producer 0
Topic A Topic A
Partition 1 N Partition 1 -
(Follower) (Follower) ol
\\ // L— |
. .
. \\ J
. . .
.
Topic B Topic B Topic B
Partition 0 Partition 0 Partition 0 Consumer Group B
(Follower) (Leader) (Follower)
. i
—
.
To!!i.c c Consumer 3
Partition 0 o
(Follower)
Legend
\\~i>< pull
writing events
l Zookeeper / Kraft l ——— reading events

Figure 6. Apache Kafka architecture diagram.

The PostgreSQL database and front-end Web components responsible for data storage
and backup serve as Kafka’s Consumer Group A and Consumer Group B consumer groups
and realize message consumption by subscribing to the specified Topic. Since Kafka stores
messages in Broker, message sending and consumption are directly interacted with Broker,
so to a certain extent, the decoupling of the message transmission process is achieved —that
is, the producer and consumer are completely decoupled, ensuring that data are not lost,
with good fault tolerance, and realizing the persistent storage of messages and distributed
multi-platform shared consumption.
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3.3.2. Kafka Topic Design

Due to the large scale and wide distribution of modern production workshops, the
amount of data generated is huge. In addition, the increase in intelligent equipment has
introduced significant challenges to the digital monitoring and management of workshops.
Topics in Kafka can be used to divide the source of messages. Traditional data-collection
systems store all collected data in a Topic, and then consumers pull messages according
to the offset of the message data; second, any possible message data type is processed by
the Topic. Consumers only need to subscribe to the specified Topic without all data being
consumed uniformly, and finally analyzed and screened. Both of the above methods put
pressure on network bandwidth or computing performance, so they are more suitable for
scenarios with simple data formats and small data volumes. Unreasonable Topic division
has a negative impact on the scalability of the system, and the number of Topics directly
affects Kafka performance and maintenance costs. Therefore, it is necessary to comprehen-
sively consider the needs of the manufacturing workshop and consider selecting a suitable
Topic division strategy to optimize the design based on factors such as performance over-
head, cost expenditure, and message volume.

This paper proposes a new KafkaTopic-based partition strategy to divide different
types of data on the manufacturing floor into different topics, as shown in Figure 7. Each
topic manages the messages of all nodes under the collection framework, which not only
divides the workshop data and facilitates the tracking and management of messages but
also improves the efficiency of the entire system in consuming messages.

Real-time
process data

1

Equipment to be
monitored

Device

information Operational
status

Item inventory
information

e

?
!
!

Feeding warning

. Finished product
Production count
monitoring
information Progress

laalelglivelgigle]
Figure 7. Kafka Topic partitioning logic.

3.3.3. Message Sending and Receiving Module Development

The message sending and receiving module encapsulates the ProducerAPI and Con-
sumerAPI provided by Kafka into a class in Python. When the value of the subscribed
node changes, the program calls the class by definition and uses the producer method to
send the message to the specified Topic, which is automatically appended to the end of the
Topic. The sending and consumption example is shown in Figure 8. The figure consists of
a data collection module and a Topic with three partitions: P1, P2, and P3. When a new
message is sent, the Kafka Producer will split the message according to the number of par-
titions defined by the user and send it to the specified partition for storage. At the same
time, Kraft will record the offset of this message in the partition. When a Kafka Consumer
wants to consume the data, it can find the offset of the target data in Kraft and retrieve
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the data from the specified partition. At the same time, Kafka also supports multiple con-
sumer modules in consuming the same data at the same time, thereby speeding up the
data-consumption process and improving the real-time response speed of the system.

Kafka Topic

[5]4l3]2]1]0]

P1 1
P2 (3/2[1]0]
pull
Datab
o 5
J

N

pull

Data acquisition
module )
writes

[ttt e Tl

Kraft: Record the offset of the message

Figure 8. Example of sending and consuming Kafka messages.

3.3.4. Multithreaded Parallel Data Consumption

With the continuous development of computer technology, multi-threading technol-
ogy has been gradually adopted by smart factories, the main purpose of which is to reduce
the idle time of the central control computer of the smart factory, give full play to its per-
formance so as to enhance the throughput of the whole system, and improve the response
speed and overall performance of the data acquisition end and the application side. How-
ever, in a large number of devices in a smart factory, the individual acquisition threads do
not continuously send and receive data but are only activated when the data state changes.
As aresult of this feature, threads are frequently created and destroyed, which puts greater
pressure on system resources and reduces processing efficiency.

For this reason, this paper uses a custom implementation of a thread pooling mech-
anism based on Python’s threading module to process the real-time data obtained from
Kafka for multi-threaded consumption, as shown in Figure 9. Thread pools avoid the
overhead of frequent thread creation and destruction by pre-creating a fixed number of
Worker Threads that pull pending Kafka messages from a shared task queue. In the spe-
cific implementation, the thread pool is configured with the following parameters:

1. Thread pool size (number of worker threads): set to 8, according to the number of
CPU cores (4 cores and 8 threads) of the experimental server, to achieve a balance
between concurrency and system resource occupation;

2. Task queue size: set to 1000 to cache the pending messages consumed by Kafka to
avoid thread blockage caused by burst data.

3. Blocking policy: When the task queue is full, the producer thread (Kafka consumer)
blocks the waiting queue to have empty seats to ensure the stable operation of
the system.

4.  Thread lifecycle management: All threads start when the main program is initialized
and continue to cycle through the task until the program exits.

This mechanism realizes the quasi-real-time concurrent processing of Kafka messages
in actual operation, which has good throughput and system responsiveness and avoids the
additional overhead caused by frequent thread creation. The thread pool size and queue
capacity can be flexibly adjusted based on Kafka message throughput and server resources.
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Kafka Cluster Database

Thread pools

Finished e iota Alarm
product data v information

Figure 9. Multithreaded parallel consumption.

3.4. Design of Storage Scheme for Manufacturing Data

With the transformation of traditional factories to intelligent ones, the amount of data
in factories has exploded, and the demand for real-time data processing has increased. It is
particularly important to choose a suitable database optimization strategy. A reasonable
design of the structure of the database table can improve the performance and efficiency
of the database, reduce the association operation of the table, and improve the system
response speed. On the other hand, different data types can be selected according to the
characteristics of different data, and the use of overly large or small data types can be
minimized to reduce the waste of storage space and improve query efficiency. At the same
time, appropriate primary keys and foreign keys can be selected for each table to ensure
the integrity and consistency of the data and avoid using too many or too long primary
keys and foreign keys to reduce the storage and maintenance costs of indexes.

This study is designed to support the data collection architecture of the entire produc-
tion workshop, because there are many devices in the production workshop. Equipment
with the same specifications will be distributed in different stations in different produc-
tion and manufacturing units. The information of each equipment to be detected includes
the equipment number, node ID, UUID, station ID (PLC_ID), URL, manufacturing unit ID,
name, and location, etc. Therefore, this study uses the information of the whole workshop
to split into a number of smaller tables for decentralized storage, carries out a reasonable
table sharding design according to the characteristics of the data, and divides each equip-
ment to be detected into three tables of different dimensions for storage and classification,
which is sorted in a tree shape, as shown in Figure 10.

© - ©
5 & public 5
ublic ublic
@ : 01 hi e @ : 01_nod
a _machine app01_node
B3 app . id text 1 B3 app
id text —_— = node_id text
fj name text 8
name text node_uuid text
8 f urltext N
fj location text N parent.id text 2 plc_parent_id text
fj treejsonb

Figure 10. E-R diagram of database tables.

The bottom-level table named app01_node contains some basic information of the
device, such as the node value and the UUID sequence that uniquely identifies the de-
vice. The middle-level table app01_plc contains the station information of the device, such
as the station number and the URL for the OPC UA client connection. The top-level ta-
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ble app01_machine contains the name, number, and location of the manufacturing unit to
which the station belongs. Tables app01_machine and app01_plc select the id column as
the primary key. Tables app01_plc and app01_node select the parent column as the foreign
key and then associate the foreign key with the primary key of the previous layer so as to
associate all tables together to reduce the amount of data and the number of indexes of a
single table, thereby improving query efficiency.

The database side also integrates the program responsible for processing and writing
message data into the table, covering the following key links:

1. Start Kafka on the local database side, then connect to the database and query the de-
vice information in a table, and obtain the node information to be detected, including
the node ID, the unique identifier UUID, the PLC_ID corresponding to the node, the
connection address URL, and the machine ID.

2. Process and classify each of the above information, divide them by URL, integrate
the nodes under the same connection address into the form of a dictionary in Python,
optimize the data structure, and improve the PDC retrieval efficiency.

3. Convert the above integrated messages into JSON and send them to the Topic named
“query”. Atthe same time, different Topics will be created based on different PLC_IDs
to optimize the production and consumption rate of messages.

4.  Subscribe to Topics with different PLC_IDs. When consuming new messages, the
current time will be automatically obtained, and then the current time will be written
together with the message into the specified data table to achieve storage and backup
of factory production data.

4. Experimental Testing
4.1. Design and Construction of Assembly Experimental Platform

The experimental object of this paper is an automatic assembly platform composed
of six stations, including automatic loading, transfer, assembly, and handling. First of all,
the entire platform is allocated to stations according to function and processing sequence,
and each station has a specific execution to complete the set action. The design of the plat-
form mainly includes mechanical structure design, electrical component selection, electri-
cal schematic design, and PLC program writing and debugging. The overall structural
layout is shown in Figure 11.

DM
BM
KM
DA
DS
S
AA

Figure 11. The overall layout of the assembly experimental platform.

The mechanical structure of the entire platform was drawn in Solidworks, 3D printed
using PLA material, and then assembled with electrical components. It mainly includes
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six work areas, namely, the device responsible for pushing the bottom (BM), the loading
device for releasing beads (KM), the device for pushing the upper cover (DM), the ro-
tating device for transporting the upper cover (DA), the clamping device (S), the device
for transporting and shipping (AA), and the rotating device responsible for the bottom
platform (DS).

4.2. Test Environment Configuration

In order to simulate the working conditions of information collection in a real man-
ufacturing workshop and verify the feasibility of the entire framework, this paper uses
a server as the main test machine and uses VMware software to simulate three different
servers as three Kafka Brokers to form a Kafka cluster. The configuration of each simulated
server is shown in Table 2. All use a unified Ubuntu 18.04 as the operating system and use
Kraft for unified management of the Kafka cluster.

Table 2. Test configuration of the server.

CPU  RAM HDD 0s Kafka PostgreSql
Version Version
4 x3 16 GB 50 GB Ubuntu22.04.4 LTS 2.13-3.7.0 16.3

CPU: Central Processing Unit. RAM: Random Access Memory. HDD: Hard Disk Drive. OS: Operating System.

4.3. Manufacturing Workshop Data Collection Terminal Test

This article uses three servers to build a test platform. Two of the servers integrate
PDC components as OPC UA clients, namely, PDC1 and PDC2. Each PDC is responsi-
ble for detecting the underlying equipment data under the manufacturing unit. The other
server uses PostgreSql as the data storage function, which is responsible for pulling the
data collected by the two PDC servers from the Kafka Cluster. The Web front-end compo-
nent realizes data visualization by subscribing to the specified Topic. The entire framework
uses JSON format for data exchange, and each piece of data has a uniquely identified UUID
sequence defined to facilitate the distinction of a large number of devices in the workshop,
as shown in Figure 12. Each piece of collected data contains the data change time, variable
value, data type, and node identifier UUID of the node.

running_value 2024-10-38 16:23:23.959542

poll:

2024-10-30 16:23:23.959561

massage_json: {'update_time': '2824-10-38 16:23:23.936197', 'node_value': 568, 'node_type': 'boolean'

insert in db

insert sqgl:

insert succeed

insert into appBl_ka_l06ms_node58_10_38(update_time,node_value,node_type,node_uvuid,in
values("2024-18-30 16:23:23.936197','568"', "boolean’, 'aBlf9618-dc96-4e58-a38d-52Ffocad

running_value 2024-18-38 16:23:23.960789

poll:

2024-10-38 16:23:23.960808

massage_json: {'update_time': '2824-10-38 16:23:23.936648', 'node_walue': 556, 'node_type': 'boolean'

insert in db

insert sqgl:

insert succeed

insert into app@l_ka_l@6ms_nodeS0_10_308(update_time,node_value,node_type,node_vvuid,in
values('2024-10-30 16:23:23.936648','556", 'boolean’ , "bB757907-1066-4235-9e0c-05344b22

Figure 12. Sample data received from the database.

In a smart factory environment, large amounts of data from OPC UA device nodes
need to be frequently collected and transmitted. In order to achieve good cross-platform
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compatibility and readability, this study uses JSON format as the serialization method for
Kafka messages. However, JSON itself has the problems of redundant field names and
large encoding volume, which may cause a waste of transmission bandwidth and process-
ing delay in high-frequency data scenarios. Therefore, compressing the message size and
improving the transmission efficiency of Kafka while maintaining the flexibility of the sys-
tem are key issues to consider.

In order to improve the efficiency of message transmission, this study tests and com-
pares three mainstream compression algorithms: gzip, 1z4, and snappy, with the help of
the message compression mechanism natively supported by Kafka. The experimental re-
sults are shown in Table 3.

Table 3. Comparison of JSON message compression algorithms.

Compression Average . . . . . .
Algorithm Compression Ratio Compression/Decompression Time Applicable Scenarios
Gzip 70-75% high High compression ratio
Lz4 55-60% low Real-time
Snappy 50-55% medium General scenes

Since the average size of a single JSON message required for transmission in this paper
is 520~600 bytes, 1z4 is finally selected as the Kafka message compression algorithm based
on the compression effect and real-time processing performance. The algorithm has an ex-
tremely fast compression and decompression speed while maintaining a high compression
ratio, which is suitable for the latency-sensitive real-time data processing requirements of
smart factories.

4.4. Manufacturing Workshop Edge Data Processing Test

In order to test the feasibility of the edge-computing method proposed in this paper
in actual manufacturing production, this section conducts real-time data collection and
analysis in the actual production process of the assembly experimental platform, and the
results are shown in Figures 13 and 14. In the results, it can be seen that when the data
acquisition end detects that the equipment data have changed, its data will be aggregated
into the edge-computing program, and through the logical analysis and judgment of the
program, real-time monitoring of the production process and inventory management can
be achieved.

Python: New data change event ns=2;i=4 1 vuid be3e2074-0ffd-4dcd-ac73-1lada2f14d654
browse_name: KM

Python: New data change event ns=2;i=4 0 vuid be3e2074-0ffd-4dcd-ac73-1lada2f14d654
browse_name: KM

Action KM completed

Current inventory quantity BM: 2 KM: 2 DM: 1

Figure 13. Example of inventory calculation.

Python: New data change event ns=2;i=6 1 vuid 8b1bbS57d-8f52-41d1-8700-9a9f7bbal2c3
Python: New data change event ns=2;i=6 0 vuid 8b1bbS57d-8f52-41d1-8700-9a9f7bbal2c3
Python: New data change event ns=2;i=7 1 vvuid 1727301a-aa31-4956-8ec2-f81da72ed7as
Python: New data change event ns=2;i=7 0 vuid 1727301a-aa31-4956-8ec2-f81da72ed7as
Python: New data change event ns=2;i=8 0 vuid 02238def-962f-48c5-aafa-08f9f4038b32
browse_name: DA

Action DA completed

Figure 14. An example of a production action calculation.
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4.5. Manufacturing Workshop Data Transmission Test

In order to test the throughput of the system, the OPC UA server customized in
Python was used to simulate the data changes of equipment in a real production work-
shop. The production and consumption of 10,000, 30,000, and 50,000 data were tested,
respectively. 1z4 format was used to compress the messages. The six groups of test results
are shown in Figure 15. The results show that 99.9% of the message sending delays are
within 1 s, and the average system throughput is 51.96 MB/s.

Completion Time (ms) @B soth @ 95th 99th (@ 99.9th
800, 787
772

702 706 692 698 706

659

625
601 608

600
568

s41 548

497 492

368

200

0 — — Test Number
1 2 3 4 5 6

Figure 15. System throughput test.

In order to evaluate the performance of the entire framework in real-time data col-
lection and processing, study paper uses Python to design an OPC UA server to simulate
the generation of real workshop big data; change the value of the node at a frequency of
100 ms; and conduct actual tests on data collection, processing, and transmission based
on the Kafka-based distributed processing framework. Given that Kafka uses batches to
send and consume data, this study conducted seven sets of data sending and receiving
tests, each containing about 50 messages. Figure 16 shows the delay from the sender to the
receiver of each set of data.

Completion Time (us)
7000

6667

6000

5000

3000
2000

1000

Test Number

1 2 3 4 S 6 7

Figure 16. Data latency analysis after Kafka is introduced.
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When the PDC program detects that the data of the specified node has changed, the
system will specify the current time as update_time. When the database side pulls data
from the Kafka Cluster and writes it to the database, the system will also specify the current
time as insert_time. This article uses two different times of the same data as two time nodes
for delay comparison. The results show that all data are completed from data collection to
data storage within 7 ms, and the introduction of Kafka improves the throughput and hor-
izontal expansion capabilities of the entire system and has a wider range of applications.

5. Conclusions
5.1. Summary

This study mainly uses industrial Internet of Things technology, big data processing
technology, and edge computing to realize real-time detection, processing, and analysis
of production data, equipment status, and production progress of intelligent production
lines. The underlying system uses the OPC UA protocol to realize the standardized collec-
tion of heterogeneous equipment data, and the edge side performs preliminary analysis
and processing of key data, which improves the real-time performance and response effi-
ciency of data processing. The processed data are efficiently transmitted through the Kafka
message queue and are persistently stored and backed up by the PostgreSQL database. Fi-
nally, the real-time monitoring and tracking of the entire production process is realized
through the front-end visual interface, providing data support for production process op-
timization and decision-making.

The current testbed deploys Kafka nodes based on virtual machines (VMs), which can
simulate the industrial network environment to a certain extent, but does not fully reflect
the complexities of real industrial deployments, such as equipment performance differ-
ences, network congestion, and system heterogeneity. Therefore, future research will fur-
ther deploy this framework in actual industrial sites to verify its stability and practicability
in complex environments.

5.2. Implications

Although the distributed real-time data management framework proposed in this study
shows good performance and scalability in the test, it still has the following limitations:

1. At present, the system has not yet integrated a real-time anomaly detection mecha-
nism, and in the future, a lightweight model can be introduced at the edge node to
achieve rapid response. Second, although the framework supports integration with
edge Al it lacks in-depth research on edge inference and model deployment. Further
research can focus on the adaptability of federated learning or model compression
technologies in practical applications.

2. Although a TSN-based OPC UA communication scheme is designed in this study, its

performance in very low-latency scenarios (such as multi-device cooperative control)
has not been fully verified, and it should be verified through more complex industrial
experiments in the future.

3. In terms of security, the current solution mainly relies on the built-in mechanism of
Kafka, and in the future, the system should introduce a zero-trust architecture, end-
to-end encryption, and edge privacy protection policies to meet the multi-node de-
ployment and data security requirements in the industrial Internet.



Appl. Sci. 2025, 15, 6862

19 of 21

This study provides the academic community with the implementation idea of a sys-
tem integrating OPC UA, Kafka, and edge computing and proposes a reference architec-
ture for data processing in intelligent manufacturing. For the industrial community, the
framework can be applied to key scenarios such as equipment condition monitoring and
predictive maintenance and provides a foundation for building low-latency and highly re-
liable edge intelligent systems in the future. In the future, it can continue to expand to
edge Alintegration, real-time anomaly detection, OPC UA TSN key control scenarios, and
industrial data security protection mechanisms.
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Appendix A

def create_server(endpoint, name, namespace_uri, node_dict):
server = Server()

server.set_endpoint(endpoint)

server.set_server_name(name)

idx = server.register_namespace(namespace_uri)

myobj = server.nodes.objects.add_object(idx, “MyObject”)
variables =[]

for var_name, (ns, i) in node_dict.items():

print(' IE{Ef i AF &+, var_name, ns, i)

var = myobj.add_variable(ns, var_name, 0.0, ua.VariantType.Float)
var.set_writable()

variables.append(var)

print(' CAI @A E 413", variables)

server.start()
print(f” 55 4% © 5 3, Vi #iht: {endpoint}”)

return server, variables
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“ ”

if name == main_":
logging.basicConfig(level=logging. WARN)

serverl_endpoint = “opc.tcp://0.0.0.0:4843/freeopcua/serverl/”
serverl_name = “Server 1”

server]l_namespace_uri = “http://examples.freeopcua.github.io/serverl”
serverl_node_dict = {

“DS”: (2, 2),

“BM”: (2, 3),

“KM”: (2, 4),

“DM”: (2, 5),

“DA-S": (2, 6),

“DA-C": (2,7),

“DA-V”: (2, 8),

“S7:(2,9),

}
server2_endpoint = “opc.tcp://0.0.0.0:4844/freeopcua/server2/”
server2_name = “Server 2”

server2_namespace_uri = “http://examples.freeopcua.github.io/server2”
server2_node_dict = {

“AA-S7: (3, 1),

“AA-C”: (3,2),

“AA-V”: (3, 3),

}
serverl, serverl_vars = create_server(

serverl_endpoint, serverl_name, serverl_namespace_uri, serverl_node_dict
)

server2, server2_vars = create_server(

server2_endpoint, server2_name, server2_namespace_uri, server2_node_dict

)

vup = VarUpdater(serverl_vars, server2_vars)
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