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Abstract

This article proposes a 3D mathematical model of the influence of electrical heterogeneity
of the ion exchange membrane surface on the processes of salt ion transfer in membrane
systems with axial symmetry; in particular, we investigate an annular membrane disk in
the form of a coupled system of Nernst-Planck-Poisson and Navier—-Stokes equations in
a cylindrical coordinate system. A hybrid numerical-analytical method for solving the
boundary value problem is proposed, and a comparison of the results for the annular disk
model obtained by the hybrid method and the independent finite element method is carried
out. The areas of applicability of each of these methods are determined. The proposed
model of an annular disk takes into account electroconvection, which is understood as the
movement of an electrolyte solution under the action of an external electric field on an
extended region of space charge formed at the solution-membrane boundary under the
action of the same electric field. The main regularities and features of the occurrence and
development of electroconvection associated with the electrical heterogeneity of the surface
of the membrane disk of the annular membrane disk are determined; namely, it is shown
that electroconvective vortices arise at the junction of the conductivity and non-conductivity
regions at a certain ratio of the potential jump and angular velocity and flow down in the
radial direction to the edge of the annular membrane. At a fixed potential jump greater
than the limiting one, the formed electroconvective vortices gradually decrease with an
increase in the angular velocity of rotation until they disappear. Conversely, at a fixed value
of the angular velocity of rotation, electroconvective vortices arise at a certain potential
jump, and with its subsequent increase gradually increase in size.

Keywords: hybrid numerical-analytical method; axial symmetry; electrical inhomogeneity;
electroconvection; ion transport; membrane systems; overlimit mass transfer

1. Introduction

The operation of electromembrane systems (EMS) in overlimit current modes has
significant potential for a significant reduction in investment costs for desalination plants.
The study by Wessling et al. [1] was devoted to the analysis of electroconvective vortices
using the surface patterning method or geometric and electrical heterogeneity. In [1], a
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comparison of electroconvection development on two membranes modified using patterns
was performed. An analysis was carried out of the increase in area of the electroconvective
vortices, their structural stability in a steady state, and the possibility of controlling elec-
troconvective vortices by introducing certain structural heterogeneities of the membrane
surface to reduce energy losses in the current-voltage characteristic (CVC) and for more
economical operation in EMS in overlimit modes, significantly increasing their efficiency.

As [2-7] show, the phenomenon of overlimit mass transfer is currently being inten-
sively studied; however, many issues are still poorly understood. For example, it is neces-
sary to study the effects modifications of the membrane surface have on the development of
electroconvection. Electrical inhomogeneity arises due to the inhomogeneous distribution
of charges on the membrane surface, which can be caused by both the geometric features of
the system [8,9] and the properties of the membrane material. Such inhomogeneities lead
to local zones with increased electric field strength, which in turn affects the rate of ion
migration and accordingly the emergence and development of electroconvective vortices.
In turn, this leads to an increase in the rate of ion transfer through the membrane.

In [10], it was shown that the electrical conductivity from an electrolyte solution to a
solid element with a selective charge, such as an ion exchange membrane or an electrode,
becomes unstable when the electrolyte concentration near the interface approaches zero due
to diffusion limitation. In [11], an analysis was made of the influence of the fine structure
of the electrical double layer and the reaction rate of the electrode on the choice of the
wavelength of the increasing perturbation mode with morphological instability during
cathodic electrodeposition from a dilute electrolyte solution.

In recent years, there has been significant progress in understanding the role of electri-
cal heterogeneity and electroconvection in EMS. Thus, a previous study [12] was devoted
to the mechanism of development of electroconvective vortices, and their development
was also controlled using a one-dimensional ion exchange membrane with a mesh pattern
(IEM). It was shown that the rate of decrease in the electric potential rapidly increased
during the development of vortices but gradually decreased during the transverse merg-
ing of vortices. Based on these data on the electroconvective vortex, it was shown that
the electrical inhomogeneity of the IEM actively controls the vortex and increases the
desalination efficiency.

A new model was proposed in [13] that takes into account non-linear effects in elec-
troconvection, which allowed for a more accurate description of mass transfer processes
under high current density conditions.

In [14], non-stationary ion transport caused by a sinusoidal current through an ion
exchange membrane with an electrically inhomogeneous surface was considered. Low-
frequency spectra of the electrochemical impedance of electrically inhomogeneous ion ex-
change membranes were studied experimentally and theoretically, and a two-dimensional
model for calculating these spectra was proposed. Non-stationary ion transport through a
heterogeneous membrane and two adjacent diffusion layers was studied. Numerical and
analytical (under conditions of equality of the diffusion coefficients of the cation and anion
in the solution and at zero direct bias current) solutions were obtained for the corresponding
two-dimensional boundary value problem.

In [15], the study focused on experiments with heterogeneous membranes MK-40
and MA-41 with different ion exchange resin contents. It was found that the electrical
conductivity of both cation exchange and anion exchange membranes increased with the
increasing ion exchange resin content, with cation exchange membranes demonstrating a
wider range of change.

Thus, the study of electrical heterogeneity and its effect on ion transport with electro-
convection taken into account is an important area of research into increasing the efficiency
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of the separation and purification of solutions, and is of great practical importance. Further
theoretical research in this area should be aimed at developing more accurate mathematical
models. The advantage of constructing 3D models with axial symmetry is the property of
equal accessibility at sub = limiting currents, i.e., the fact that the thickness of the diffusion
layer in such systems is constant up until the moment of the onset of electroconvection.
At the same time, we note the insufficient development of such mathematical models and
numerical methods for solving boundary value problems for overlimit current modes.
This article is a continuation of [16], where the basic 3D model of electroconvection
with axial symmetry was formulated and investigated. In this article, a modification of the
basic model is considered, which consists of considering a cation exchange membrane of a
more general type with conductivity and non-conductivity sections. As a result, an annular
cation exchange membrane disk is obtained, new boundary conditions are formulated
for non-conductivity sections, and their coordination with the conductivity sections on
the cation exchange membrane is achieved. Thus, a mathematical model of a much more
general type is obtained, which accordingly is more adequate and applicable for the study
of heterogeneous cation exchange membranes used in practice than that considered in [16].

2. Methods
2.1. Mathematical Model of Transport for Annular Membrane Disk

Let us consider the transfer of salt ions during rotation of a cation exchange membrane
disk, with non-conducting and conducting regions, inside a vertically standing cylindrical
cell around the central axis, taking into account electroconvection, after which we will
formulate the corresponding mathematical model.

When formulating a mathematical model, as well as the subsequent numerical solution
due to axial symmetry (Figure 1a), it is sufficient to describe half of the cross-section of
the cylindrical region, where it is necessary to determine the equations and boundary
conditions (Figure 1b). To do this, it is necessary to move from a rectangular coordinate
system (x,y,z) to a cylindrical one (r, ¢, z). However, the velocities in the angular direction
differ from zero, so the model must include all three components of velocity (radial,
azimuthal and axial), the flows, and the electric field strength, although they depend only
on two arguments (r,2),i.e., a 2D model. Moreover, with axial symmetry, the derivatives
with respect to the component ¢ are zero, so all equations in the cylindrical coordinate
system can be simplified in this case.

To model the transfer processes, a coupled system of Navier-Stokes equations with

—
volumetric electric force f and Nernst-Planck-Poisson equations was used, which in a
cylindrical coordinate system (r, ¢, z) takes the following form [16]:
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Here, U = (u,v,w); u,v,w—radial, azimuthal, and axial components of the so-
- =

lution flow velocity u; index 1 refers to cations, index 2 to anions; j,, j ,—flows; Cy,
—
Cy—concentration in the solution; z1, zp—charge numbers; I —current density; D1, Dy—

_>
diffusion coefficients; ®—electric field potential; E = —V®—electric field strength; e—
dielectric permeability of the electrolyte; F—Faraday constant; R—universal gas constant;
T—absolute temperature; t—time; p—density; 7—dynamic viscosity; p—pressure.
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Figure 1. The studied area, its cross-section, and its boundaries: (a) general view; (b) half of the
cross-section, where 1 is the axis of symmetry, 2 is the depth of the solution, 3 and 4 represent the
cation exchange membrane, and 5 is the open boundary. The conductive region of the membrane is
shown in gray.

In the studied section of the cylindrical region (Figure 1), boundary 2 models the
part of space infinitely distant from the CEM, in which the condition of electroneutrality
is satisfied and the concentration of the solution is constant (Cp). Boundary 2 is also
considered an anode and an open boundary (inlet) for the solution; for the velocity here the
condition of the absence of normal voltage is set, and the pressure is considered equal to
zero. This boundary is considered an equipotential surface, and ®(t,r,0) = d,. Boundary
1 is the axis of symmetry. Boundary 5 is considered the outlet for the solution; therefore,

= = .
the condition of removal of ions only by convective flow issetas j; = —u -C;, i = 1,2,

and for the velocity the condition is the absence of normal stress. In addition, for the

. e — T = .
potential, the boundary condition is used, —# - (raai:, aa%) = 0; here, n is the normal

vector. At boundary 4, the CEM surface is considered equipotential: ®(t,r, H) = dy = 0.
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Boundaries 3 and 4 correspond to the rotating CEM, while for the azimuthal velocity the
condition is v(t,r, H) = wr, where w is the angular velocity of rotation of the disk. For

anions, the condition of impermeability (absence of flow) is set here as —n- 72 = 0. The
conductivity region is located at boundary 4, so the cation exchange membrane forms a
ring (Figure 1b). At boundary 3, corresponding to the non-conducting region, there is a
condition of impermeability (no flow) of —n - 71‘ =0, i = 1,2. To derive the condition
for the potential at the non-conducting boundary 3, the equality of the current density
? to zero at this boundary is used. The normal component of the current density at this
boundary is equal to zero due to the conditions on the flows. We determine the radial
component of the potential gradient from the condition that the radial component of the
current density ass equal to zero from the formula for the current (4):

—1

-
= P( T (21D1C1 + ZZD2C2) (Z1D1 al + ZzDz ) (21C1 +22C2)u) e+
+( 1C1 +2,C)0) e et

o
+F(— (21D1C1 +z%D2C2) — (z21Dq al + 25 D ) (z21C1 + 22Co)w) e,

Therefore, from I, = 0, we get:

od aCq aCy

F(— Z%D1C1 +Z%D2C2) Fp (ZlDl 3 + 2o Dy —= 5 ) (21C1 +22C2)u) =0

i

Since the radial component of the velocity is u = 0, we obtain:

——(z7D1C D>C
RT(Zl 1C1 + 23D 2)8 —(z21D1—— 5 LD, —=2 P ) =0
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From here: 5 = F(2D1C,72D,Cy)

Thus, at boundary 3, the following condition must be set for the potential:

d®  RT(z:D1 %) +2,0,%2)

o F(22D1Cy +23DyCy)

It is assumed that the cell is initially completely filled with an ideally mixed solution
of sodium chloride with a concentration Cy, and the same ideally mixed solution is fed
into it through the boundary 2. Therefore, a constant concentration is taken as the initial
condition C1(0,7,z) = C(0,7,z) = Cp.

2.2. Algorithm for Hybrid Numerical-Analytical Solution

In order to clarify the problems of the numerical solution of the boundary value
problem, we will move to a dimensionless form using characteristic quantities.

The problem has two characteristic quantities, where H is the cell height and 7 is the
outer radius of the annular membrane. Since in practice H = a - rp, where proportionality
coefficient = 1 + 5, they have the same order, and r( is taken as a characteristic quantity,
since it is convenient to express the characteristic speed through it. As the characteristic
velocity Vj, we will use the azimuthal component of the velocity Vy = woro.

Let us assume that:

N
0T w2, Voo _ G oWy DeCo )
_T’Z _rr _T/u - Y7’ vi _6’]1 — ]1 - ir
0 0 0 0 0 Jo ro
D; =W rF— roVi eRT,
pW — Zi.F 0" F. pe= 070, (u) 0 ) — o,
i 0 RT DO Y%COFZ ’ RT pPo = PVO ’
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Next, we will make the transition in the equations from dimensional quantities to
dimensionless ones. Then, we will get:
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where K = Kye® and f = E(”>(r(%)ara(u) (rE®,) + %)
Let us evaluate and clarify the meaning of dimensionless parameters. The system of
Nernst—Planck-Poisson and Navier-Stokes equations in a cylindrical coordinate system

obtained in the process of non-dimensionalization includes 4 dimensionless parameters:

1.  The Peclet number shows the ratio of the coefficients of kinematic viscosity and
diffusion. With a characteristic channel height and an outer radius of the membrane
disk of 1 mm, we obtain an estimate of the Peclet number (Table 1):

roVo _ wor3 _ wo[rad/s]- 10~6[m?]

Pe = =0.75-10% - wy
Do Dy 1.33-10~%[m/s?|
Table 1. Estimation of the Peclet number at g = 1 mm.
wy,rad/s 1 25 100
Pe 0.75-10° 1.875-10* 7.5-10%

The Peclet number can be considered a large parameter; that is, in this problem there
will be a developed diffusion layer, and the convective transfer of salt ions prevails over
the diffusion transfer.



Inventions 2025, 10, 50

7 of 19

2. Dimensionless number &(%) :

(_ ERT _ 8854-10712.8314-293 [1] . oo [1
- 1r3CoF? 106 - 964852 Col — *

From this formula, it follows that when changing Cg from 0.01 mol/m? to 100 mol/m?3,
the parameter ¢(*) changes from 2.3 - 1071 to 2.3 - 10~. Therefore, £(*) can be considered
a small parameter, which has a meaning in the form of the ratio of the square of the

thickness of the region of equilibrium space charge to the square of the intermembrane
2

distance [17] e = rglgfﬂ =2 {%} , where [; = 21C{0Tl§2 is the Debye length. Thus,

the space charge region (SCR) located as part of the double electric boundary layer near

the CEM is of the order of Ve(®). It is easy to show that in this region the gradients of
1
W’

boundary value problem is related to stiff problems; thereforee, serious problems arise in

concentrations and electric field strengths are of the order of as a result of which the

the numerical solution.

3. The Reynolds number Re, which is the ratio of the inertial force F;;, = p0H2 VO2 to the
viscous friction force Fy, = vpoVpH.

Table 2 presents the results of estimating the Reynolds number for the desalination
chamber. If we take the outer radius of the membrane disk 7y of about 1 mm, and consider

2
a liquid with the same viscosity as water v = 1.006 - 107° m?/s, then Re = @ = % =
—wol0 2 0 9944
100610622 0
Table 2. Results of Reynolds number estimation at 7y = 1 mm.
[ T2 T 21 107
Re 1.56 3.12 6.25 31.22

From this table, it is clear that the forces of inertia and viscous friction are approxi-
mately the same; therefore, it is necessary to use the Navier-Stokes equation without any
simplifications. In addition, from the adhesion conditions, it follows that a hydrodynamic
layer (friction layer) arises, although from the value of the Reynolds number it follows that
it is not developed.

4. The dimensionless parameter K,; is the ratio of electrical force to inertial force. Let us
calculate it for a membrane radius of ry = 1073 m (Table 3):

Table 3. Parameter estimation for K,;.

3
Co, mol/m 0.1 1 10 100
Wy, rad/s
1 2.43-10° 2.43-10°0 2.43-107 2.43-108
105 2.2-10 2.2-10% 22-10% 22104
. . 3
K, - Rigcg _ 8314 3293 _ c% _ 2436 1073 c% :2.43.106'%
prawd  1.002-10%-107¢ w2 1.002-1073 w? w3

From Table 3 and the formula, it is evident that with increasing speed wy, the value

of K,; quickly decreases, and with increasing concentration it increases. In the Navier—

RTCy (u)
2. 2€

prowy

Stokes equation, this value occurs in the complex K = K,; - e) = ; hence, it is

evident that electroconvection practically does not depend on the initial concentration but
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strongly depends on the angular velocity of rotation, i.e., with increasing angular velocity
the electroconvection quickly dies out.

The presence of a small parameter () at the derivative in the Poisson equation shows
that the problem belongs to the type of singularly perturbed problems for a quasilinear
system of partial differential equations.

As mentioned above, the Peclet number shows that a diffusion layer arises near the
CEM, which in turn consists of an electroneutrality region and a space charge region directly
adjacent to the membrane [18]. The structure of the space charge region is determined
by the current density, which in turn is determined by the potential jump. At currents
below a certain critical value, called the limiting value [18], the diffusion layer consists of
an electroneutrality region and a quasi-equilibrium space charge region (quasi-equilibrium
SCR), which is several orders of magnitude smaller than the electroneutrality region. At
overlimiting currents, in addition to the quasi-equilibrium space charge region, an extended
region of the spatial layer arises, which has a significantly smaller size but is already
comparable with the electroneutrality region [9]. In the extended SCR, electromigration
prevails over diffusion, and in the electroneutrality region, the migration and diffusion
flows are equal. In a quasi-equilibrium SCR, the migration flow is equal to the diffusion
flow in the first approximation, although they are opposite in direction, which leads to
the current becoming zero in the first approximation. In the quasi-equilibrium region
of the space charge, the concentrations and electric field strength increase exponentially;
therefore, their gradients have very large values compared to the values in the region of
electroneutrality and the extended region of the space charge. Thus, the boundary value
problems of membrane electrochemistry that take into account the quasi-equilibrium region
of the space charge are hard problems and are difficult to solve numerically, requiring an
exponential change in the grid step in the quasi-equilibrium region of the space charge and
very small time steps, which leads to the accumulation of errors [19]. At the same time, a
numerical study of the properties of a quasi-equilibrium SCR made it possible to establish
its main properties:

1.  The quasi-equilibrium SCR is formed almost instantly, in about 10~ seconds;
2. The thickness of the quasi-equilibrium SCR does not depend on the radius (r) of the

membrane disk, except for the vicinity of r = 0;

3. The quasi-equilibrium SCR is also quasi-stationary, i.e., it is practically independent
of time;

4. The axial and radial velocities in the quasi-equilibrium SCR are close to zero, and the
azimuthal can be considered practically constant and equal to wr, i.e., the electrolyte
solution near the membrane in the quasi-equilibrium SCR rotates as a whole.

In this connection, a natural idea arises to use an analytical solution in the quasi-
equilibrium region in combination with a numerical solution in the remaining region. To
implement this idea, three problems must be solved:

1.  Find an analytical solution in the quasi-equilibrium SCR;

2. Determine the boundary conditions on the left boundary of the quasi-equilibrium
SCR for the numerical solution;

3. Splice the analytical and numerical solutions, i.e., find the constants included in
the analytical solution and determine the boundary between the analytical and
numerical solutions.

To solve the last two problems, note that at sub-limit currents, the cation concentration
decreases in the electroneutrality region and increases in the quasi-equilibrium SCR, and
at overlimit currents, the concentration also decreases in almost the entire extended SCR,
while the region of increasing cations (RICC) includes a small part of the extended SCR
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and the entire quasi-equilibrium SCR. Thus, the region of increasing cations (RICC) at sub-
limiting currents coincides with the quasi-equilibrium SCR, and at overlimiting currents
it almost coincides with the quasi-equilibrium SCR, since it also includes a small part
of the extended SCR. In addition, the RICC has all of the above-listed properties of the
quasi-equilibrium SCR. Therefore, in the follow sections, we will use the RICC instead of
the extended SCR. The boundary between the RICC and the rest of the solution region is
the point at which the cation concentration has a local minimum.

The analytical solution in the RICC depends on the magnitude of the potential jump
(namely, the sub-limit or overlimit). In the sub-limit regime, the RICC coincides with
the quasi-equilibrium SCR, and in the overlimit regime, these regions are very close. As
was noted above, the RICC thickness does not depend on the radial coordinate r, the
radial (1) and axial (w) velocities are close to zero, and the azimuthal (v) velocity is almost
constant in the RICC. Therefore, in Equation (1), only the third component will remain in
the dimensionless form:

ac)
— ZDMWcWEW _p®Si_ g,

(). e
] 1,z 1 1 1 az(“)

In addition, in the RICC, all unknown functions are practically independent of time
t; therefore, the left-hand side of Equation (2) is equal to zero, and in the right-hand side,
due to independence from r, the derivative of the flow with respect to z is equal to zero.
In Equations (3) and (4), only components dependent on z will also remain; thus, to find
unknown functions in the RICC, we obtain a system of equations:

1 act
]( )i,z _ ZiDi(u)Ci(u)Egu) _ Dl(u) azE”) ,i=1,2 (5)
oy
Sy =0i=12 ©)
e(u)aE,gu) — z,CM 4 z,c (7)
9z(w) ™ 22
1 = Zl]ﬁ) + széf‘z) (8)

Thus, the system of Equations (5)-(8), for example, for a 1:1 solution of electrolytes with

" n

an ideally selective CEM takes the following form (the index “u” is omitted for simplicity):

ac
T; =CE; - L 9
dCy
=2 — _C,E 1
dz GE; ( 0)
dEZ o
where E(z,¢) = —‘%’ is the electric field strength and ®(z,¢) is its potential; Cy(z,¢),

Ca(z, €), respectively, as the desired concentrations of cations and anions; I, is the current;
£ > 0 is the small parameter.

As the boundary conditions are in dimensionless form for z = Zﬁ, the conditions for
merging with the numerical solution are set, and for z = 1:

Cl(l,e) = Cl,m (12)
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0@  d9C,

< o+ 5 yLQ_o (13)

®(1,¢) =0 (14)

The system of Equations (9)—(11) represents a singularly perturbed boundary
value problem.

1. Solution in the pre-limit case

Let us make the substitution { = \[ ,E; = (\[), Ci(ze) = C1(E,¢), Ca(z,€) =
52(6, ¢); then, for a small ¢, in the initial approximation, we obtain the classical system of
Boltzmann-Debye equations, which describes the quasi-equilibrium SCR:

aCi  ~ =
gE—Cﬁ (15)
iC, =
7i§—_-——C2E (16)
dE  ~ =~
i =C -G (17)

with the corresponding boundary conditions (12)—(14). Therefore, in the pre-limit regime,
the RICC coincides with the quasi-equilibrium SCR.
The boundary value problem has an approximate analytical solution:

V—az=t
1 4\/Be Ve
E(ze) = \[1—4“2;(\/ —a) (18)
C1dE 1, 1
C] = ESE =+ EeE — 506 (19)
1dE 1, 1
C2 = —EEE + ZSE — Elx (20)
where & = —(C1(Zm, €) + Ca2(Zm,€)) = —(C1(1,€) + C2(1,¢)) < 0, and B is a positive

number that is determined from the condition E(0,¢) = V/2(Cy, + &), equivalent to the
condition Cy(1,€) = Cq -

E(Zy — 0, ¢) is the value of the numerical solution at the point z,,, which must be finite;
accordingly, E(Z, + 0, €) (the value of the analytical solution in the RICC) must also be finite.
This condition is satisfied if Zm = 1 — ky/¢|Ine|; then, we obtain E(Z,, +0,¢) = 4,/Byv/—a
for ¢ — 0, if we take k = 5 F The equality E(z,, — 0,¢) = E(Zim + 0, €) is satisfied using a
higher approximation.

The points z,, obtained from the numerical solution by the independent finite element
method z,;, = 1.976 mm and the analytical solution in the RICC z,; = 1.999 mm coincide
with an accuracy of 1.1%.

Concentrations are merged by virtue of the choice « and Formulas (19) and (20).

2. Solution in the overlimit case

The appearance of an extended SCR in the overlimit mode, where ion concentrations
are low and the electric field strength tends to infinity as \[, requires a different procedure.

At overlimit currents, there are no anions in the region (z,,1], ie., Ca(z,e) = 0,
z € (Zm, 1].
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Therefore, the system of Equations (9)—(11) takes the following form:
ac
- =CE L
dE,
85 = C]
This system has an approximate analytical solution:
-1
1 4 7
E(z¢) = \/ \/7 71 (21)
1-— ,Be bV
_a 1+ g
Ci(z ) Y +f3 ¢ ") 22)
2bi—
(1-p)

where b > 0 is the integration constant.
3. Splicing solutions and determining constants

Let us putit thisway zx =1 —kyv/e+... = 1,¢ — 0+.
For the splicing procedure E(z,¢):

E(Zk + 0,8) = E(Zk — O,E)

We use E(z; + 0,¢) from the analytical solution in the interval (z, 1], and for the
calculation of E(zj — 0, ¢) we use the function E(z,¢) = M, which is a continuation

into interval (Zy, zx) as the solution in the extended SCR. Therefore:

—kib 2(I, -1 )
1 4y/Be b z = dnp
\/E 1— ‘Be_Zklb \/E
Thus, k; = _% 1n(—4b\/3+ 8ﬁ(2b2+1z—1np))_

2B+/2(L—Inp)
Let Z, =1 —kp/e|Ing| +... = 1,6 — 0+, then:

where for the calculation C1(Z,; — 0, €) we use the function Cy(z,¢) =

\/E as the
\/2 Izz I,,

solution in the RICC (part of the extended SCR), and in Cy(z,, + 0, €) we use the solution in
the interval (Zj, 1], extended to the interval (Z,, Zg).

2
Where we get k = zlb and B = <m> .

2
To find b, we use the condition C;(1,€) = Cy 4, from which b = 1/ Cm(=p)

2\ VBa+B)

Thus, the algorithm for hybrid numerical-analytical solution includes the following
steps:

1. We numerically solve the boundary value problem of the model without the RICC

and find Cy(1,¢), Ca(1,€).

2. We find the potential jump numerically. Next, we find the potential jump for the basic

model using the following relation:
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(1) — D(0) = P(Zy) — P(0) + D(1) — D(Zp) = Dns + fl AD = Dy — jl‘ Edz =

an EWI
_ Ci(1)
Zm G G (Zm )

= ®ns + Pricc

®(1) — D(0) = Pys + Pricc

Here, the first term Py is the potential jump calculated numerically, and the second
term ®rcc is the potential jump in the region of increasing cations (near the CEM).

3. We find the analytical solution in the RICC using Formulas (18)—(20) for the sub-limit
current mode and using Formulas (21) and (22) for the overlimit current mode.

4. Using steps (1) and (3), we obtain the solution to the boundary value problem of the
basic model.

3. Results
3.1. Computational Experiments for Verification of Hybrid Numerical Method

To verify the results of the proposed hybrid numerical-analytical method, their com-
parison with the results of an independent numerical solution by the finite element method
was used. A large number of computational experiments were carried out with different
initial concentrations and angular velocities. An independent numerical solution was
performed using the finite element method with a non-uniform grid. When performing
the computational experiments, the numbers of elements in the grid varied from 6305 to
147,415 elements. It turned out that a grid consisting of 9581 elements is quite sufficient,
since with a larger number of elements, the numerical results do not change, and with a
significantly smaller number, they begin to change. A time step of 0.01 s was used.

Comparison of Results for the Annular Disk Model Obtained Using the Hybrid Method
and the Independent Finite Element Method

Let us consider the results of the numerical study at the initial concentration
Co = 0.01mol/m?>. Figure 2a,b show the graphs of the cation concentration and the so-
lution flow lines for the annular disk model obtained using the hybrid method, and
Figure 2c,d show those obtained using the independent finite element method. Figure 3a—d
similarly show the results of the numerical study but already at the initial concentration
Co = 0.01 mol/m?. Figure 2a,c and Figure 3a,c show that the maximum concentration
occurs near the boundary of the non-conductivity and conductivity regions, and the con-
centration also increases on the symmetry axis. Figure 2b,d and Figure 3b,d show that
vortices are formed in the conductivity region, and the number of vortices increases with
increasing concentration.

An animation of the flow (streamlines) near the membrane disk at the initial concen-
tration Cy = 0.01mol/m? when solved using the hybrid method is given in Supplementary
Material Video S1 and when solved using the finite element method in Supplementary
Material Video S2.

An animation of the flow (streamlines) near the membrane disk at the initial concen-
tration Cp = 0.01mol/m? when solved using the hybrid method is given in Supplementary
Material Video S3 and when solved using the finite element method in Supplementary
Material Video S4.
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Figure 2. Graphs at initial concentration Cy = 0.01mol/ m3: (a) cation concentration when solved
using the hybrid method; (b) solution flow lines near the membrane when solved using the hy-
brid method; (c) cation concentration when solved using the independent finite element method;
(d) solution flow lines near the membrane using the independent finite element method.

Thus, at low concentrations in the order of 0.1, 0.01 mol/m3 and less, the finite
element method is preferable, and the hybrid method works better with increasing initial
concentrations of 0.1, 1, 10 mol/m? and beyond. In the general area of applicability, the
methods lead to results that coincide with an accuracy of about 1%.

3.2. Basic Laws of Occurrence and Development of Electroconvection and Mass Transfer for the
Model with an Annular Membrane

To identify the main patterns, a number of numerical experiments were conducted,
with the initial concentrations varying from 0.01 mol/m? to 100 mol/m?, the angular
velocity rates from 7 to 47 rad/s, and the potential jump values from 0.1 to 2 V. The most
typical results are given below.

Figure 4 shows the solution flow lines at an angular velocity of 7 rad/s, an initial
concentration of 10 mol/m3, and a potential jump of 0.1 V. It is shown that with small po-
tential jumps, vortices do not appear, and the solution flow lines correspond to logarithmic
spirals. Additionally, with a small potential jump, a diffusion layer is formed, the thickness
of which is approximately constant, with the exception of a small neighborhood near the
junction of the non-conductivity and conductivity regions.
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Figure 3. Graphs at initial concentration Cy = 0.0lmol/ m3: (a) cation concentration when solved
using the hybrid method; (b) solution flow lines near the membrane when solved using the hy-
brid method; (c) cation concentration when solved using the independent finite element method;
(d) solution flow lines near the membrane using the independent finite element method.
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Figure 4. Solution current lines at a potential jump of 0.1 V: (a) general view; (b) near the membrane.

Figure 5 shows the results of the study with a potential jump of 0.3 V (Figure 5a—c) and
a potential jump of 1.5 V (Figure 5d—f), an initial concentration Cy = 0.01mol/m?, and with
variations of the angular velocity of 7 rad/s (Figure 5a,d), 7t (Figure 5b,e), and 277 rad /s
(Figure 5¢,f). It is shown that the greater the angular velocity, the greater the potential jump
required for the occurrence of electroconvection.
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Figure 5. Graph of solution flow lines near the membrane disk: (a) at d, = 0.3 V and angular velocity
% rad/s; (b) at d, = 0.3 V and angular velocity 7w rad/s; (c) at d, = 0.3 V and angular velocity 27t
rad/s; (d) atd, = 1.5 V and angular velocity 5 rad/s; (e) at d, = 1.5 V and angular velocity 7z rad/s;
(f) atdy = 1.5V and angular velocity 277 rad/s.

In real devices, the concentrations are of the order of 10 or more mol/m?3, so the results
for 1 and 10 mol/m? are presented below.

Let us consider the case when the initial angular velocity is w = % rad/s and the
potential jump is d, = 1.5 V. The distribution of the cation concentrations is shown in
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Figure 6a, where it is evident that the maximum concentration is achieved at the junction of
the non-conductivity and conductivity regions. Based on Figure 6b—d, it can be concluded
that relaxation associated with the matching of the boundary and initial conditions occurs
within 2 s. Vortices arise at the junction of the non-conductivity and conductivity regions
and flow downstream, gradually decreasing in size (Figure 6d—e). This is due to the fact
that the azimuthal component of the velocity v = wr increases with increasing r.
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Figure 6. Graphs of the (a) cation concentration at Cy = 0.01mol/ m?3, (b) solution flow lines near
the membrane at Cy = 0.0lmol/m? and t = 1 s, (¢) solution flow lines near the membrane at
Co = 0.01mol/m?3 and ¢ = 2 s, (d) solution flow lines near the membrane at Cy = 0.01mol/m?> and
t = 20's, and (e) solution flow lines near the membrane at Cyg = 0.01mol/m?3 and t = 20 s.
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An animation of the flow (streamlines) near the membrane disk at the initial con-
centration Cy = 0.0lmol/m? is shown in Supplementary Material Video S5 and at
Co = 0.01mol/m?3 in Supplementary Material Video S6.

4. Discussion

This article proposed a new mathematical model of the influence of inhomogeneity
areas on the transfer of salt ions in systems with axial symmetry, taking into account
electroconvection in the form of a boundary value problem for a non-stationary coupled
system of Nernst-Planck-Poisson and Navier-Stokes equations in a cylindrical coordinate
system. An algorithm for a hybrid numerical-analytical solution was formulated, which
allows the boundary value problem for real values of the initial concentration, potential
jump, and disk rotation speed to be solved. Using the hybrid solution method, the main
patterns of occurrence and development of electroconvection and mass transfer for a model
with an annular membrane were derived, and the results were verified by comparing them
for the annular disk model, obtained using the hybrid method and the independent finite
element method.

Using the proposed hybrid method, the process of formation of electroconvective
vortices in a potentiostatic mode was numerically studied with the addition of conductivity
and non-conductivity regions to a cation exchange rotating membrane disk, including in
the form of an annular disk.

It has been established that the vortex formation process can be enhanced by adding
non-conductive regions to the CEM, and if the ring membrane model is used, vortices are
formed at the junction of non-conductive and conductive regions.

It is shown that with small potential jumps, vortices do not appear, and the solution
flow lines correspond to logarithmic spirals. Additionally, with a small potential jump, a
diffusion layer is formed, the thickness of which is approximately constant, with the excep-
tion of a small neighborhood near the junction of the non-conductivity and conductivity
regions. Relaxation associated with the coordination of the boundary and initial conditions
occurs within 2 s. Vortices arise at the junction of the non-conductivity and conductivity
regions and flow downstream, gradually decreasing in size.

The mathematical models proposed in this article can be used to optimize the
desalination process in electromembrane systems with axial symmetry, and the hy-
brid numerical-analytical method can be applied to solve other boundary problems of
membrane electrochemistry.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/inventions10040050/s1, Video S1: Ring hybrid method 1.5 V
pi/20.01 mol; Video S2: Ring 1.5 V pi/2 0.01 mol; Video S3: Ring hybrid method 1.5V pi/2 0.1 mol;
Video S4: Ring 1.5 V pi/2 0.1 mol; Video S5: Ring hybrid method 1.5 V pi/2 1 mol; Video S6: Ring
hybrid method 1.5 V pi/2 10 mol.
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Abbreviations

The following abbreviations are used in this manuscript:

CEM Cation exchange membrane

RICC  Region of increasing cation concentration
NS Numerical solution

EMS  Electromembrane systems

CVC  Current-voltage characteristic

SCR  Space charge region
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