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Abstract

Communication represents a fundamental aspect of human interaction, and advancements
in technology have enabled the transmission of increasingly complex information over
vast distances. Technological advancement has seen the evolution of communication from
the use of rudimentary signals, such as smoke signals and Morse code, to the advent of
sophisticated solutions, including video conferencing. Recently, Mixed Reality (MR) has
demonstrated considerable potential for the transmission of rich spatial data, particularly
with regard to nonverbal communication cues such as full-body gestures or authentic eye
contact. Despite the existence of early versions of immersive 3D telepresence applications,
their widespread adoption is hindered by limitations, notably the obstruction of facial
expressions by head-mounted displays (HMDs). The HMD obstructs the ability to discern
facial expressions. This dissertation addresses the key challenges of current immersive
telepresence systems by combining self-developed hardware prototypes and off-the-shelf
hardware with novel software solutions from the field of deep learning.

The core contributions of this work include novel approaches to face tracking under an
HMD, face rendering, and face animation. For decades, computer graphics researchers
have sought to render human faces in a manner that is as authentic as possible, often
requiring a significant amount of manual effort in 3D modeling. This dissertation is fo-
cused on the development of photorealistic facial rendering and animation techniques that
employ Generative Adversarial Networks (GANs) and Implicit Neural Representations
(INRs). These techniques yield superior visual quality with less computing power than
traditional methods, while also enabling the automatic creation of a face avatar in a
fraction of the time required for manual 3D modeling. To animate these avatars in an
immersive MR setting, we introduce a hardware prototype of a face-tracking HMD that
captures facial expressions via Convolutional Neural Networks (CNNs).

In addition, we present a middleware that standardizes interfaces for various full-body
tracking systems. This simplifies the operation and integration of different systems signifi-
cantly and standardizes the data representation of gestures and nonverbal communication,
for example, through the use of a standardized animation skeleton.

Two user studies provide empirical evidence to support the technological advancements
presented in this thesis. The first study demonstrates the influence of personalized avatars
on social presence, whereas the second quantifies the efficiency gains in remote collabo-
ration facilitated by nonverbal communication through a shared task space supported by
pointing gestures. Additionally, the dissertation presents design guidelines for remote col-
laboration systems derived from a literature review. By introducing novel solutions for
effective remote collaboration, this dissertation has the potential to reduce the necessity
for physical travel and its associated environmental impacts in the future.

Keywords: Body Tracking, Coordinate-based Neural Networks, Digital Humans, Face-
to-Face, Face Tracking, Implicit Neural Representation, Middleware, Mixed Reality,
Neural Rendering, Nonverbal Communication, Generative Adversarial Networks (GAN),
Presence, Remote Collaboration, RGB-D, Shared Task Space, Uncanny Valley
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Zusammenfassung

Kommunikation ist ein grundlegender Aspekt der menschlichen Interaktion, und die
Fortschritte in der Technologie haben die Ubertragung von immer komplexeren Informatio-
nen iiber groffe Entfernungen ermoglicht. Der technologische Fortschritt hat die Entwick-
lung der Kommunikation von der Verwendung rudimentérer Signale wie Rauchzeichen und
Morsezeichen bis hin zu hochentwickelten Losungen wie Videokonferenzen erméglicht. In
jilngster Zeit hat Mixed Reality (MR) ein betriichtliches Potenzial fiir die Ubertragung
umfangreicher rdumlicher Daten gezeigt, insbesondere im Hinblick auf nonverbale Kom-
munikationshinweise wie Ganzkorpergesten oder authentischen Blickkontakt. Obwohl es
bereits frithe Versionen von immersiven 3D-Teleprasenzanwendungen gibt, wird ihre weit-
ere Verbreitung durch Einschrankungen behindert, insbesondere durch die Verdeckung
der Mimik durch Head-Mounted Displays (HMDs). Das HMD behindert die Fahigkeit,
Gesichtsausdriicke zu erkennen. Diese Dissertation befasst sich mit den zentralen Her-
ausforderungen aktueller immersiver Teleprasenzsysteme, indem sie selbst entwickelte
Hardware-Prototypen und handelsiibliche Hardware mit neuartigen Softwarelésungen aus
dem Bereich des Deep Learning kombiniert.

Zu den wichtigsten Beitragen dieser Arbeit gehoren neuartige Ansétze des Face Track-
ing unter einem HMD, zum Face Rendering und zur Face Animation. Seit Jahrzehnten
versuchen Forscher im Bereich der Computergrafik, menschliche Gesichter immer authen-
tischer darzustellen, was oft einen erheblichen manuellen Aufwand bei der 3D-Modellierung
voraussetzt. Diese Dissertation konzentriert sich auf die Entwicklung von fotorealistischen
Face Rendering sowie Animationstechniken, die Generative Adversarial Networks (GANs)
und Implizite Neuronale Reprasentationen (INRs) verwenden. Diese Techniken liefern
eine bessere visuelle Qualitat bei geringerer Rechenleistung als klassische Methoden der
Computergrafik und erméglichen gleichzeitig die automatische Erstellung eines Gesicht-
savatars in einem Bruchteil der Zeit, die fiir die manuelle 3D-Modellierung erforderlich
wire. Um diese Avatare in einer immersiven MR-Umgebung zu animieren, stellen wir
Hardware-Prototypen eines Face-Tracking-HMDs vor, der Gesichtsausdriicke iiber Convo-
lutional Neural Networks (CNNs) erfasst.

Zusétzlich stellen wir eine Middleware vor, die Schnittstellen fiir verschiedene Ganzkoérper-
Tracking-Systeme standardisiert. Dies vereinfacht die Bedienung und Integration ver-
schiedener Systeme erheblich und standardisiert die Datendarstellung von Gesten und
nonverbaler Kommunikation, z.B. durch die Verwendung eines standardisierten Anima-
tionsskeletts.

Zwei Nutzerstudien liefern empirische Belege fiir die in dieser Arbeit vorgestellten tech-
nologischen Weiterentwicklungen. Die erste Studie zeigt den Einfluss von personalisierten
Avataren auf die soziale Priasenz, wihrend die zweite Studie die Effizienzgewinne bei der
entfernten Zusammenarbeit quantifiziert, die durch nonverbale Kommunikation in einem
durch Zeigegesten unterstiitzten Shared Task Space ermoglicht werden. Dariiber hinaus
werden in dieser Dissertation Design Guidelines fiir Systeme der entfernten Zusam-
menarbeit vorgestellt, die aus einer Literaturiibersicht abgeleitet wurden. Durch die
Entwicklung neuartiger Losungen fiir eine effektive entfernte Zusammenarbeit hat diese
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Arbeit das Potenzial, die Notwendigkeit physischer Reisen und die damit verbundenen
Umweltauswirkungen in Zukunft zu verringern.

Schlagworter: Body Tracking, Coordinate-based Neural Networks, Digital Humans,
Face-to-Face, Face Tracking, Implicit Neural Representation, Middleware, Mixed Reality,
Neural Rendering, Nonverbal Communication, Generative Adversarial Networks (GAN),
Presence, Remote Collaboration, RGB-D, Shared Task Space, Uncanny Valley
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Introduction and Basics






“The biggest challenge to developing telepresence is achieving that sense of ‘being there’.
Can telepresence be a true substitute for the real thing?”
— Marvin Minsky [Min80]






1. Introduction

Humans are social beings and communication is an essential part of their existence. Lan-
guages have evolved, as have the body languages that accompany them, which are incred-
ibly complex and appear in many different variations across the planet. One fascinating
fact that is common to all languages is that humans have the ability to detect small dis-
crepancies between verbal and nonverbal language. When a person finds themselves in
such a situation as a listener, they often can not put into words exactly what was odd
about the speaker or the conversation, but they realize that something was "off" or wrong.
This ability to read nonverbal cues is critical to human communication because it allows
people to adapt their behavior to the context, to understand and to anticipate the needs
and intentions of others.

Throughout history, people have sought ways to communicate over long distances. From
smoke signals and carrier pigeons to Morse code, the telephone, and video telephony, the
technology has advanced significantly, and with each iteration, more information can be
transmitted in less time for a richer communication experience. Although video telephony
technology has matured, we still invest a great deal of time and money in physically
meeting people in the real world. Nonverbal communication (NVC) such as eye contact,
gestures, facial expressions, physical distance, and presence in a shared environment are
such important components of human understanding and collaboration that we don’t want
to miss them, especially in important conversations and negotiations.

Mixed Reality technology has emerged as a promising tool for long-distance communi-
cation. It allows people to interact spatially with digital objects and avatars as if they
were physically present. This technology has the potential to revolutionize long-distance
communication by providing a more immersive and engaging experience than traditional
videoconferencing. In addition, telepresence is seen as a key technology that could signif-
icantly reduce COq pollution.

However, the technology is not yet ready to bridge the "uncanny valley" in real time. In
particular, the reconstruction of the human face under a standard head-mounted display
(HMD) is still an unsolved problem. This has been partially solved and realized in labora-
tory environments, but tracking a person’s face and animating it authentically without the
occurrence of the uncanny valley effect remains the "holy grail" of computer graphics and
computer vision. It is a difficult problem to solve because people are very sensitive to sub-
tle differences or small rendering artifacts in the way digital faces are displayed, and a lot of
computing power is required to represent human liveliness in real-time applications. This
means that current technology falls short of providing a truly immersive experience that
feels like a physical encounter. However, the field of neural rendering has been emerging
since around 2016, with results of surprisingly high quality. Meanwhile, deepfakes technol-
ogy has advanced to the point where it is no longer possible to tell the difference between
real and synthesized video. While deepfakes are still primarily computationally complex
and therefore not real-time and interactive, and often only work in 2D, it is easy to look
to the future and realize that deep learning, and in particular neural rendering, has the
potential to deliver NVC over long distances within virtual environments.



1.

Introduction

However, neural rendering is not yet mainstream and photorealistic digital avatars are
still difficult to reproduce in real time. In 2024, MR telepresence applications primarily
use cartoonish avatar rendering. Human avatars and their perception have already been
extensively researched, as a systematic study of social presence concludes: "...multiple
studies show that the vivid perception of another person often leads to greater enjoyment
and social influence..."[OBW18a]. Although the Media Richness Theory [DL84] is nearly
40 years old, recent studies continue to confirm it[ILC19]. It suggests that individuals
exchange the most information during face-to-face conversations, as opposed to digital
or analog alternatives such as video telephony. A greater quantity and quality of shared
information usually results in more effective communication (see Chap. 2 for more details
on this topic).

In this dissertation we will combine existing and established techniques for human body
tracking with new approaches, not only from the field of deep learning, but also from
classical numerical as well as analytical approaches. The goal is to develop methods for
authentic transmission of NVC for immersive telepresence and to bring it one step closer
to realization in order to create more effective ways to exchange ideas over large distances,
to maintain social contacts and to collaborate in a human-centered way across countries.

1.1. Relevance and Challenges

The goal of this dissertation is to find evidence for the usefulness of transmitting NVC,
and it also specifically addresses the technical problem that Mixed Reality is not able to
authentically display either gestures or facial expressions one-to-one on the remote side
during a teleconference. Use cases are easy to imagine, but we have a concrete practical
case from the company Volkswagen. This use case was described to us by a development
engineer and a designer during a physical meeting between the University of Applied
Sciences Diisseldorf and Volkswagen in early 2018:

When virtual reality became widely and inexpensively available in 2016 with the HTC Vive
and the Oculus Rift, Volkswagen investigated the possibilities and potential of the tech-
nology. Of particular interest was the interdisciplinary exchange of digital models between
designers and engineers in different physical locations. A classic example is changing the
position or orientation of components within a vehicle. This often affects the placement
of other components or the final design of the product. A central point of criticism from
engineers and especially designers was the lack of facial expressions from colleagues when
someone proposed a solution or idea. The avatars at that time (2018) had no animation of
facial expressions and body language is also limited with only three tracking points (HMD
and 2 controllers). For all involved, the added value of spatial perception and other MR-
typical advantages did not seem to be sufficient to sacrifice NVC. For Volkswagen, this
was one of the main reasons why VR hardware, and especially distributed collaboration
using this technology, did not find its way into practical production.

During the COVID-19 pandemic, the term "Zoom fatigue" was coined. Several scientific
publications conclude that unnatural communication via a "flat" screen, lacking the full
range of NVC, is an important point for the cause of this phenomenon [NW22; WBKO07].
These are only a few of the many examples of why real and authentic NVC is important
and why this dissertation is relevant. However, the delivery of NVC remains an issue
that is perhaps one of the most central to the success of MR. Several companies believe
that a realistic face-to-face encounter will be the "killer app" for MR, as evidenced by
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the company Meta, which has invested billions of dollars in this research area. Recently,
Apple’s Vision Pro was introduced, which also makes significant efforts to render a person’s
face as authentically as possible without an HMD.

However, conveying authentic NVC in immersive telepresence scenarios poses some com-
plex challenges, which can be reduced to two main technical challenges: On the one hand,
the tracking of body movements and on the other hand, the authentic reconstruction (ren-
dering) on the remote side. Tracking and rendering photorealistic and believable faces in
real time is still considered the "holy grail" of computer vision and computer graphics.
This is the main technical challenge of this thesis.

In order to develop meaningful technical solutions, another challenge of this dissertation
is to identify what information should be transmitted in what form in order to achieve
effective remote collaboration. It is important to assess perceptual-psychological effects
and to understand the salience of certain (technically induced) impressions in order to
determine the impact of technical solutions on remote collaboration.

1.2. Research Questions and Objectives

In this dissertation, the research methodology is based on and systematically anchored in
Nunamaker and Chen’s "Research Framework for Information Systems Research’ [NC90].
It consists of a multi-stage process that begins with the "observation" stage. The above
mentioned case with Volkswagen was an initial observation and was further consolidated
through literature research, so that we can state the fundamental research question of this
dissertation:

RQ1: How to technically support the transmission of nonverbal communication in
Mixed Reality-based telepresence systems?

This question is broad and touches on many different academic areas. It is therefore broken
down into further questions and specific objectives. The approach and the formulation of
the objectives are also strongly oriented on the framework of Nunamaker and Chen.

In the further course of this work, the transfer of NVC in the context of remote collab-
oration is divided into the shared task space and the person space. In the person space,
an essential exchange of NVC takes place on the basis of e.g. facial expressions, while
in the task space, for example, spatial referencing by pointing with a finger takes place
when working together on an object. While some people may not directly associate spatial
referencing with NVC, it is a component of remote collaboration that is performed via a
gesture. In this context, the following question arises:

RQ2: How does the availability of a shared virtual task space, and in particular a
referencing tool, affect task efficiency and error rates in remote collaboration?

e« RO2.1 is to identify what study design could answer the question.
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¢« RO2.2 is to implement the test environment.

e RO2.3 is conducting the study and evaluate the results.

RQ2 is discussed and answered in Chap. 3.

Along with the task space, the person space is the central space in which NVC is trans-
mitted in a variety of ways. The face is undoubtedly an important mediator for the
transmission of NVC. However, due to technical challenges, it has only been possible to
a limited extent to conduct user studies with realistic digital personal faces in MR that
actually look like the person belonging to the avatar. In the context of this work, we ask
whether it is worth the effort to create a personalized avatar that looks like the user, and
whether the complex and time-consuming creation process is worthwhile. We measure
copresence and social presence in a user study comparing personalized and generic avatar
faces. We formulate the following research question:

RQ3: Does a personalized avatar increase copresence and social presence compared
to a non-personalized?

e RO3.1 is to identify what study design could answer the question.
e RO3.2 is to implement the test environment.

e RO3.3 is conducting the study and evaluate the results.

RQ3 is discussed and answered in Chap. 6.

A fundamental technology for NVC transmission is body tracking. It captures gestures
and spatial referencing. However, there are many different body tracking systems that are
often incompatible with each other. Different skeleton hierarchies, coordinate systems or
transmission protocols complicate the development of hardware-independent applications.
Some kind of middleware that standardizes the large number of different systems would
be advantageous in order to be also able to transmit NVC uniformly. Therefore, another
research question is:

RQ4: How can different body tracking systems and protocols be standardized to
ensure that the representation of nonverbal communication in a telepresence appli-
cation looks as identical as possible, even with the use of different tracking systems?

e ROA4.1 is to identify and create a generic or standardized protocol.

e RO4.2 is the creation of a middleware that receives raw tracking data, "normalizes'
it using the above mentioned standardized protocol and sends it to a telepresence
application.

e ROA4.3 is evaluating the protocol and the middleware.

RQ4 is discussed and answered in Chap. 4.
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There are many full-body tracking systems available for Mixed Reality applications, but
few that can track the face under an HMD. However, this is a basic requirement for
a telepresence system to transmit NVC. Therefore, another question is formulated as
follows:

RQ5: How to track a face beneath an HMD?

e ROA5.1 is to identify processes and algorithms that could be extended and perform
the task.

e RO5.2 is to implement the approach.

¢ RO5.3 is to evaluate the tracking performance.

RQ5 is discussed and answered in Chap. 5.

The human face can display an enormous variety of different expressions and thus com-
municate a wide range of information to others. Until now, it has been a challenge to
capture facial features in great detail under an HMD, but it has also been a challenge to
display these expressions authentically so that other conference participants can perceive
them.

RQ6: How to transfer the face in a photorealistic appearance with authentic move-
ment in real time despite wearing an HMD?

e ROG6.1 is to identify processes and algorithms that could be extended and perform
the task.

e RO6.2 is to implement the approach.

¢ RO6.3 is to evaluate the reconstruction quality.

RQ6 is discussed and answered in Chap.7 and Chap. 8.

1.3. Contribution

In this dissertation, we present:

1. Two methods and prototypes using Generative Adversarial Networks (GAN)
(Chap. 7) and Implicit Neural Representations (INR) (Chap. 8) that are specifically
tailored to the use case of generating photorealistic avatar faces with corresponding
facial expressions in real time.

2. A face-tracking HMD that tracks eyebrow and mouth movements and combines

the tracking data with data from an off-the-shelf gaze-tracking system in real time
(Chap. 5).

3. An open-source middleware that standardizes multiple full-body tracking systems
and provides developers with a unified tracking protocol and interface in order to
convey NVC in a consistent way (Chap.4).
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4. A literature review on MR systems that supports collaborative remote work that
concludes in six design guidelines (Chap. 2).

5. Qualitative and quantitative results on task efficiency from a study examining the
collaborative effects of having a shared task space and a spatial referencing tool
versus not having these features (Chap. 3).

6. Results of a perceptual-psychological study supporting that social presence is en-
hanced when using a personalized avatar face that resembles the user for MR-based
telepresence applications (Chap. 6).

1.4. Ethical Considerations

The type of technology presented in this dissertation is perceived by the public as "deep-
fake" technology. The rise of deepfakes presents significant ethical concerns in our increas-
ingly digital society, which relies heavily on the authenticity of images and videos [Paw22].
While the technology behind deepfakes can create highly realistic and engaging content for
movies, games, and virtual interactions, it also has the potential for abuse. Deepfakes can
be weaponized to create misleading or false videos, leading to misinformation, defamation,
and privacy violations.

In addition, ongoing research in digital media forensics is critical to developing effective
detection methods to counter the malicious use of deepfakes [Coz+19; Ros+19]. However,
it is extremely difficult, almost impossible, to detect deepfakes with the help of only
software for image analysis. It is much more effective to train internet users to debunk
real-time deepfakes by asking specific questions, e.g. private questions that only the real
person can answer, and scrutinizing sources and information.

As this technology continues to evolve rapidly, proactive measures are essential to balance
its benefits with its ethical implications, ensuring that it serves the public good rather than
undermining trust and security in our digital environments. There are various processes
and protocols, such as the Coalition for Content Provenance and Authenticity (C2PA),
that can help identify digital content through metadata that is genuine or synthesized by
an Al. Media manipulation is as old as media itself, but it is likely to become increasingly
difficult to recognize false information in videos, as videos have so far served as a reliable
source or even evidence in court. Users of social media and tele- or videoconferencing
should therefore be sensitized to the possibility of identity theft.

1.5. Thesis Structure

This dissertation begins with the first part "Introduction and Basics" as an overview that
examines the complexities of human communication, analyzes the current state of remote
collaboration systems, and highlights how these systems support these complexities. De-
sign guidelines are derived that provide a foundation and motivation for the topics covered
in this thesis.

The rest of the dissertation is divided into two further main parts, "Real-Time Body
Tracking" and "Real-Time Face Rendering", each consisting of three chapters. The first
chapter of the part "Real-Time Body Tracking" investigates the importance of shared
virtual task spaces in telepresence, especially through deictic gestures. A user study
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shows that a shared task space significantly improves communication clarity and efficiency,
reducing task completion time and interaction errors.

The second chapter addresses the lack of standardization in body tracking systems and
proposes a unified protocol implemented in a middleware. This software integrates mul-
tiple tracking systems into a standardized format, improving the consistency and quality
of nonverbal communication in telepresence environments.

The third chapter presents the development of a face-tracking head-mounted display for
AR/VR/MR setups, which provides a low-cost solution for capturing facial expressions.
Neural networks and optical sensors are used to create 70 facial landmarks that can be
used to render an avatar’s face in telepresence.

The third part "Real-Time Face Rendering" starts with a study with 22 participants and
shows that personalized avatars could improve social presence and suggests the benefits
of investing in such avatars.

The fifth and sixth chapters introduce neural rendering techniques for conveying nonver-
bal facial communication cues. Through several approaches based on Generative Neural
Networks (GAN) and Implicit Neural Representation (INR), advances in visual quality
and computational efficiency are demonstrated. Remarkably, GANs and INRs not only
surpass the visual quality of previous classic manual modeling approaches, but also require
only a fraction of the modeling time to train such an avatar face. This clearly outperforms
traditional methods in several aspects.

1.6. Terminology

The following is a brief summary of commonly used abbreviations and definitions of words
throughout the thesis:

3DMM - 3D Morphable Model (in this thesis of human heads) are statistical represen-
tation of shape variations [BV99].

AR - Augmented Reality [MK94].

BTS - Body Tracking System captures and analyzes the movements of a person’s body
or face to transfer it into the digital domain [Lad+20a).

CCD - Cyclic Coordinate Descent is an inverse kinematics algorithm that iteratively
adjusts each joint in a kinematic chain to minimize the distance to a target point [CDO03].

CMC - Computer-mediated Communication refers to the exchange of messages between
individuals or groups through all kinds of digital devices.

CNN - Convolutional Neural Networks are a specific architecture, designed for processing
structured grid data, such as images. They use convolutional layers to automatically learn
spatial hierarchies of features from input data.

FABRIK - Forward And Backward Reaching Inverse Kinematics is an IK solver that
alternates forward and backward passes along a kinematic chain to place end-effectors at
target positions with smooth convergence [AL11].

FLM - Facial Landmark Map denotes a set of predefined keypoints on a face (e.g., eyes,
nose, mouth corners) used for tracking facial expressions.

11
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FPS — Frames per second is a measure of how many individual frames (images) are
displayed in one second on an output device.

GAN - Generative Adversarial Networks (GANs) are often implemented, in the field of
face rendering, as Convolutional Neural Networks (CNNs) by generating realistic image
data. GANSs consist of two neural networks: a generator and a discriminator. The gener-
ator creates synthetic data, while the discriminator evaluates its authenticity against real
data. This adversarial process helps the generator improve its outputs, making GANs
effective for e.g. image generation of faces.

HMC - Head-mounted camera
HMD - Head-mounted display

IMU - Inertial Measurement Unit is a sensor that measures acceleration and angular
velocity, often combining accelerometers, gyroscopes, and sometimes magnetometers to
track orientation and motion.

INR — Implicit Neural Representations (INRs), also called coordinate-based neural net-
works, encode continuous signals within the parameters of a neural network rather than
on discrete grids or meshes. By learning a mapping from spatial (or spatiotemporal)
coordinates to signal values INRs produce continuous, high-resolution reconstructions.

LSTM - Long Short-Term Memory networks are RNN variants with memory cells and
gating structures (input, forget, output gates) that enable learning long-range dependen-
cies in sequences [HS97b].

MLP — Multilayer perceptron is an artificial neural network, consisting of fully connected
neurons with nonlinear activation functions, organized in at least three layers.

MR - Mixed Reality is used as a collective term for all digital stages of Milgram’s con-
tinuum [MK94].

NeRF — Neural Radiance Fields is an INR for synthesizing novel views of 3D scenes.
It encodes a scene within a neural network by mapping spatial coordinates and viewing
directions to color and density values. By optimizing this mapping from a set of input
images, NeRF can generate high-quality, photorealistic renderings from arbitrary view-
points [Mil+4-21].

NVC - Nonverbal communication

RGB-D - Red-Green-Blue-Depth refers to image data that includes both color informa-
tion (RGB) and depth information (D).

RNN - Recurrent Neural Networks are neural network architectures designed to process
sequential data by maintaining hidden states that capture temporal dependencies.

SOTA - State of the Art

Telepresence — is, in the context of this dissertation, the use of VR technology for remote
collaboration to create a sense of being physically present in a location other than one’s
actual location, allowing users to interact and collaborate with others as if they were in
the same physical space.

Uncanny valley — is a phenomenon in which humanoid objects that appear almost, but
not exactly, like real humans evoke feelings of eeriness and discomfort [MMK12].

VR - Virtual Reality



2. Human-to-Human Communication,
Telepresence and Collaboration Revisited

Human-to-human communication is multifaceted, and it is difficult to convey the full
range of human expression through a digital channel. The COVID19 crisis has shown that
video telephony can be an alternative to physical meetings, but cannot fully replace it. For
decades, there has been intense research into how to make remote collaboration productive.
Researchers have certainly been inspired by various sci-fi works. The holograms from
Star Wars in 1977 or the HoloDeck from Star Trek in 1974 are certainly among the first
appearances in this field and have captured the imagination of many. Today, telepresence
has many names such as ePresence, MediaSpace, or Metaverse, and is actually pursuing
the development of an "ultimate display" for telepresence as envisioned by Ivan Sutherland
as early as 1966 [Sut66].

This chapter first introduces the basics of human communication and how mediating tech-
nology affects it. This is followed by summaries of related work on remote digital collab-
oration and immersive CMC (computer-mediated communication) systems over a period
of more than 4 decades. One basis for the transmission of NVC is the digital recording of
NVC through tracking technologies. In later chapters of this thesis, a distinction is made
between body tracking (without face) and face tracking, as the technical approaches used
are often fundamentally different.

2.1. Nonverbal Communication in the Physical World

The study of NVC can be roughly divided into three areas, some of which overlap: Prox-
emics, Kinesics, and Facial Expressions. The field of NVC research is vast, but this chapter
will be limited to the most important aspects in such a way that it will be sufficient to
provide some grounding in the terminology and concepts discussed throughout this thesis.
For a more detailed summary of the basics of NVC, we refer the reader to Chapter 3 of
the book by Tanenbaum et al. TEN14].

The first time in history that the study of NVC was mentioned in academia was with
Charles Darwin’s book "The Expression of the Emotions in Man and Animals" published
in 1872 [Dar72]. In the middle of the 20th century, Ray Birdwhistell begins to research
NVC in an academic context almost 100 years later. His book on NVC "Introduction to
Kinesics" [Bir52] is based on the idea that human gestures, facial expressions, and body
movements communicate as much as spoken language. Birdwhistell introduced the notion
that these nonverbal forms of communication are culturally specific and can be learned
and understood in a manner similar to language. His work significantly influenced the un-
derstanding of nonverbal cues in communication, leading to applications in fields as diverse
as psychology, anthropology, sociology, and even law enforcement and conflict resolution.
However, Birdwhistell’s findings would later become controversial. Analyses of Birdwhis-
tell’s work concluded that a "lack of systematic order", "inconsistent repetition of views

13
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and their often unsubstantiated presentation" were core deficiencies. Despite its shortcom-
ings, Birdwhistell’s groundbreaking work laid the foundation for Kinesics. Kinesics is the
study of body language, including facial expressions, hand and arm gestures, and posture.
Other researchers have built on this work, including Rudolf Laban. He worked on meth-
ods of studying and understanding human movement and its significance for conveying
messages, with an emphasis on dance and the performing arts [Mal87]. Albert Mehrabian
and his team [MW67; MF67; Meh72] conducted other important research in the field of
NVC. Their studies have significantly advanced our understanding of how people com-
municate emotions and attitudes through nonverbal cues. Their research highlights how
subtle nonverbal signals can be and how crucial they are in shaping our perceptions of
others, providing valuable insights into human behavior and social interaction.

Proxemics is the study of how individuals mediate interactions and physical distance
with others. Edward Hall [Hal+68] coined the term proxemics and identified four types
of spaces that people maintain, at least in the Western world: intimate (up to about half
a meter), personal (from about half a meter to 1.2 meters), social (1.2meters to about
3.5 meters), and public (more than 3.5meters). These spaces are influenced by many
factors such as age, gender, culture, and the level of intimacy in relationships [Hal+68].

Another important contribution to the study of proxemics is the work of Argyle and
Dean [ADG65] called Equilibrium Theory. They discovered that in social interactions,
people seek a balance between different NVC channels, such as eye contact and physical
proximity, to achieve a comfortable level of intimacy. This theory suggests that individuals
adjust their physical proximity to others depending on the closeness of their relationship,
moving closer or further away to match the desired level of intimacy. Equilibrium theory
has implications for understanding social interactions in a variety of contexts, including
the workplace, personal relationships, and cross-cultural communication. It provides a
framework for understanding how people manage/maintain comfort and effectiveness in
their interactions by adjusting their NVC cues.

Over several decades, Paul Ekman, in part with his colleague Wallace V. Friesen, developed
a very detailed framework for analyzing NVC, focusing on the use, origin, and coding of
nonverbal behaviors [EF69]. They have examined how these behaviors are regularly used
in specific contexts, their intentions, and the types of information they convey, including
idiosyncratic and communicative aspects. The origins of such behaviors are described as
1.) innate neurological responses, 2.) culturally independent practices, or 3.) personally
acquired through factors such as culture and education. The coding system identifies how
nonverbal acts relate to their meanings, ranging from arbitrary (no visual resemblance to
meaning) to iconic (visual resemblance to meaning) to intrinsic (direct execution of mean-
ing). In addition, they categorized nonverbal acts into high-level groups such as emblems,
illustrators, and regulators, each of which serves different functions in communication.
This comprehensive system helps to understand the complexity and variety of nonverbal
communication across situations and cultures.

Ekman and Friesen also studied facial expressions in detail. They created a stan-
dard called the Facial Action Coding System (FACS) [EF78], which is still used today
in computer animation and psychology. The system is based on earlier work by the
anatomist Carl-Herman Hjortsjo [Car69]. It is still a key framework for identifying and
categorizing the wide range of human facial expressions and their associated emotions.
In the field of computer animation, FACS is used and expressions are classified into so-
called Action Units (AUs), such as those used by the 3D Morphable Model (3DMM) ICT
FaceKit [Li+20].
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2.2. Computer-mediated Nonverbal Communication and
Collaboration

Research has shown how important and subtle NVC can be. Although telepresence tech-
nology has advanced tremendously in recent years, we are still not able to digitize, trans-
mit, and reconstruct the full range of information from a face-to-face conversation at a
remote location. However, the transmission of cues for NVC is already commonplace in
today’s computer-mediated communication. Smileys are certainly one of the oldest forms
of NVC. While smileys usually consist only of Unicode characters, and more complex
sequences of characters require some creativity on the part of the sender and receiver,
they have largely been replaced by emoticons, which are small but easily recognizable pic-
tograms of facial expressions or other messages. Although the amount of data transmitted
is technically small, the actual message sent by a smiley or emoji can vary greatly.
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Figure 2.1.: The uncanny valley effect describes the eerie feeling people experience when
they encounter entities that almost, but not quite, look like real people or animals. Image by
Smurrayinchester from Wikipedia. License CC BY-SA 3.0 DEED - Image is unchanged.

Our ancestors have always tried to communicate. Smoke signals, carrier pigeons, and
Morse code were severely limited, but this has changed with technology advancements such
as better sensors, higher network bandwidth, and increasing storage and computing capac-
ity. Some researchers have explored the possibilities and limitations of computer-mediated
communication and developed theories and frameworks. Although some of these theories
are relatively old, they are still relevant today. Basically, however, many researchers agree:
We humans are evolutionarily "optimized" for face-to-face communication, which has been
our primary form of information exchange for presumably millions of years. Being able
to read, understand and, if necessary, trust other people was essential for our survival
in the past. Humans are therefore extremely sensitive to minimal signs and cues from
other humans, which could, for example, indicate a (contagious) disease. This is one of
the possible theories behind the so-called uncanny valley effect proposed by Mori et
al. MMK12].

The uncanny valley effect is a phenomenon in which humanoid objects (such as robots or
animated characters) that closely resemble humans evoke feelings of eeriness and discom-
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fort in some observers. The term is used to describe the dip in a graph shown in Fig. 2.1.
Although this effect has been studied for decades, it is still not fully understood [Pal+18].
Basically, it can be said that this effect only occurs in humans and animals, as MacDorman
and Chattopadhyay were able to show in an extensive study with 548 participants, the
effect does not occur in objects [MC16]. In the field of Computer-mediated commu-
nication (CMC), this effect is a serious problem. Many mainstream VR platforms, such
as Altspace, Meta Horizons, or VRChat, deliberately use catroon-like representations of
avatars because today’s off-the-shelf technology cannot yet overcome the uncanny valley.
However, recent advances in neural rendering show that the uncanny valley can be bridged
using deep learning methods, as discussed in detail later in the Chap.7 and 8.

The terms telepresence and remote collaboration have some ambiguous definitions in
the literature, but there are some basic similarities between all definitions. While "telep-
resence" is primarily found in Google search results for high-end videoconferencing systems
in which conference participants meet virtually in life-size on high-resolution, stationary
screens, the word telepresence refers also to the sense of being present in a remote space
or environment within an academic context. Often telepresence is also implemented by
a robot at the remote counterpart to physically interact with objects. In the context of
this thesis, telepresence is understood as a hybrid of both definitions. However, instead
of using robots, persons or spaces and objects are "teleported". Participants meet in life-
size virtual spaces using wearable (non-stationary) high-definition displays (HMDs). In
addition, immersive technology creates the feeling of being in another place. The con-
cept of remote (often called distributed) collaboration has a broader range of definitions
than telepresence. CMC has existed for decades and is an established research topic due to
globalization. In the context of remote collaboration, several theories have been developed
over the last decades that overlap with the topic of telepresence.
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Figure 2.2.: According to Media Richness Theory [DL84], face-to-face conversations are
the medium in which the most information can be exchanged between participants. The
richer the amount of information, the more effective the communication. Image by Tnidj
from Wikipedia. License CC BY 3.0 DEED - Image is unchanged.

There are several studies in the area of telepresence, computer-supported cooperative
work (CSCW), and CMC. One of the oldest theories regarding the transmission of
computer-mediated NVC is the Media Richness Theory according to[DL84]. This
theory describes a one-dimensional continuum in which text is one of the media with the
least information and real face-to-face communication is one of the media with the most
information, as can be seen in Fig.2.2. Research on Media Richness Theory has yielded
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mixed results over 40 years of its existence. Some studies challenging it, others supporting
its predictions and even a recent study confirms it [ILC19].

Based on the Media Richness Theory [DL84], a number of new theories have emerged. In
the context of face-to-face telepresence, the Media Naturalness Theory or Psychobi-
ological Model Theory according to[Koc04] is worth mentioning. This argues that
human non-lexical methods of communication, such as facial expressions, gestures, and
body language, have evolved over millions of years and as such must be important to the
naturalness of communication between humans. Media Naturalness Theory hypothesizes
that because face-to-face communication is the most "natural” method of communication,
we want our other (technical) methods of communication to be as close as possible to
face-to-face communication.

The above studies may explain why we still like to travel for important meetings. After
the COVID19 pandemic, digital meetings have become an accepted way of holding short
and informal meetings in developed countries. However, when it comes to important
meetings or meetings over a longer period of time, the physical meeting is often preferred.
Unlike a face-to-face meeting, video telephony is associated with some problems such as
the reduction of NVC due to several facts such as limited camera resolution, field of view,
poor lighting conditions, and the inherent reduction from a 3D space to a 2D image. All
of these problems negatively affect the detection and transmission of signals related to
kinesics, proxemics, and facial expressions.

Nass and Reeves developed the concept of the media equation [NR96] based on the idea
that people interact with media as if it were real people. This concept was later further
developed in a study by Blascovich et al [Bla4+02]. This study tested Argyle and Dean’s
(1965) equilibrium theory of an inverse relationship between mutual gaze, a nonverbal
cue signaling intimacy, and interpersonal distance. They successfully demonstrated that
participants displayed the same intimacy cues in VR as in reality. It is worth noting that
this study was conducted in 2002 and the visual quality of the avatars or agents was very
rudimentary. However, they were able to demonstrate this effect even with avatars/agents
that were clearly not human to observers due to the low visual quality. This work was
ahead of its time, and the researchers already stated the following sentence: "It seems
inevitable that as we use these virtual environments more and more, interactions between
avatars will become routine" [Bla+02].

The Computer-Supported Cooperative Work (CSCW) Matrix [Joh89] categorizes
technology-enabled collaborative activities along two dimensions: time and place. It
distinguishes between synchronous (same time) and asynchronous (different time) col-
laboration, and between co-located and remote interactions. In this way, the matrix
represents a spectrum of collaborative scenarios, from direct, face-to-face meetings, such
as a video call, to remote, asynchronous work using online platforms, such as a shared
Google document in the cloud. This dissertation focuses on the top left quarter, where
"same time, same place" face-to-face interactions occur.
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Figure 2.3.: The Computer-Supported Cooperative Work (CSCW) Matriz, invented by
Robert Johansen [Joh89], is a framework used to categorize and analyze the various di-
mensions of collaborative activities. Image by Momob) from Wikipedia. Licenseis public
domain. Image not changed.

Not directly related to NVC, but important in explaining the following frameworks and
theories, is the description of the continuous transition between reality and virtuality
and its intermediate stages. Milgram and Kishinio [MK94] introduced the concept of the
Reality- Virtuality Continuum, as illustrated in Fig.2.4. This continuum is divided into
four distinct stages: Reality, which is the direct perception of the actual environment
without technological intervention; AR, which involves overlaying virtual elements and
additional information on the real world; Microsoft HoloLens is a typical example of an
AR device; Augmented Virtuality (AV), in which real objects are integrated into virtual
environments, exemplified by the display of a real person in a virtual scene; and Virtual
Reality (VR), which completely replaces the real environment with computer-generated
images, with devices such as HT'C' Vive or Oculus Rift representing this technology. This
dissertation focuses on Mixed Reality, defined by Milgram and Kishinio.

MIXED REALITY (MR
¢ — W =

REAL AUGMENTED AUGMENTED VIRTUAL
ENVIRONMENT  REALITY (AR)  VIRTUALITY (AV)  ENVIRONMENT

Figure 2.4.: The Reality- Virtuality Continuum by Milgram and Kishinio [MK94] describes
a continuous transition between the real and virtual world. Adapted from Milgram and
Kishinio [MK94], modified and redrawn by the author.

Hiroshii Ishii [IKG93], Bill Buxton [Bux92; Bux09], and Billinghurst and Kato [BK02a]
start using the terms person space and (shared) task space around the same time.
They each use slightly different terms, but they mean the same thing. They describe the
person space as an area where eye contact, gestures, and conversation take place. The
task space, on the other hand, is a subset of the communication spaces where people
work together on objects, such as making a sketch on paper or spatially pointing at an
architectural model, as shown in Fig. 2.5a. Video telephony, on the other hand, creates a
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task space that is usually isolated from the communication space (Fig.2.5b). Even when
participants meet locally in one space and collaborate on digital content, the two spaces
are usually separated as well, as shown in Fig.2.5c. The main challenge is to support
awareness of social cues. A major improvement when using AR/VR/MR technology is
that the system can be built so that the spaces are not isolated, as shown in Fig.2.5d.

Person and task space are important concepts and help to understand why remote col-
laboration sometimes leads to good and sometimes to bad results. In general, it can be
said that task space and person space are separated in many remote collaboration applica-
tions today. A good example is screen sharing in a videoconference. Typically, the shared
screen is maximized and the faces of the participants are significantly reduced. Few video
conferencing software solutions offer the option to maximize the video feeds of the people
next to the screen sharing on a second monitor in 2023. This is also a problem for the
person conducting the screen sharing, as they may not be able to properly recognize the
reactions of each person. However, it is especially valuable for the presenter to be able
to see how the other participants are reacting to certain parts of the presentation. This
is where VR/AR/MR technology has tremendous potential to connect people and task
space. However, the face is obscured by the HMD, which ultimately leads to a blockage
of the person space.
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Figure 2.5.: AR/VR/MR technology can merge person and task space in the virtual world,
such as shown in d: The image in a) shows the difference between communication space
and task space in the case of physical presence and b) in the case of telepresence in the form
of video telephony. Person and task space are separated. c) Separation of these spaces can
also occur in local collaboration on digital content. Main challenge: Supporting awareness
of social cues. d) Local or remote teamwork in AR/VR/MR can bring the spaces together
again. Images generated by Dall-E from OpenAl
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Recent advances in electronics research and development are moving us ever closer to the
ultimate device, making it increasingly difficult to distinguish between virtual environ-
ments and reality. The concept of Star Trek’s Holodeck represents the pinnacle of such
displays. This system would provide realistic, comprehensive experiences that engage all
human senses, including touch, sound, and even smell and taste. If it were possible to
transmit such sensory data over a network to replicate these experiences remotely, it could
revolutionize collaborative efforts by making it seem as if individuals are physically present
where assistance is needed.

Currently, however, the technology has not reached the sophistication of the Holodeck as
depicted in Star Trek. Olson and Olson [0000; O0O14] have noted that our technological
capabilities are still evolving and that "distance matters" in the context of remote collabo-
ration. Nevertheless, many organizations operate in multiple locations, which means that
specialists in different technical areas are often spread across regions or even globally. The
core strength of any business lies in the expertise of its people, and knowledge sharing
between employees and customers is critical to success. While remote collaboration tools
such as Skype, DropBoz, or Evernote are available, they often only support basic forms
of communication such as text, images, or video. As the complexity of machines, assem-
bly tasks, and 3D CAD data increases, the need to share and interact with 3D data in
real time remains a challenge [OO00; OO14]. This is where Mixed Reality (MR) could
significantly alleviate many of the current barriers to remote collaboration.

Over the past thirty years, considerable research has been conducted on the application
of Mixed Reality (MR) for collaborative purposes, such as facilitating assembly tasks
over the Internet [BB99; Tan+03; Oda+15; GLC15; BCL15], enabling geographically dis-
persed experts to conduct car design reviews [Nvi; Kli+02] or remotely investigating crime
scenes [Poe+12; Dat+14]. These are only a few examples of the usefulness of MR in col-
laboration. In particular, the fields of remote engineering and virtual instrumentation
can greatly benefit from MR for remote guidance. This technology can be critical when
specialized, expensive equipment requires maintenance by expert personnel who are not
readily available on-site. In addition, remote training facilitated by MR could preemptively
address potential emergencies and facilitate wider dissemination of specialized knowledge.

In user studies, a common scenario involves a remote user assisting a local user in per-
forming a task. While different authors may use different terminology to refer to the
participants in a remote session, in this context we will use the abbreviations RU for the
remote user and LU for the local user.

2.3.1. Technological Constraints in Pre-2012 Mixed Reality Research

In each of the studies mentioned in this chapter, a fundamental element is the two-way
exchange of speech. Speech is the core of communication in any application. However,
descriptions of spatial locations and actions can be imprecise or unclear when conveyed
through speech alone. The effectiveness of collaborative tasks is greatly improved when
verbal communication is augmented with physical gestures, as Heiser et al. [HTS04] found.
Early collaborative systems using Mixed Reality (MR) were primarily video-mediated
applications, as described by Ishii et al. [Ish90; IM91; IKG93]. In these systems, a video
camera placed above the participant’s workspace captured their activities and transmitted
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them to other participants via a monitor. A similar system was developed by Kirk and
Fraser [KF05], who conducted a study in which participants engaged in a Lego assembly
task. They found that using AR not only accelerated collaboration, but also made it
easier for participants to remember the assembly steps 24 hours later compared to simply
following verbal instructions.

Baird and Barfield [BB99] along with Tang et al.[Tan+03] have demonstrated that AR
reduces cognitive load during assembly tasks. Billinghurst and Kato[BK99] reviewed re-
search on collaborative MR in the late 1990s and concluded that while the results are
promising, they only begin to explore the potential applications of MR. It remains to be
seen where MR can be effectively applied. In addition, Billinghurst and Kato built their
own AR tracking system, the ARToolkit [KB99], and emphasized that the traditional
WIMP-Interface (Windows-Icons-Menu-Pointer) is inappropriate for MR environments
and needs to be redesigned for such platforms. Schmalstieg et al. [Sch+02] created the
Studierstube. This was a kind of middleware that could combine different hardware and
software interfaces and emphasized collaborative work. It was found that complicated
three-dimensional relationships of mathematical or scientific tasks, for example, could be
easily represented.

Klinker et al.[Kli+-02] developed the Fata Morgana system for collaborative car design
reviews, providing the ability to focus on details and compare different designs.

Monahan, McArdle, and Bertolotto [MMBOS| highlight the educational benefits of Gami-
fication, noting that "computer games have always been successful at capturing people’s
imaginations, the most popular of which use an immersive 3D environment in which play-
ers take on the role of a character."[MMBO0S8]. Similarly, Li, Yue, and Jauregui [LYJ09]
presented a VR e-learning system, noting that virtual "e-learning environments can main-
tain students’ interest and keep them engaged and motivated in their learning." [LYJ09]

Gurevich, Lanir, and Cohen [GLC15] created TeleAdvisor, a wheeled, remote-controlled
robot equipped with a camera and projector on an adjustable arm. The remote user (RU)
can view the camera feed and manipulate the robot and its arm using a desktop PC,
projecting visual aids onto surfaces. The stability of the robot-mounted camera provides
a more comfortable viewing experience for the RU compared to a head-mounted camera,
which can be shaky and cause discomfort. In addition, this system allows the RU to

control the movement and reduces the cognitive load on the LU, who no longer has to
manage the Point of View (PoV) for the RU.

In summary, until 2012, information transfer was limited by insufficient sensors, displays,
bandwidth, and processing power. Many systems that relied primarily on video transmis-
sion failed to convey the sense of "being there", limiting mutual problem understanding
and spatial awareness. Many systems have suffered from the same technical limitations.

2.3.2. New Technology Introduces Sustainable Changes

A chronological review of the literature reveals significant technical advances in systems
since around the year 2012. This progress is largely attributed to technological improve-
ments that have increased the availability of sensor data and processing for MR collabo-
ration. Real-time, cost-effective acquisition and triangulation of 3D environmental point
clouds became feasible around 2012. This is primarily due to the introduction of the
PrimeSense RGB-D sensor and the first Kinect from Microsoft. This led to improved
spatial understanding of the environment and more reliable tracking of VR/AR/MR de-
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vices [New+11]. In addition, developments in display technology facilitated the creation of
affordable head-mounted displays (HMDs). Tecchia, Alem, and Huang [TAH12] pioneered
a system that captures the workspace and the arms and hands of the RU and LU with a 3D
camera. This system integrates a triangulated, textured virtual scene accessible through a
head-tracking HMD, outperforming traditional 2D gesture systems. Sodhi et al. [Sod+13]
used the Microsoft Kinect along with a short-range depth sensor to reconstruct a desktop-
scale workstation in 3D and transmit a hand avatar to a RU, enabling more complex
gesture execution and improving communication and understanding between participants.

In addition, the system developed by Sodhi et al.[Sod+13] can recognize real surfaces,
allowing hand avatars to interact realistically with physical objects such as tables. Know-
ing the location of real surfaces in the virtual environment allows virtual objects to be
snapped to those surfaces, reducing the time required to place objects such as furniture
or assembly parts.

A textured 3D representation of the environment also allows the RU to freely navigate the
environment. Tait and Billinghurst [TB15] developed a system that includes a textured 3D
scan of a workstation, controllable by keyboard and mouse on a monoscopic monitor, and
supports the selection of spatial annotations. They found that allowing full view indepen-
dence, as opposed to static views, accelerated collaborative task completion and reduced
communication time. Lanir et al. [Lan+13] found similar results, noting the asymmetry
in remote assistance tasks. They emphasized that the helper (RU), who usually has more
knowledge, benefits from controlling the point of view (PoV) rather than having symmet-
rical ownership with the worker (LU), who has the necessary physical tools and a better
view of the environment.

Oda et al. [Oda+15] use "virtual replicas" in assembly operations, defining them as virtual
versions of actual, tracked assembly components. These replicas exist physically for the
LU and are represented as 3D models in Virtual Reality for the RU. The position of the
virtual model is continuously updated to match the real world environment. Assembly
components often have complex shapes, making it difficult for the LU to follow the RU’s
instructions for proper orientation and positioning. To assist, the RU can overlay virtual
replicas in AR for the LU, thereby reducing the cognitive load associated with the task.
Oda et al. [Oda+15] found that demonstrating the physical alignment of the virtual replica
with another machine component is faster than using spatial annotations on the virtual
replicas for visual guidance, which facilitates positioning by the LU. In addition, Oda et
al. [Oda+15] implement physical constraints such as object snapping to speed up tasks,
similar to the methods used by Sodhi et al. [Sod+13].

Poelman et al. [Poe+12] developed a system capable of generating a real-time 3D map of
the environment, specifically designed to address the challenges of remote collaborative
crime scene investigation. Datcu et al. [Dat+14] used Poelman et al’s system and demon-
strated that MR enhances the RU’s situational awareness, defined by Endsley [End95] as
the ability to perceive, understand, and anticipate the future state of a situation.

Pejsa et al. [Pej+16a] developed an AR-based life-size telepresence projection system that
uses the Microsoft Kinect v2 to capture remote scenes and reproduce them using a pro-
jector at the other end for the RU. This system allows for better perception of nonverbal
communication cues, such as facial expressions, which are often obscured in systems where
participants wear head-mounted displays (HMDs) that cover parts of the face.

Mueller et al. [MRR17] observed that in remote collaborative tasks, such as locating spe-
cific virtual items in a virtual environment, task completion times were improved by using
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simple "shared virtual landmarks". These landmarks, such as virtual furniture, help inter-
pret deictic expressions such as "under the ceiling lamp" or "behind the floating cube".

Another permanent change in remote collaboration and NVC research is the introduction
of affordable but powerful HMDs such as Oculus Rift, HTC Vive, or even standalone
devices such as Microsoft Hololens around 2016. Piumsomboon et al. [Piu+17a; Piu+17b]
developed a hybrid AR and VR system. This system uses a Microsoft HoloLens to scan and
texture a real room, and then replicates this environment for a remote user who accesses it
through an HTC Vive. It tracks and displays the hands, fingers, head gaze, eye gaze, and
Field-of-View (FoV) of both users. Piumsomboon et al. show that incorporating eye gaze
and FoV as cues in collaborative tasks can reduce physical effort (measured by distance
traveled) and subjectively simplify tasks. They also introduced variable scaling of virtual
space, where shrinking the virtual environment improves orientation and planning through
a miniature model, similar to the approach of Stoakley, Conway, and Pausch [SCP95].

To date, there have been many attempts to solve the problems of 2D video telephony
with new telepresence systems. However, creating the feeling of being really present at
the remote location, which was formulated by Minsky in 1980, remains a major problem.
Fuchs et al. [Fuc+94] were ahead of their time and built a collaborative multi-user system
that processed data from multiple RGB sensors in the room to create a three-dimensional
display of people and their surroundings at a remote location. However, due to the low
resolution of the sensors and the lack of computing power for depth estimation, this was
only a vision at the time and far from feasible in real time.

In order to provide a comprehensive sense of presence, a trend in research can be recog-
nized: More and more information about the environment and the participants is being
captured and transmitted with increasing quality. While sensors are achieving higher res-
olutions with improved noise behavior, and network bandwidth, memory, and processing
power are constantly increasing, the first works have been created that can record and dis-
play the environment and the people in it in real time at interactive frame rates in three
dimensions. Until recently, our technology was not advanced enough to digitize entire
human avatars and environments in real time and reconstruct them at a remote location.
But with today’s technology, this is becoming more and more possible, as demonstrated
by many different research groups from Maimone and Fuchs [MF11; Mai+13], Strotko et
al. [Sto+19b; Sto+19a], Kowalski et al. [ KND15] or Kainz et al. [Kai+12], Kreskowski et
al. [KBF22], Rendle et al. [RKF23] or more recent systems such as the work of Meta’s
Reality Labs[Bag+21]. Seminal works include Beck et al. [Bec+13] as well as Orts et
al. [Ort+16]. All these solutions have in common that the environment is scanned in three
dimensions with an interactive repetition rate, thus transmitting a kind of 4D video (3D +
temporal dimension). However, even today, in 2024, this technology can only be realized
under laboratory conditions and requires a great deal of technical effort and know-how.
It is interesting to note that many of the papers presented focus on a technical system, a
user study or on a perceptual psychology experiment. A combination is rare. Exceptions
prove the rule [Lat+17a; Wal+18a]. In general, however, it can be observed that new
technical systems tend to be studied less in the area of effectiveness or quality of (remote)
collaboration. Typically, such studies are only conducted once the technology has become
mainstream and off-the-shelf hardware is available.

Yu et al. [Yu+21b] conducted a comparison between an avatar created using point cloud
volumetric reconstruction and a pre-created and rigged virtual human avatar of the user in
a telepresence context. Despite the lower visual quality of the point cloud avatar, includ-
ing depth noise and some missing features, it outperformed the virtual human avatar in
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the areas of copresence, behavioral realism, and humanity. These results were confirmed
in a parallel study by Sasikumar et al.[Sas+21], who also reported superior copresence
with volumetrically reconstructed avatars. Gamelin et al. [Gam+20] conducted a similar
study with point-cloud and pre-created, rigged, mesh-based avatars, but instead of mea-
suring perceptual psychological parameters, the focus was on quantifying measures such
as completion time and number of measured errors in the context of a collaborative task.
The result also showed that the point-cloud-based avatar is significantly superior to the
mesh-based avatar.

While the advent of off-the-shelf RGB-D sensors and HMDs marked the lasting changes
mentioned in this section, deep learning is the third change that has or will significantly
alter remote collaboration [Tew+20; Tew+22]. The work of Thies, Zollhofer, and Niefiner
and their teams demonstrates the potential of deep learning primarily from a technical
perspective. While the earlier work on face reanactment did not use deep learning in the
classical sense, the visual results and quality of these researchers were already outstanding
at the time [Thi+15; Thi418b; Thi+18a]. Later, the researchers also used Generative Ad-
versarial Networks (GAN) to improve their results even further [TZN19; Elg+20; Thi+20;
ZBT22b; Gra+22; ZBT22a; Qia+23]. However, the researchers primarily presented the
technical aspects of their work and did not analyze the systems in terms of their impact
on remote collaboration.

The field of deep learning can be divided into further iterative technical stages. Variational
Auto Encoders (VAEs) and Generative Adversarial Networks (GAN) have been increas-
ingly used since around 2016, demonstrating the potential of neural representation. The
key advantage of deep learning is that the systems implement an end-to-end pipeline, which
means they achieve very good results without significant manual effort such as 3D mod-
eling. A technical advancement with many advantages over GANs and VAEs are Neural
Radiance Fields (NeRFs) [Mil+21; Miil+22] and point (or Gaussian-) based differentiable
rendering approaches [Ker+23; Zhe+23]. While it is a challenge to render NeRFs in real
time on low-capacity devices such as mobile phones, rendering faces or even whole bodies
using geometric primitives such as "Gaussian Splatting" [Ker+23] is much more resource-
efficient because point-based rendering can take advantage of hardware-accelerated rou-
tines much more efficiently. The visual quality of both approaches is similar and, at least
to the untrained eye, it is generally impossible to tell which method was used.

The work of Meta’s Reality Labs (formerly Facebook) is worth mentioning. The results of
this research division are unique in many ways, but often focus on evaluating technical im-
plementations and shed little light on the implications for remote collaboration [Lom+18;
Wei+19; Raj+21; Lom+21; Cao+22]. Furthermore, the reproducibility of the results is
often limited due to the use of specialized and expensive laboratory hardware and the fact
that the source code is rarely published.

In summary, as technology has evolved to accurately scan and model environments in
real time, significant improvements have been made in collaborative tasks, increasing the
efficiency of remote interactions. The 3D reconstruction of both body parts and the
environment enables: 1.) improved spatial awareness of the remote location (free PoV);
2.) improved communication through the transmission of nonverbal cues such as gaze and
gestures; and 3.) the integration of real surfaces with virtual objects for more realistic
interactions (virtual collision, snapping). In addition, this reconstruction leads to 4.)
more reliable tracking of various devices (phones, tablets, HMDs, virtual replicas) and 5.)
the development of new display technologies that enhance immersive experiences, thereby
improving spatial understanding and problem awareness for all participants. One possible
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reason for the broad progress in many areas of technology could be the intensive research
efforts in the smartphone sector for performance enhancement and miniaturization.

2.3.3. Research Agenda, Technology Trends and Outlook

Despite significant progress and research in recent years, the ultimate collaborative display
— akin to Star Trek’s holodeck — remains a distant goal. Research on how to effectively
work together in multi-team, or group-to-group, collaboration has been minimal and there-
fore represents uncharted academic territory. Previous studies have focused primarily on
two-person collaboration, leaving the dynamics of data exchange and interaction between
multiple groups largely unexamined. Lukosch et al. [Luk+15b] initiated research in this
area, but acknowledged the need for further research. Beck et al. [Bec+13]| developed a
group-to-group telepresence system shortly after the appearance of the first off-the-shelf
RGB-D sensors and continued to research the system [KBF22; RKF23; Sch+24]. Piirainen,
Kolfschoten, and Lukosch [PKL12| identified achieving consensus on problem definitions
and specifications as a challenge in collaborative remote teamwork. Both situational and
team awareness cues are critical and should be addressed in further research.

Another critical issue is maintaining user focus on specific events and elements within
an environment, also called "mutual awareness". Ongoing research on awareness cues is
essential. Miiller, Rddle, and Reiterer MRR17] recognized the need for techniques that
highlight events, collaborators, or objects outside the immediate field of view. Pejsa et
al. [Pej+16b] and Masai et al. [Mas+16a] emphasized the importance of nonverbal com-
munication cues such as facial expressions, posture, and proxemics, which are essential
for empathy but remain difficult to convey with current technology and avatar technol-
ogy. Some studies investigating interactive 3D scanning and transmission of interactive
4D video also conclude that the resolution of the sensors is not sufficient to transmit facial
expressions with adequate resolution and quality. [Bec+13; Ort+16; MF11]

Comfort in HMDs, while critical to long-term use, is rarely studied. Consider a scenario
where a worker is performing a long, complex assembly task remotely, using an HMD that
becomes increasingly uncomfortable over time, pointing and pinching in the air, leading
to fatigue (e.g., the "gorilla arm"), which can ultimately lead to errors. Piirainen et
al. [PKL12] emphasize the importance of not overlooking user needs and human factors,
noting that system usability is critical. Recent research in MR has focused primarily on
technical aspects and productivity comparisons between MR and non-MR applications,
often overlooking comfort and usability. Masai et al. [MFJ16] also emphasized as a design
guideline that comfort is essential, because if the system is used in a daily work routine,
it could be used for 8 hours a day. However, studies such as Lubos et al. [Lub+16], have
begun to address and evaluate comfort in MR applications.

In addition, the challenge of replicating virtual haptic sensations in MR remains un-
resolved. Researchers such as Oda et al.[Oda+15] are exploring alternatives such
as virtual constraints including collisions and snaps. Lukosch et al.[Luk+15a] and
Billinghurst [BK99] also highlighted the need for further investigation into what tasks
MR can effectively facilitate.

Advances in tracking technologies, network speeds, sensor capabilities, and processing
power will continue to push the boundaries of achieving and potentially surpassing a
holodeck-like experience. Emerging technologies such as deep learning for object detection,
segmentation, and recognition will open new avenues of research [TGG20]. Future MR



2.3. Remote Collaboration Systems

devices will not only detect environmental surfaces, but also objects such as machine
parts, tools, and people.

2.3.4. Design Guidelines

Many of the studies mentioned above complain about similar problems. The problems
have changed since around 2012 due to a wave of affordable and efficient new hardware,
however it is striking that many researchers describe similar shortcomings for their specific
use cases. When these problems, after 2012, are abstracted and the recommendations are
generalized, they can be summarized as design recommendations for the development of
AR/VR/MR applications:

1. Maximize information about the remote environment: Providing video is
essential for situational and spatial awareness, but a 3D mesh of the environment
is preferable [Piu+17a; Piu+17b; Sod+13; Poe+12; Dat+14; Oda+15]. An updated
3D mesh should be available in real time, and the high resolution of the mesh seems
less important than the resolution of the texture on it [TAH12; MF11; Mai+13;
Sto+19b; Sto+19a; Bec+13; Ort+16].

2. Maximize information about the avatars: The literature is consistent in show-
ing that when more expressive avatar communication capabilities are implemented
for NVC, there is invariably an improvement in various desirable parameters of col-
laboration. Not only do metrics related to perceptual psychology, such as social pres-
ence or copresence, increase, but the effectiveness of collaboration, as measured by
the reduction of errors or the time it takes to complete a task, also improves [LG19b;
Lad+19; Sod+13; Wu+21; SN18; Lat+17b; Rot+18]. In particular, this includes
the detailed and authentic reproduction of facial expressions [Bai+06; Tar+23]. It
should be noted that facial anomalies are more disruptive than significant body mo-
tion errors, emphasizing the need to reconstruct facial expressions with solid tracking
methods and high-quality face rendering [Hod+-10].

3. Provide an independent viewpoint for exploring the remote scene: This
enhances both spatial and situational awareness and helps to understand prob-
lems [TAH12; Piu+17a; Piu+17b; Lan+13; TB15; Bec+13]. As for the head-
mounted camera (HMC) worn by the local worker, this also avoids nausea for the
remote expert due to shaking or constantly moving images from the HMC.

4. Provide as many awareness cues as possible: Transmission of speech is essen-
tial. It is also beneficial to include posture information from the collaborators, such
as head position, head gaze, eye gaze, and field of view (FoV) [Piu+17a; Piu+17b].
While a virtual ray may be sufficient for indicating direction by hand, a static hand
model [Sod+13] or a fully tracked hand model provides better communication of nat-
ural gestures [Piu+17a; Piu+17b]. It’s useful to indicate events outside the user’s
FoV [BR03; Piu+17a] and to provide common local landmarks [MRR17]. To avoid
clutter, these cues should be toggleable MRR17].

5. Rather use point cloud avatars than pre-modeled rigged mesh-based
avatars: Given a choice between point-cloud avatars (even of low visual quality) and
pre-generated or modeled rigged mesh-based avatars, you should prefer point-cloud
avatars [Gam+20; Yu+21b; Sas+21].

6. Prioritize usability and convenience: The following points are not only rele-
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vant for remote collaboration applications, but also for any MR solution, so they
should not be omitted: If the application is intended for prolonged use, make sure
the interface is comfortable for the user and consider human factors in the appli-
cation design [Lub+16; LHG17; PKL12; GLC15]. Avoid the "gorilla arm", caused
by pinching gestures with half-stretched arms in front of the user’s face for more
than a few minutes. It is also important to ensure a consistently high refresh rate
for the user throughout the runtime of the application, as otherwise nausea and low
comfort levels can occur. This is often a challenge because many standalone MR
devices have limited processing power.

2.4. Conclusion

Human-to-human communication is complex and multifaceted. Nonverbal communication
includes whole-body gestures, posture and, most importantly, facial expressions. Over
millions of years, our brains have evolved to read and interpret the smallest movements
and discrepancies in the face of the person we are talking to. This has made tracking and
digitally reconstructing a human face extremely difficult.

In general, most of the remote-collaborative systems and prototypes presented try to
reproduce the real environment as best as possible. This is true for the 3D environment
(rooms, machines, tools) as well as for the people as avatars involved with gestures and
facial expressions. Basically, the main goal in science is to perform a kind of "teleportation"
of the remote site as well and as authentically as possible, mediated by technology. As a
result, researchers today face technical hurdles that are limited by hardware performance
(e.g., computing capacity, network bandwidth, or sensor resolution) and by challenges in
authentic reconstruction and animation of avatars, such as complex manual modeling and
animation of believable faces.

In the last 15 years, there have been two permanent changes in the technology that are
or will be essential for remote collaboration in the future: 1.) The advent of off-the-shelf
hardware, such as RGB-D sensors or inexpensive but powerful HMDs, and 2.) advances
in deep learning will make telepresence much more realistic. It is clear that advances in
deep learning can lead to much better tracking, faster transmission and more authentic
rendering of NVC than with traditional methods.
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3. Impact of Shared Virtual Task Spaces on
Efficiency and Error Reduction in Remote
Collaboration

As we continue to explore immersive telepresence and remote collaboration, particularly
in terms of delivering NVC, the importance of a shared virtual task space emerges as a key
element. The ability to communicate consistently, intuitively, and with minimal cognitive
load in remote collaboration scenarios is important. Deictic gestures, as a form of NVC,
play a crucial role by establishing a direct connection between participants. In this chap-
ter, we conduct a user study to illustrate how such a space not only improves the clarity
of communication, but also increases the efficiency of remote collaboration systems. We
quantify the importance of the availability of a shared task space (by providing a digital
referencing/pointing method) in terms of time, errors, and type of verbal communication
during a remote collaboration task. This chapter demonstrates and highlights the signif-
icance of integrating NVC with gestures for effective remote collaboration and motivates
the development of further technical prototypes and tools in the later course of this thesis.

Many machines are complicated and require repair by experts with specialized training.
In the era of Industry 4.0, sensors, pattern recognition, and artificial intelligence facil-
itate the prediction of optimal maintenance times, but they cannot completely prevent
breakdowns. A machine breakdown can result in significant financial damage to an orga-
nization, requiring additional time and specialized personnel. While minor issues can be
resolved through email, phone, or video calls, more complex issues are often difficult to
resolve remotely.

Physical indicator LED

Virtual pointing ray

Local worker
in reality

Figure 3.1.: Collaboration between a remote expert in virtual reality (left) and a local
worker in reality (right). The remote expert uses a virtual laser ray to indicate certain
parts of the machine, which are then highlighted by LEDs on the local worker’s side. Parts
of the image by Eric Ourcell [CC BY-NC' 2.0] via Flickr [Our19]. Fig. from [Lad+19].

There is considerable interest in using AR/VR/MR for maintenance support and remote
assistance tasks [HF09; Lan+13; GLC15; Tea24]. Many studies support the multiple ben-
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efits of AR/VR/MR, but these technologies are often not mature enough. The balance
between benefits, costs and convenience is often unsatisfactory. Our approach aims to sim-
plify the overlay of computer graphics onto the real world by simply activating inexpensive
LEDs (light emitting diodes) on a physical object, controlled by a low-cost microcontroller.
The remote expert interacts with a digital 3D model of the machine, selecting specific com-
ponents to be highlighted by flashing LEDs visible to the local worker, as shown in Fig. 3.1.
Our system, which uses bidirectional verbal communication, enhances the connection and
significantly speeds up the process.

We intentionally simplified our system to focus on certain effects, recognizing that this
choice has limitations for real-world use. Our experiment did not include video transmis-
sion in order to clearly isolate the effects of LED signaling, and did not include body or
hand tracking for the local worker. This means that the remote expert cannot correct
the local worker’s actions if he or she mishandles the machine. Only real-time changes to
the machine are monitored and communicated. This setup is not advisable in real-world
scenarios due to potential risks to both machine and worker safety. Improvements are
needed to ensure safety.

To the author’s knowledge, this is the first user study of referencing from a VR application
to reality using physical signaling with LEDs for machine maintenance. We discuss the
advantages and limitations of this method and the experiment conducted, in which we
collected quantitative and qualitative data on usability and performance. This chapter
contains the following contributions:

o Demonstrating the positive impact of the availability of a shared virtual task space
in remote collaboration environments.

e The presentation, evaluation and discussion of a new and inexpensive approach with
LEDs of interaction between remote collaborators.

3.1. Related Work

To understand the following study and its implications, it is important to delineate the
smooth transition between AR and actual reality in our setting, noting that the use of
LED displays actually occupies a space between these two realms. Our methodology de-
parts from the superimposition of computer-generated images on the real scene. Instead,
our system uses stationary LEDs on a machine to generate visual signals in the real world
that ultimately have exactly the same goal: to convey spatial information (or to replace
a collaborator’s referencing action as a form of NVC). Following the definitions of Mil-
gram et al. [MK94] and Azuma [Azu97], our system does not make use of an HMD or
other tracking technology on the local worker side, positioning the LED display method
closer to actual reality than AR, in terms of Milgram’s continuum shown in Fig. 2.4 in the
last chapter. Therefore, our system is a VR-to-reality framework. The academic field of
AR and VR collaboration has been thoroughly explored, but the niche of collaboration
facilitated by LED technology, especially in remote environments, has received limited
attention, but we argue that the findings are likely to apply to various combinations of
AR/VR/MR-to-AR/VR /MR systems. For this reason, the full range of collaborative sys-
tems in Milgram’s continuum is mentioned in the following section. Some of the following
work has already been mentioned above in Chap. 2, but the following will go into more
detail on key work specifically in the context of referencing tasks, LEDs, and proposed
cross-continuum systems that utilize AR, VR, MR, and reality simultaneously.



3.1. Related Work

3.1.1. Shared Task Space

Collaboration usually involves two spaces. Hiroshii Ishii [IKG93], Bill Buxton [Bux92;
Bux09] as well as Billinghurst and Kato [BK02a] introduced the concepts of "person space"
and "task space" in the context of direct face-to-face communication and the emergence
of telepresence systems. Person space encompasses the exchange of verbal and nonver-
bal signals, such as speech and gestures, between participants. Conversely, task space is
defined as the environment in which collaborative physical tasks occur, such as manipu-
lating an architectural model or operating machinery. This space is also where objects are
pointed to. As Buxton described, remote collaboration often divides the task space into
two disjoint spaces - resulting in a separate task space for each of the collaborators. This
division is exemplified by videoconferencing, where collaborating and referencing/pointing
to a physical object is difficult because there is no shared 3D reference space. Pointing
with a finger can lead to misunderstandings due to perspective errors, depending on the
position of the webcams.

One of the most relevant works for the following study was conducted by Heiser et
al. [HTS04]. They examined the effects of having and not having a co-located task space
through a study in which dyads were tasked with finding an optimal evacuation route on
a campus map. The study compared two conditions. The first scenario includes a natu-
ral, co-located face-to-face communication with a physical shared task space. The second
condition includes an environment where participants are separated by a curtain, limiting
them to verbal communication only, with no shared task space. The results highlighted
the significant impact of referencing/pointing on collaboration efficiency, results (in the
form of sketches), and phrases used, with the co-located dyads achieving better results in
less time. However, the direct impact of the lack of face-to-face communication remains
unclear. The study reported in this chapter is similar to Heiser et al’s, but the task in
our study is different. Instead of drawing sketches of a rescue path on a map, our task
involves the correct operation of elements of a machine under the guidance of a remote
expert. Similar to Heiser et al. we also measure time, but we can better quantify the
results obtained by counting errors or misunderstandings between the dyads perceived
by the test conductor or logged by our system. We also count the number of questions
during the conversation and the types of verbal comments to analyze the change in the
participants’ statements.

3.1.2. Remote Collaboration and Machine Maintenance in VR/AR/MR

The integration of VR and AR has been shown to mitigate the challenges associated with
referencing objects in remote collaboration by facilitating a shared task space [BK02b].
Numerous studies have highlighted the benefits of AR and VR in improving collaboration
efficiency, reducing errors, and fostering shared understanding or "common ground" [0014;
HF09]. In addition, AR and VR solutions are increasingly finding their way into remote
industrial collaboration, such as Teamviewer’s Assit AR application [Tea24].

Our methodology for the study embraces the concept of a unified task space that enables
the visual connection between virtual and physical objects through LED signaling. This
approach not only facilitates the transfer of machine information from the physical to the
virtual realm, such as valve status, temperature readings, and component wear, but also
provides immediate visual feedback on the local worker’s progress.

Lanir et al. [Lan+13] and Tait et al. [TB15] demonstrated that giving the remote expert
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autonomous control over the scenario view improves remote collaboration. This is par-
ticularly relevant in maintenance scenarios, where the local worker’s camera feed, which
is often unstable and requires explicit, time-consuming verbal instructions to adjust the
camera, can hinder task execution. Our system addresses this issue by presenting the
remote expert with a 3D-rendered digital twin of the machine in an HMD (HTC Vive
Pro), allowing for unrestricted observation.

The TeleAdvisor system of Gurevich et al. [GLC15] has conceptual similarities to our
project. It features a remotely controlled robot equipped with a camera and projector,
allowing the remote expert to adjust the robot’s position and project visual instructions.
Unlike this projection-based method, our approach does not rely on a robot, but shares
the principle of remote visual guidance. A key difference is the ability of our system to
collect and use the machine’s internal data.

Sangregorio et al. [San+15] introduced a system to support remote maintenance by gath-
ering and transmitting machine data to the remote expert, using smartphones or laptops
for display, without incorporating AR or VR technologies.

Bottecchia et al.[BCJ10] developed a remote maintenance system using custom AR
glasses for web-based maintenance of a helicopter turboshaft engine. Similarly, Oda et
al. [Oda+15] used "virtual replicas" to bridge VR and reality, tracking physical machine
components and rendering them in VR to match their real-world positions. This tech-
nique, similar to our approach, facilitates direct visual communication between the local
worker and the remote expert by accurately representing the position of rotary encoders
and switches.

3.2. User Study: Deictic Gestures in Shared Virtual Tasked
Space

3.2.1. Hypothesis

Our study explores remote guidance for machine maintenance through a system that
combines VR and physical LEDs to enhance communication between a local worker and
a remote expert. The expert is able to turn on and off specific LEDs within the VR
environment, which is technically synchronized with a physical counterpart (digital twin,
shown in Fig.3.2) of the machine with the same arrangement of LEDs, enabling precise
nonverbal guidance from a remote side. This method uses colocated LEDs on the machine
as indicators and represents the referencing method (the deictic gestures) and replaces the
real and physical referencing of the expert to areas of the machine, e.g. with his index
finger. It is hypothesized that the integration of nonverbal communication methods such
as deictic gestures within a shared virtual task space during remote collaboration in an
immersive telepresence scenario will significantly increase task efficiency in terms of time
and reduce errors by providing unambiguous visual cues.
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Virtual Reality

Figure 3.2.: Left: View of the digital twin for the remote expert in VR. Right: Physical
"machine” seen by the local worker. The expert sees the target states and positions of
the elements and can turn on and off LEDs in VR that are synchronized with the real
counterpart for the local worker. Fig. from [Lad+19].

3.2.2. System Overview

The system consists of two main components: a real-world workstation containing the
physical machine operated by the local worker, and a virtual environment for the remote
expert containing a digital counterpart of the machine, as shown in Fig. 3.2. The preference
for VR over a traditional 2D desktop interface stems from the fact that VR significantly
improves the ease and speed of wayfinding, navigation, and spatial comprehension (espe-
cially in cluttered, complex 3D environments), as evidenced by the findings of Ware et
al. [WABO93] and Pausch et al. [PSP93]. Although the task space we are currently using is
rather small (430 mm by 330 mm), the benefits and impact of VR are expected to be more
pronounced in larger and more complex systems. VR offers the possibility to increase sit-
uational awareness by incorporating spatial cues into larger virtual environments [BR03;
Gru+17].

In designing the system for our experiment, we were inspired by the concept of creating an
escape game, drawing on the established effectiveness of gamification and competitive ap-
plication design with a scoreboard as a motivational tool, which is supported by numerous
studies, including those cited in the literature review by Hamari et al. [HKS14]. Given the
critical role of time in our experiment, we hypothesize that incorporating the element of
time pressure into an escape game scenario will lead to more consistent results by encour-
aging all participants to complete the tasks as quickly as possible. Choosing a different
scenario could result in participants spending time exploring the environment for its own
sake, rather than focusing on completing the specific tasks set in the experiment. Among
other factors, engaging people in a user study becomes easier when it involves playing a
game, as it tends to increase their willingness to participate and generally fosters a positive
attitude towards the experiment.
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Figure 3.3.: a) 32 control elements in a suitcase represent the machine b) 32 LEDs (one
next to each element) are used for indication (red circles) ¢) The panel is shown to the
remote expert in VR who selects a rotary encoder (yellow glow), which then activates the
corresponding LED in the physical suitcase. Fig. from [Lad+19)].

3.2.3. Local Worker and Remote Expert Side

To simulate a tangible machine, a control panel with 32 interactive elements such as
switches and encoders was integrated into a suitcase, as shown in Fig. 3.3a. This 430 mm by
330 mm panel not only serves as a practical representation of a machine, but also enriches
the narrative of an escape game inspired by "Keep Talking and Nobody Explodes" [Ste24].
Next to each interactive element is an LED, shown in Fig. 3.3b, to provide guidance, along
with a numeric display screen with a backligh for improved visibility. The control system
is powered by six Arduino Nano microcontrollers, each connected via an I12C bus, allowing
real-time Bluetooth communication of each component’s status (e.g., the rotational state
of a rotary encoder) to a Unity 3D instance of the workstation. Fig.3.4 shows the back
side of a module.
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Figure 3.4.: The back side of Panel P3 (Fig. 3.3). The states of the elements and the
LEDs of each panel are processed and controlled by Arduino Nano microcontrollers. Fig.
from [Lad+19] and images by Hendrik Preu.

On the counterpart side, the Unity 3D application renders a virtual replica of the suitcase
for the remote expert, as shown in Fig. 3.3c, allowing the expert to monitor the state of
the current suitcase’s components in real time, such as the state of switches and encoders.
The virtual interaction is enabled by a pointing ray controlled by the HTC Vive controller,
which allows the activation or deactivation of selected physical LEDs. While the remote
expert cannot directly modify the states of the physical components, he/she has the ability
to read these states. However, control of the LEDs is entirely in the expert’s hands. To
improve usability and interaction accuracy, the virtual representation is scaled up by a
factor of three, so that the dimensions of the control panel in VR are 1320 mm by 990 mm,
allowing for more precise deictic referencing by the user.

3.2.4. Methodology

Prior to the primary study, a pilot study was conducted with three dyads to refine the
process and ensure that participants received only the essential information. In the fol-
lowing, we refer to this pilot study at certain points, as it had a significant influence on
the final study structure and justifies some of the decisions we made.

3.2.4.1. Participants

The primary study involved 18 dyads, a total of 36 individuals (15 females and 21 males,
ranging in age from 22 to 67 years, with a mean age of 35.9 years). This group included
students and staff from the local computer science department (17 participants) and em-
ployees from two companies specializing in computer-generated special effects, digital con-
tent creation, and VR/AR/MR/mobile app development (19 participants). We screened
for color blindness and severe visual impairment, as these could affect performance in a
referencing task, but we did not screen for stereopsis, as its impact was minimal in our
primarily two-dimensional task environment. Participants’ proficiency in VR and AR was
measured using a 6-point Likert scale to gauge at least a general tendency, summarized in
Fig.3.7. Each dyad spent an average of 35 minutes on the experiment, including time for
post-experiment questionnaires and debriefing.
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Figure 3.5.: FExperiment setup: The experimenter observes the test in front of the monitor.
The local worker works with the suitcase while seated. The remote expert wears an HTC
Vive Pro and sees the digital twin of the suitcase. Fig. from [Lad+19].

3.2.4.2. Material

In Fig. 3.5, the remote expert participant used an HTC Vive Pro head-mounted display
and Vive controllers to perform referencing tasks, while the local worker participant sat
facing away from the remote expert, next to the suitcase, as shown in Fig. 3.5. Although
typical immersive telepresence scenarios would use a headset or microphone and speaker
on the HMD, in this study both roles were in the same room, back to back, to simplify
coordination and mitigate issues with digital communication channels. This was a result
of the pilot study, which initially began in separate rooms. The decision was made to bal-
ance the potential for digital communication errors against the benefits of having a single
experimenter oversee the experiment in person. This co-location allowed for verbal com-
munication without visual contact, emulating a remote setup as proposed and conducted
by Heiser et al. [HT'S04]. The system, powered by an appropriate PC configuration (Intel
Core i7 4770K CPU, 16GB RAM, Nvidia GTX 1070), ensured that the Unity 3D appli-
cation (version 2018.3.2f1) ran with optimal performance with a sampling rate of 11.1 ms
(90 frames per second - maintained by the main rendering thread of the application) for
timing the tasks.

3.2.4.3. Method

The experimenter led each dyad through a pre-defined onboarding process to ensure con-
sistency in the dissemination of information so that each participant started with the same
knowledge and conditions. First, participants were informed about the synergy between
VR and the physical world, its potential benefits, and that the study aimed to moni-
tor the duration, errors, and types of questions and answers that occurred throughout
the experiment. Errors were identified as misunderstandings that led to incorrect use
of the equipment. Within the Unity software, a random number generator was used to
determine who would assume the roles of remote expert and local worker, as well as the
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experimental condition they would experience - either "with LED indication" or "without
LED indication". The experiment was structured as a between-groups design, ensuring
that each dyad, as well as individual participants, could only participate once to avoid
biased results. Participants were asked not to share any details or information with others
who had not yet participated in the experiment but who might be potential participants,
so as not to influence the other participants.

The experimenter made adjustments to the HTC Vive Pro to account for interpupillary
distances and to ensure clarity of vision. The experimenter ensured that the referencing
and selection methods were understood. Initially, the remote expert was presented with
instructions on a virtual information text panel positioned 1.5m above the floor. This
approach ensured that the expert had a clear view and could identify the necessary details
and responsibilities as the experiment progressed. It was critical for the expert to accu-
rately point out specific elements to avoid compromising the data integrity of the study.
Upon completion of a task, the remote expert’s panel was updated with new information
for the next task. The tasks were:

Task A The first task served as an introduction to the experimental setup without any
referencing task to get familiar with the setup. It consisted of unlocking a suitcase
with a 6-digit combination lock by solving a simple numerical puzzle.

Task B The next task (Panel P1 in Fig.3.3b) marked the first LED indication task and
involved accurately positioning a small flashlight on one of four light sensors. The
instructions on the floating panel in front of the expert in VR tell him which of the
four positions is the correct one. Now he has to select the correct LED with the
pick ray attached to the controller and press the trigger button on the controller.
The expert receives visual feedback in his VR application that the LED lights up for
the local worker. Correct placement by the local worker triggered positive feedback
for the remote expert, and the next task was automatically initiated. Any incorrect
actions, such as shining light on the wrong sensor, were visually communicated to
the expert in the application and automatically logged by our software and noted
by the experimenter as an error.

Task C In the second referencing task, the remote expert instructed the local worker to
correctly connect three colored cables (Panel P2). While the correct connections
were visible to the remote expert in their application, the cables were initially placed
in a bag at the top of the case, easily visible and accessible to the local worker. A
total of six referencing instructions were required, and incorrect connections were
logged as errors.

Task D The third referencing task required the remote expert to indicate which of five rotary
encoders should be rotated to specified angles (Panel P3). To do this, the remote
expert had to highlight the appropriate LEDs next to each encoder and verbally
communicate the desired rotation as shown in the VR application. The actual rota-
tion of the encoders was then transferred to the VR application, allowing the remote
expert to verbally suggest adjustments such as "turn more", "180 degrees", or "twelve
o’clock". An error was logged if an incorrect encoder was adjusted, as three should
remain stationary.

Task E The fourth referencing task required the communication of four numbers displayed
in sequence on a physical display inside the case (Panel P4a in Fig.3.3b). This
sequence was the key to completing the flip switch panel task (Panel P4b). Only the
remote expert could see the arrangement of the switches, which were randomized
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for each dyad. The local worker had to operate the switches based on the sequence
provided by the expert, with visual feedback in the VR application indicating which
switch was operated. An error was logged if an incorrect switch was selected.

Task F The final task did not involve referencing and required locating an object in the
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suitcase. Completion of Task F represents the end of the experiment.

A total of 17 LEDs were used for referencing tasks. The "without LED indication" test
condition did not use LEDs and relied solely on verbal instructions and explanations.
All errors and timings for each task were documented by our software in a text file.
Throughout the experiment, the frequency of deictic and explanatory expressions used
was noted by the experimenter. At the end of the experiment, participants were given
a post-experiment questionnaire with demographic questions as well as questions about
their level of VR experience and other information about the experience of the study
(questions shown in Fig.3.7). Before the next dyad entered the room, the experimenter
reset the setup. This was done by returning the case to a previously defined state. This
includes, for example, the rotational state of the encoders, the position of the switches,
and the cables and flashlight, so that each dyad starts with the same conditions.

3.3. Findings

Tab. 3.1 presents the results for the "with LED indication" and "without LED indication"
scenarios, including metrics such as time, number of errors, queries, and both deictic
and explanatory phrases. A single dataset for the "with LED indication" scenario was
excluded because one participant admitted prior knowledge about the solutions to some
tasks because he had previously spoken to a previous participant in the study.

An independent samples t-test with a significance threshold of p =0.05 was used to evalu-
ate the completion times for all referencing tasks (B, C, D, E). In addition, the data were
subjected to a Levene’s test for homogeneity of variance, which revealed no significant
differences. The Shapiro-Wilk test also confirmed that the normality assumption was not
violated. It was found that there was a significant difference in completion times between
the "with LED indication" condition (M =344s, SD=90.3) and the "without LED indi-
cation" condition (M =493s, SD =149). The results t(15) =2.44 with p=0.028 indicate
that the LED indication significantly affects the completion time.

Additionally, a Mann-Whitney U test was performed to analyze the variance in error
counts, queries, and both deictic and explanatory expressions. This analysis revealed a
significant discrepancy in the number of errors between the groups, but no significant
differences were found in the number of queries or the two types of expressions. Fur-
ther details are shown in Tab.3.2 and Fig.3.6. The feedback from the post-experiment
questionnaires is shown in Fig. 3.7.

In summary, the results of the user study underscore the significant benefits of a shared
virtual task space in remote guidance scenarios. In particular, the inclusion of visual aids
via LEDs in a virtual space significantly improved task completion times and reduced error
rates.



3.3. Findings

time time for errors questions deictic explan.
overall refer- expr.  expr.
encing
tasks
with LED indication
451s  348s 2 7 6 21
534s  246s 1 7 4 30
522s  362s 0 6 7 21
722s  349s 0 1 6 13
586s 3865 2 16 14 48
828s  473s 0 13 2 24
720s  405s 0 9 1 47
257s  186s 0 10 4 31
M’ 560s  356s 0 8 5) 27
g b78s  344s 0.6 8.6 5.5 29.4
without LED indication
919s  657s 4 16 ) 37
604s  315s 6 7 2 36
980s  691s 15 9 6 47
601s 371s 6 ) 3 30
d975s  336s 4 23 6 27
1226s 638s 4 30 10 48
871s  580s 3 11 1 45
757s  455s 6 4 1 18
969s  392s 1 1 50
M'8T1s  455s 4 3 37
g 834s  493s 5.4 124 3.9 39.0

Table 3.1.: Summary of the data collected during the experiment.
mean. M’ represents the median. FEach row represents the results of one dyad. Table

from [Lad+19].

& represents the

errors questions deictic explan.
expr.  expr.
U-value 2.50 35.0 33.5 18.0
p-value .002 .96 .85 21
Mean "With LED" 4.81 8.89 8.72 7.31
Mean "Without LED"  12.7 9.12 9.31 10.5
Significant? yes no no no

Table 3.2.: Results of Mann-Whitney U test with critical value of 15 (significance level
of .05)). Table from [Lad+19].
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Figure 3.6.: Box plots of the data from Tab. 3.1.



3.4. Discussion and Future Work

. . ) G1 I
Q1: What is your experience level in VR?
G2 [
. ) . G1 I ]
Q2: What is your experience level in AR?
G2 [ ]
100% 75% 50% 25% 0% 25% 50% 75% 100%
) . used it slightly no experience
M expert very experienced experienced sometimes | | experienced | (o]
Q83: Please rate: How easy/difficult was c1 I
the communication with your G2
collaborator?
100% 75% 50% 25% 0% 25% 50% 75% 100%
M totally easy very easy easy rather difficult M very difficult M impossible
Q4: Please rate your overall experience  G1 s
during the game play. el
100% 75% 50% 25% 0% 25% 50% 75% 100%
B awesome very good rather good rather bad W very bad W awful

G1is Group 1: With LED indication
G2 is Group 2: Without LED indication

Figure 3.7.: The results of the post questionnaire. Fig. from [Lad+19]

3.4. Discussion and Future Work

Our initial hypothesis was that the integration of nonverbal communication methods such
as deictic gestures within a shared virtual task space during remote collaboration in an
immersive telepresence scenario would significantly increase task efficiency in terms of
time and reduce errors by providing unambiguous visual cues. Our results confirm this
hypothesis.

In principle, this is not a direct face-to-face collaboration in which the personal space is
transferred, but it still underlines the initial statement from the literature review in Chap. 2
that the transfer of more information, in this case by including referencing methods,
leads to more effective and also more efficient collaboration than when no referencing is
implemented. Because we did not integrate a face-to-face person space, we were able to
focus exclusively on the effects of the shared task space in our study.

Feedback on the ease of communicating with their partner (Q3 in Fig.3.7) was unexpect-
edly similar in both groups. We expected more pronounced differences and speculated that
the non-LED group would rate this question more negatively. In addition, the responses to
"Please rate your overall experience during the game" (Q4 in Fig. 3.7) were nearly identical
between the groups, with no significant differences. Although solving tasks without LEDs
takes longer and is more error-prone, it appears that participants do not subjectively rate
the simplified version with LEDs significantly more positively in terms of communication
quality and ease of use. This could mean that nonverbal communication in the context of
telepresence improves task efficiency but does not necessarily affect subjective user expe-
rience or "enjoyment", even though a referencing method leads to an improvement in task
performance, at least in terms of quantitative metrics such as time and errors.

Group 1, labeled "with LED indication" (in Fig. 3.7), had reported a slightly higher famil-
iarity with VR and AR technology, which could have influenced the results. However, we
analyzed the distribution and found no significant difference between the two groups.
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Although the "without LED indication" condition generated a higher number of questions,
deictic and explanatory expressions, no significant difference was found. We did notice a
difference in communication styles between the dyads, but it was difficult to categorize
them definitively. The "with LED indication" dyads exhibited a more assertive, decisive
and straightforward communication style, in contrast to the "without LED indication"
group, which adopted a more exploratory approach.

Heiser et al. [HTS04] have already shown in a similar experiment that the task space, fully
performed in reality without MR technology, is important for task efficiency. We have
brought this concept to virtual space and found similar results in this domain, but with
more quantified results.

Following the publication of this study, the author of this dissertation spoke with Prof. Dr.
Mark Billinghurst about further possible work in this area. Mr. Billinghurst suspected
that the length of the questions, and possibly the length of the statements, may have
changed between the two study groups. The availability of a referencing/pointing method
could possibly be used to identify shorter questions and statements. In addition, the cog-
nitive load might differ between the groups, which could be determined using appropriate
questionnaires in the future.

Furthermore, it would be interesting to investigate the influence of a person space on such
an experiment. For example, nodding or shaking the head, as well as facial expressions
such as frowning or looking scared when the machine is operated incorrectly, could lead
to more efficient task performance.

In addition, we are interested in exploring whether providing more comprehensive visual
feedback to the remote expert could speed up the maintenance process. This improvement
could include monitoring the worker’s hand movements and projecting this visualization
into the expert’s VR environment, similar to what Sodhi et al. [Sod+13] did, potentially
shortening the feedback cycle and allowing the expert to intervene if the worker is at risk
of operating the machine incorrectly.

3.5. Conclusion

In this chapter, we evaluated the concept of establishing a shared task space in a telepres-
ence scenario with and without the possibility to perform deictic gestures for a simulated
machine repair task, facilitated by signaling with physical LEDs. The experiment revealed
a significant difference in both task completion time and error rate between the scenarios
with the two test conditions "with LED indication" and "without LED indication". How-
ever, no significant statistical difference was observed in the frequency of questions or the
use of deictic and explanatory phrases.

In conclusion, deictic gestures with spatial reference are important for effective remote
collaboration in the context of a shared virtual task space. Research question 2 (RQ2)
was "How does the availability of a shared virtual task space, and in particular a referencing
tool, affect task efficiency and error rates in remote collaboration?". This can be answered
as follows: The availability of a shared task space with the ability to spatially reference
objects can save about 30% time and cause about 90% fewer errors, when comparing
the mean values of the experimental results. The study design was deliberately chosen
to minimize distractions and focus on solving tasks as quickly as possible due to the
gamification and competitive nature of the study.



4. Standardizing Body Tracking

There are a large number of different open source and commercial body tracking systems
(BTS) that can record and transmit NVC. There is a wide range of technologies with their
specific advantages and disadvantages. In addition, the tracking quality and the required
computing power vary widely. One of the biggest problems in providing meaningful NVC
in immersive telepresence is the lack of interoperability of individual BTSs across differ-
ent hardware and software. An application developed with a particular BTS will only
work with that BTS without further adaptation. This severely limits the distribution and
interoperability of different applications and hardware and software ecosystems, and the
visualization of body movements can vary significantly with different BTSs and be inter-
preted differently by viewers. From a technical point of view, this concerns the digital
tracking skeleton, e.g. the assignment of individual joints, the hierarchy of joints in a
skeleton, and its control data. Control data can have different assignments (x-, y-, z-axis)
or orientations (right- or left-handed coordinate systems), or have different scales such as
meters, centimeters, or millimeters.

This chapter addresses research question 4 ("How can different body tracking systems and
protocols be standardized to ensure that the presentation of nonverbal communication
in a telepresence application looks as identical as possible, even when different tracking
systems are used?). A software architecture as well as a standardization of a body tracking
protocol is proposed. For this purpose, a prototype application has been developed as a
middleware called MotionHub, which implements five different state-of-the-art BTSs and
sends standardized messages over a network to a client, such as the Unity 3D game engine.
The goal of the MotionHub is to unify face, finger, and body tracking systems into a single
interface, and could be thought of as the SteamVR for body tracking. The MotionHub
is a research effort to investigate what is needed to transfer NVC in a simple form of
body movements. Several real-world use cases are presented, and the system is evaluated
for applicability and performance at the end of this chapter. The system is already used
in several commercial and research projects, as demonstrated by Cannav et al. [Can+23],
Greve et al. [Gre+22], and Geiger et al. [GGS23].

Please see the oral presentation (https://youtu.be/GRZqkAN6I9k) and the source code
and documentation: https://github.com/Mirevi/MotionHub.

4.1. Related Work

The body tracking domain has seen extensive research and development over many years,
resulting in a wide variety of software, hardware approaches, standards, and file formats.
This section summarizes basic technologies, hardware and software, file formats, streaming
protocols, and general standards for body tracking and motion capture (MoCap). This
section focuses on body tracking without facial expression tracking. The related work on
face tracking is discussed in Sec. 5.1.


https://youtu.be/GRZqkAN6I9k
https://github.com/Mirevi/MotionHub
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4.1.1. Fundamental Body Tracking Technologies

Motion capture technologies can be broadly categorized into 4 areas: RGB-sensor-based,
RGB-D-sensor-based, infrared-sensor-based (often called marker-based), and IMU-sensor-
based (IMU: Inertial Measurement Unit). Other technologies such as electromagnetic
tracking [Raa+79] or EMG-based (electromyography) [MP04] are alternative approaches,
but have not been discussed further because none of these technologies have been accepted
for accurate body tracking. Under controlled conditions, electromagnetic tracking is highly
accurate, fast, and inexpensive, but the main problem is inference with other ferromagnetic
objects such as steel and reinforced concrete. This makes this tracking technology only
applicable to specific applications, controlled environments and often requires a calibration
phase. However, when all conditions are met, this technology can be very accurate and
is even used in medical context. Although optical tracking methods are also very precise,
they have the problem that they stop working when the sensor no longer has a clear view
of the object being tracked. Electromagnetic methods have the advantage that occlusion
is not a problem and biological material does not affect the tracking quality. This means
that objects inside a patient’s body can be localized in real time during surgery [Pol24].
Electromyography is available as surface EMG (on the skin) and intramuscular EMG.
Only the former is suitable for everyday use, but it does not provide a high enough level of
accuracy to reliably transmit body movements in the context of immersive telepresence.

4.1.1.1. RGB-based Body Tracking

Human motion capture based on RGB sensor data has been extensively studied for several
decades [MHKO06; Pop07; Cao+18]. The advantage of this technology is the short prepara-
tion time, since no marker or calibration is required for each person. RGB-based tracking
systems can be further divided into monocular and multi-view systems. More sensors in
the room provide more data, which usually leads to better tracking results. However, there
is generally a trade-off between tracking accuracy and speed. The focus in this section
is on real-time analysis, as this is the only way to interactively transmit NVC with low
latency.

The commercially available tracking system from The Captury is based on a certain num-
ber of intrinsically and extrinsically calibrated cameras in a room, all facing inwards to-
wards a common center. The system is based on "Sums of spatial Gaussians" [Sto+11],
runs in real time even with a multi-camera setup, and was considered one of the most
accurate and fastest RGB-based systems until the advent of deep learning based systems.

With the advent of Convolutional Neural Networks (CNNs), the ill-posed problem of ex-
tracting and regressing 2D or even 3D limb or joint positions, even from a single camera
view, has been successfully solved. The main research results that have contributed to this,
besides CNNs, are ResNets[He+16] and, in general, Encoder-Decoder Networks [SVL14].
In addition to the detection of landmarks such as limbs in images, the effective segmenta-
tion of images also plays an important role, since neural networks can be used to recognize
people in images in a comparatively resource-efficient manner and to determine the region
of interest in a comparatively resource-efficient manner.

Based on these achievements, Newel et al. proposed the Stacked Hourglass Net-
works [NYD16] and achieved significantly better results in various benchmarks compared
to the state of the art. They stacked several encoding and decoding networks, resulting
in a system that receives an RGB image and reports 16 2D positions of the joints, such as
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knees, elbows, and so on. Further improvements were made in the work of Cao et al. using
OpenPose [Cao+18]. Stacked Hourglass and OpenPose are computationally intensive, and
at the time were barely real-time capable. Google has been shown to use further improved
versions of the Stacked Hourglass networks for its face, hand, and body tracking, but does
not go into all the details in its publications [Baz+20; Kar+19]. They use a Procrustes
analysis [Ken89] to speed up the inference time. The unique feature is that the heat map
generation of the Stacked Hourglass process could be bypassed and tracking could even be
realized on mobile devices in real time. Although not all technical details are disclosed,
some trained models are available as part of the MediaPipe project [Lug+19].

A recent trend is the use of Recurrent Neural Networks (RNN) to realize a stronger re-
lationship between successive images in a sequence. This way, better temporal coherence
can be achieved and the results are more fluid. In the early days of deep learning for body
tracking, prediction was typically performed on individual images. This approach has
changed as the complexity of the networks has increased. Thus, long short-term memory
(LSTM)[HS97a] and Gated Recurrent Unit (GRU) layers [Cho+14] are increasingly used.
More advanced systems, such as VIBE [KAB20], use CNNs in combination with GRU and
attention layers to fit a parametric model. The tracking is near real-time with accurate
results. The use of the attention mechanism seems to be one of the key improvements for
the academic field of tracking, as it provides a more precise data description and structure
for neural networks of 2D or 3D positions [Vas+17; Mil+421].

One of the major drawbacks of monocular RGB-based tracking in direct comparison to
other technologies (RGB-D, IR marker-based, and IMU-based) is that even with sensors
that have intrinsic and extrinsic calibration data, a metric estimate of the depth or even size
of the person being tracked is possible, but ambiguous and usually prone to error. However,
this problem is increasingly being solved, as can be seen in SHAPY [Cho+22]. This system
is able to display metric data from images, such as height or waist circumference, in
addition to body shape and pose.

Meta introduced MEgATrack [Han+20], which is able to accurately track hand and fin-
ger movements via 4 cameras in an HMD. The metric estimation is done by an initial
calibration where the user’s hand must be seen by at least 2 cameras simultaneously for
a short time. This stereo calibration determines the size of the hand for the subsequent
tracking process and helps to limit the ambiguity between hand size and distance to the
sensor. Unfortunately, Meta does not publish further details about the architecture of the
neural network in this paper. However, they indicate that they also implement temporal
dependencies and even extrapolation of landmarks as additional input to the network to
improve tracking quality.

Directly comparing depth-only systems with RGB-based systems, the RGB systems usu-
ally have the advantage of a higher 2D resolution and a lower noise level. Furthermore,
it is also possible to make predictions on different resolutions of the target images, which
allows adaptive adjustment of the threshold between speed and accuracy, since RGB sen-
sors often have high resolution with many megapixels. As a result, this technology is well
suited to quickly (in real time) obtain a "first and rough guess" of the body pose to further
optimize this pose with more complex and accurate algorithms.
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4.1.1.2. (RGB-)D-based Body Tracking

Many of the approaches used in RGB-based solutions can be applied in a similar way
to RGB-D-based systems, as the additional depth information can simply be used as
an additional input channel in a neural network. Furthermore, compared to RGB data,
the depth modality is much more insensitive to illumination variations, color and texture
changes, and provides rich 3D structural information of the scene. However, there are fewer
research articles on depth-based body tracking compared to RGB-based methods in 2023
when writing this text. There may be several reasons for this, but one reason is certainly
the much wider availability of color cameras compared to depth sensors. Depth cameras,
such as ToF or LIDAR systems, are comparatively expensive, have lower resolution, and
require significantly more power in mobile devices compared to RGB sensors. In addition,
their range is often limited (often to a maximum of about 6-10m) and the noise in the
depth data increases with the distance between the object and the sensor. Nevertheless,
providing an additional depth channel generally makes tracking for complex applications
such as hand tracking much more robust. For a comprehensive overview of RGB-D tracking
methods til to 2018, we refer the reader to [Wan+18a]. While it can be seen from around
2014 that deep learning is gaining ground and delivering good results, "traditional" tracking
methods such as optimization-based methods, e.g. with the Iterative Closest Point (ICP)
algorithm [RLO1; Sha+15], are still superior in the trade-off between computation time
and tracking quality. However, it can be seen that in very complex scenarios, such as
occlusion, deep learning methods generally deliver better results.

Convolutional Neural Networks (CNNs) have not only revolutionized RGB-based tracking,
but are equally applicable to RGB-D streams. The depth information provides an impor-
tant additional channel of data that enhances the network’s ability to understand and
segment images in three-dimensional space, leading to more accurate modeling of objects
and environments. This application is particularly effective in overcoming the ambiguities
associated with depth perception in monocular RGB systems.

CNNs are one of the most common approaches to body tracking. However, there are other
architectures that have their specific advantages and problems and are suitable for RGB-
D data. Alternative approaches that also give good results with RGB-D data are Graph
Convolutional Networks (GCN) by Caetano et al. [Cae+19] and various forms of RNNs
such as LSTMs [HS97b]. The problem with RNNs is their high memory requirements and
limited ability to handle longer sequences of past and future information. This problem
has been successfully solved by the Transformer architecture, which has further improved
the quality of results by allowing temporal relationships to be better understood [Goe+23].

4.1.1.3. Feature-based QOutside-In and Inside-Out Body Tracking

Outside-in systems rely on the placement of reflective or active markers (also called fea-
tures) on specific anatomical landmarks of the human body. These markers are then
tracked by multiple calibrated infrared cameras that capture the reflected or emitted IR
light from the markers. The 3D positions of the markers are triangulated using data from
multiple camera views, allowing accurate reconstruction of the body’s motion. Well-known
systems are available from Natural Point with the name OptiTrack [Nat20] or from the
company Vicon [Vic20].

Until around 2012, inside-out was difficult to implement in consumer hardware because
it requires sensors inside the moving device that needs to be tracked. On the one hand,
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sensors were too large, too heavy, and often too inaccurate to be installed in an HMD,
and on the other hand, there was a lack of algorithms and processing power to provide
real-time tracking data. This has changed, and many of today’s HMDs use cameras for
position detection and are classified as inside-out. They look for contrasting and distinct
features in the environment and use them as anchor points. Typically, these systems
are combined with IMU-based systems to provide higher sampling rates and more robust
tracking.

Valve’s Lighthouse tracking system [YS19] is a hybrid between outside-in and inside-out
tracking, and differs significantly from other systems. Sensors are also located in the device
being tracked, but these sensors are not cameras, but photodiodes with a bandpass filter.
Unlike cameras, these photodiodes provide only binary information. Around the hardware
to be tracked there are so-called "lighthouse stations" with rotating laser fans with a fixed
angular speed and a bunch of LEDs. The LEDs send a synchronization signal in the form
of a flash to measure the time when the laser fan hits the respective sensors (binary signal)
on the device to be tracked. Using information about how fast the sensor is rotating and
how much time has elapsed since the synchronization flash hit the sensor, the system can
calculate where the device is located in space relative to the lighthouse station [YS19].

Feature-based systems offer high accuracy and temporal resolution, making them suitable
for applications that require precise motion capture, such as the transmission of NVC
gestures with even the smallest movements. However, they have limitations, including the
need for line-of-sight between markers and cameras, potential marker occlusion, and the
time-consuming process of marker placement and calibration. In addition, these systems
are typically more expensive compared to RGB and RGB-D systems.

4.1.1.4. Inertial Measurement Unit (IMU)-based Body Tracking

Inertial Measurement Unit (IMU)-based body tracking systems, such as those from
zSens [XSe|, Perception Neuron [Noi20|, or Rokoko [Ele23], represent a technology that
can provide high-quality tracking data. These systems work by using a network of sensors
distributed throughout the body, each containing an IMU sensor.

Each IMU typically consists of a triad of accelerometers, gyroscopes, and sometimes mag-
netometers. Accelerometers measure linear acceleration, gyroscopes measure angular ve-
locity, and magnetometers measure magnetic fields to provide heading information. The
IMUs continuously record data about their specific orientation and accelerations. Sensor
fusion algorithms are used to combine the data from the accelerometers, gyroscopes, and
magnetometers to estimate the orientation of each sensor module relative to a global ref-
erence frame. This process compensates for the individual limitations of each sensor type,
resulting in a more robust and accurate motion measurement. Typically, various filtering
and smoothing techniques are applied to the data.

While IMUs are commonly used to track smartphones in Simultaneous Localization and
Mapping (SLAM) applications, or to improve the temporal resolution of optical tracking
systems such as Valve’s Lighthouse Tracking, it is worth noting that IMUs alone are now
often sufficient to accurately represent spatial position and orientation. Today, the level
of accuracy is sufficient to deliver NVC with reasonable quality in real time.
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4.1.2. File Formats and Standards

Perhaps the best known and oldest de facto standard for VR data exchange is the Virtual-
Reality Peripheral Network (VRPN) by Taylor et al. [Tay+01]. It provides simple and
unified interfaces for various devices from different vendors. Many of these devices have
common functions, such as 6-DOF tracking or key input, but access to these functions
differs between manufacturers. VRPN unifies functions across devices with generic classes
such as vrpn_ Tracker or vrpn__ Button. As a result, it can be considered both a standard
and middleware. MotionHub takes a similar approach, but focuses on body tracking. The
first official international standard for humanoid animation is H-Anim, which was devel-
oped within the Extensible 3D (X3D) standard framework and is the successor to Virtual
Reality Modeling Language (VRML) [Sta97; Sta03]. H-Anim was released in 2006 [Sta06],
updated in 2019 [Sta06], and represents one of the only attempts to date to establish an
official open standard for humanoid avatar motion and data exchange.

COLLADA and FBX are exchange file formats for 3D applications and are widely used
today. While humanoid animation is not the primary focus of COLLADA, its open and
flexible structure allows developers to store body tracking data. In contrast, the propri-
etary FBX format emphasizes motion data but lacks clear documentation, resulting in
incompatible versions.

Although COLLADA and FBX can be used to write and read 3D geometry, the Biovision
Hierarchy (BVH) file format is designed exclusively for managing skeletal motion data and
is therefore simpler in structure. It is supported by numerous body tracking applications
and is often used for real-time humanoid motion data transfer due to its simplicity and
reduced overhead compared to other file formats.

4.1.3. Software and Hardware

In 2010, Microsoft began shipping the Kinect, which greatly expanded the body tracking
community by providing an affordable and powerful sensor. During this time, PrimeSense
released OpenNI [Occ20] and NITE [Occ20, p.15]. OpenNI provides low-level access to the
Microsoft Kinect and other PrimeSense sensors, while NITE acts as middleware, allowing
users to perform higher-level operations such as body tracking and gesture recognition.
PrimeSense stopped distributing OpenNI and NITE after it was acquired by Apple Inc.
Although OpenNI remains available on other websites [Occ20], active development has
been discontinued.

Building on the success of the Kinect and other PrimeSense sensors, several propri-
etary BTSs have been developed, including iPi Mocap Studio [Sof24], Brekel Body [Bre],
and Nuitrack [Inc] based on RGB-D streams. Examples of BTSs using IMU-based
tracking are Xsens MVN [XSe|, Perception Neuron[Noi20|, and Rokoko Smartsuit II.
[Ele23]. Optical solutions with passive or active (infrared) markers include OptiTrack
Motive: Body [Nat20], Qualisys Track Manager [Qua24], ART-Human [Gmb20], Vicon
Tracker [Vic20], and Motion Analysis Cortex [Inc20c].

The concept behind OpenVR[Lud20], implemented in SteamVR [Val24] and
OpenXR [Inc20a] is similar to the idea behind MotionHub. It consolidates the inter-
faces of many MR input and output devices into a single library. Its open source nature
probably contributes to its success. While OpenVR and OpenXR will not focus on
full-body tracking until 2021, efforts are being made to extend their functionality.
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The company IKenima [IKi20] has developed an application called Orion, which is based
on inverse kinematics and uses HT'C Vive trackers attached to the hips and feet. IKenima
was acquired by Apple in 2019, and Orion’s distribution was subsequently discontinued.

MiddleVR [Mid20] is a proprietary middleware that supports various commercial input and
output devices and provides a generic interface to the Unity game engine [Tec19]. Although
body tracking is supported, it is not the primary focus of the software. The commercial
software most closely related to MotionHub is Reallusion iClone with its plug-in Motion
LIVE [Inc20d], which emphasizes real-time body tracking and supports multiple tracking
systems for face, hand, and body capture.

4.1.4. Research Systems

In contrast to the previous section, this section presents non-commercial work from the
academic field, the source code of which was or still is mostly publicly available. The re-
search work most directly related to our work includes Open Tracker [RS05] and Ubiquitous
Tracking (UbiTrack) New—+04; Wag+04]. Both systems are generic dataflow networking
libraries for various tracking systems. Unlike MotionHub, they do not focus exclusively
on body tracking. They provide a generic interface to object tracking systems for mixed
reality applications, similar to the concept behind VRPN. Although OpenTracker and
UbiTrack have a different focus than MotionHub and their research was done more than
16 years ago, the unification concept is similar and can be reused for our work. Suma
et al. [Sum+11] developed the FAAST (Flexible Action and Articulated Skeleton Toolkit)
based on OpenNI and NITE. It provides a VRPN server for streaming the user’s skele-
ton joints over a network. However, development has been discontinued. Damasceno et
al.. [DCL13]| presented a middleware for multiple low-cost motion capture devices applied
to virtual rehabilitation. Eckert et al. [Eck+16] proposed a similar system for playing ex-
ergames. OpenPTrack [MBM16] is one of the most recent systems. It is not described as
middleware itself, but rather as a BTS. However, because OpenPTrack supports process-
ing multiple RGB-D camera streams from different vendors and uses different tracking
algorithms (such as its own or OpenPose [Cao+17]), it acts more like middleware. Sim-
ilar to MotionHub, OpenPTrack is open source and focuses primarily on body tracking.
The difference between the two systems is that OpenPTrack focuses solely on working
with RGB-D streams, while MotionHub aims to incorporate different tracking technolo-
gies, such as optical or IMU-based BTSs, to take advantage of the unique benefits of each
technology. Consequently, our approach requires a more generic method to fuse, cali-
brate, and merge the heterogeneous data from different BTSs. To the best of the authors’
knowledge, no currently available middleware supports recent high- and low-cost BTSs,
different technologies, and is open source. Although the idea of a body tracking middle-
ware is not new, MotionHub addresses these aspects, making it a unique system and a
valuable contribution to the community.
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4.2. Motion Hub System

Processing in MotionHub Output to client

Figure 4.1.: Overview: The MotionHub is able to perform live capture, process and merge
the tracking data. The yellow skeletons in b) are live captured by Azure Kinect and the
green skeleton is an OptiTrack recording streamed via UDP from the Motive software.
Finally, the combined tracking data is sent to a client. In this case it is the Unity3D game
engine, shown in c). Fig. from [Lad+20a].

The previous section on related work has shown that there is a wide variety and number of
different tracking systems. To answer the research question 4 (RQ4: " How can different
body tracking systems and protocols be standardized to ensure that the representation
of nonverbal communication in a telepresence application looks as identical as possible,
even with the use of different tracking systems?"), the first design rationale would be
that the "target" BTSs need to send their tracking data to the MotionHub. The second
rationale would be that the MotionHub detects which BTS the data comes from, converts
it accordingly to a defined standard, and then forwards it to the "final" client, in our case
the Unity game engine.

In order to realize the MotionHub’s role as middleware, several requirements have to be
met. The first idea was to write a separate server for each BTS as a standalone program
that sends the tracking data to the MotionHub for further processing. However, we realized
that 1.) the usability and user acceptance decreases if the MotionHub is fragmented into
different programs and different configuration windows (e.g. an additional window for
each BTS) and 2.) we realized that low latency is a non-negligible factor when building a
middleware for interactive applications. Each transmission between a server and a client
causes a latency of only a few milliseconds. However, in a fragmented system consisting
of different building blocks, the accumulation of delays can gradually grow. This had to
be avoided.

As a kind of "lowest common denominator" of communication, it turned out that every
manufacturer of a BTS - without exception - provided an implementation as a C or
C++ SDK. Since these two languages are compatible and among the most powerful,
the MotionHub was built as a C/C++ framework to integrate with the native SDKs. In
this way, the MotionHub receives raw skeleton data from different BTSs via the native
SDKs, processes it to create a unified skeleton in real time, and transmits it to the client
via a UDP-based network message using the OSC protocol (Open Sound Control) [Wri05].
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4.2.1. Unified Skeleton
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Figure 4.2.: The unified skeleton structure that MotionHub streams to its customers. The
skeleton of each BTS is standardized to this structure. Fig. from [Lad+20a].

To standardize the output data from different BTSs, we convert the different skeleton data
structures into a universal skeleton model with 21 joints, as shown in Fig.4.2. The joint
structure is adapted from the Unity humanoid avatar skeleton, [Tec20], which is similar to
the H-Anim LAO-1 standard [Bru06, p.20] used by BTSs such as the Azure Kinect Body
Tracking SDK. This standardization of joint names and indices facilitates a consistent
data representation of the converted skeletal data for avatar animation in third-party
applications. Each joint is characterized by a global position (vector3), a global rotation
(expressed in quaternions), and a confidence value (ranked as [none, low, medium, and
high]) within a right-handed coordinate system. Some BTSs, such as the Azure Kinect
SDK, provide joint confidence values based on distance and visibility. For joints from BTSs
that do not provide confidence values, such as OptiTrack, we use "high" as the default. All
original skeletal data is manipulated based on this standardization, the details of which
will be discussed later in this chapter.

4.2.2. Subsystem Architecture

An overview of the data flow and architecture of all subsystems is shown in Fig. 4.3. Each
BTS is shown at the top of this figure. Each BTS operates at its own unique acquisition
frequency and refresh rate. For fast processing of incoming data and low latencies, the data
handling code must run independently of the main program loop. To address this issue, we
embedded independent threads for each BTS within the MotionHub. A tracking thread
collects raw skeleton data from the corresponding SDK, processes it, and immediately
sends it to the client (game engine), as shown in the box with the orange border in the
following Fig.4.3:
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Figure 4.3.: Data flow and architecture of the Motion Hub. Image template courtesy of
Daemen et al. [Dae+16]). Fig. from [Lad+20a].

When dealing with threads, it is crucial to protect memory areas from concurrent ac-
cess through appropriate atomic structures. Several internal processing pipelines, such
as the tracker threads, the UI thread, the render thread, or the network sender thread,
access these protected regions. We found that copying the protected memory to pre-
allocated areas first and then processing on that copy, rather than locking critical areas
during processing, resulted in improved performance and reduced latency in processing
and transmitting data.

To pass skeleton data to the game engine client, we used a UDP-based iteration of the OSC
protocol [Wri05], chosen for its simplicity, rapid integration, and speed. The structure of
our protocol mirrors the Biovision Hierarchy (BVH) file format, but is augmented with
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additional MotionHub-specific control messages necessary for communication between the
MotionHub and the client side. In addition, we have developed a more compressed skele-
ton data representation than the BVH or VRPN-based data streams to further reduce
network latency. In a local area network (LAN), we chose UDP over TCP to prioritize
fast connectivity and lower latency over packet loss recovery, since packet loss is rare in
a LAN environment. While in our case the players were physically located in the same
place, it would also be possible to establish a remote connection over the Internet using a
TCP connection. Each OSC packet contains translation (three float values) and rotation
(four float values) data for each joint, along with the skeleton ID (as an integer).

In addition, the Ul module includes a rendering window to display both incoming and
converted skeleton representations. The joints of the skeleton are displayed in different
colors based on their confidence values, as shown in Fig.4.4.

Figure 4.4.: The OpenGL render window in a) uses color to indicate the current tracking
confidence of the joints. Some BTSs, such as Azure Kinect, provide such values. Yellow
joints have a "medium" confidence value, while red joints have "low" confidence because
they are occluded, as seen in b). For BTSs that do not provide a confidence value, a
default value can be selected manually. In this figure, the OptiTrack value is set to "high'"
by default and displayed in green. Fig. from [Lad+20a/.

4.2.3. Supported BTS and Dependencies

The MotionHub was developed in C++ for two reasons: First, C++4 is one of the fastest
programming languages available [Gou20], which is a critical feature for real-time body
tracking middleware. Second, creating an interface with different SDKs is only feasible in
C++, as virtually every BTS offers an SDK or API rooted in C or C++.

Since Microsoft’s Body Tracking SDK [Mic20b; Mic20a] uses neural networks for pro-
cessing, it requires the use of the NVIDIA CUDA Deep Neural Network library
(cuDNN) [NVI19]. To manage matrix, vector, and quaternion computations, MotionHub
uses the Eigen header-only library [Eig20] and the user interface is built using the Qt5
framework [Qt20].

To maximize code openness and ease of use, MotionHub automatically downloads and
configures several software dependencies during the build process using CMake [Inc20b].
This greatly reduces developer workload and paves the way for more streamlined future
development. Compiled binaries are also available. We chose Windows as our target
operating system because all SDKs are exclusive to this platform and a significant number
of BTSs do not provide interfaces for Macintosh or Linux-based systems.

The following BTSs are supported by the MotionHub:
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e Microsoft Azure Kinect

e Natural Point OptiTrack

e The Captury

e Movella XSens MVN Animate
e OpenVR

e OpenVR with multiple Vive Trackers with an inhouse-developed inverse kinematik
(IK) solver

As mentioned in the related work Sec.4.1, these BTSs can be broken down into their
underlying technologies: RGB-D, marker-based, IMU-based and additionally "Lighthouse
with IK". Each of these technologies has its specific advantages and disadvantages. For this
reason, one representative of each has been implemented in MotionHub and is compared
directly below in the Tab. 4.1. Each technology offers unique advantages in terms of refresh
rate, latency, accuracy, tracking area, setup time, and cost. The following discussion
compares these technologies and explores potential multi-modal approaches that combine
their strengths.

We have added "Lighthouse with IK" as an additional technology to the Tab.4.1 be-
low, as our own experiments have shown the potential of combining a tracked HMD,
two controllers, and multiple Vive trackers with inverse kinematics solvers. The values
from Tab.4.1 are based on the implementation and analysis of a self-developed system
integrated into MotionHub. Straps with Vive trackers are attached to the feet and hips.
Together with the tracking data from the HMD and the controllers, we feed and solve a
kinematic chain with a combination of Forward And Backward Reaching Inverse Kinemat-

ics (FABRIK)[AL11] and Cyclic Coordinate Descent (CCD)[CDO03].

Marker- IMU- Lighthouse
Technology | RGB RGB-D based based with IK
10 —
Refresh rate | 30 - 120Hz | 30Hz 10 000Hz 240Hz 120Hz
Latency ~50ms ~70-100ms | ~1 - 10ms | ~20ms ~5-10ms
Precision ~20mm ~10-40mm <0.3mm ~10mm <2mm
Tracking 100m? max. bm 100m? Radius 100m?
area and more Distance and more Wifi 50m
Setup time | _, . <1min ~15min | ~30min | ~10min
per Person
. ~25.000€ | ~6.000 - 1.500 -
Price ~30.000€ | from ~350€ and more 95 000€ 3 500€
Microsoft .
£ 1 Cant Kinect, gptfgack, )}()Sens, . HTC Vive
xamples aptury Intel Real ‘ua iSys, erception Tracker
Sense Vicon Neuron

Table 4.1.: A rough classification and direct comparison of different body tracking tech-
nologies that are implemented into the MotionHub.
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Marker-based systems offer a wide range of refresh rates from 10Hz to 10,000Hz, making
them suitable for high-speed motion capture such as biomechanical analysis in sports, but
are not required for real-time transmission of NVC at their highest level. A BTS should
typically have more than 30 Hz to smoothly transmit nonverbal signals. Both RGB and
Lighthouse with IK systems support up to 120Hz, providing high responsiveness suitable
for real-time applications such as virtual reality. IMU-based systems also offer a high
frame rate of 240Hz, which is beneficial for dynamic motion capture. In contrast, RGB-D
systems typically operate at lower refresh rates (30 Hz), which can limit their usefulness
in fast-paced environments.

Marker-based systems have the lowest latency (approximately 1-10ms), followed by Light-
house with IK systems (5-10ms). IMU-based systems have a moderate latency (about
20ms), while RGB and RGB-D systems have the highest latencies, which can affect user
immersion, embodiment, and interaction quality in virtual environments. The bottom line
is that latency for interactive remote collaboration should not exceed about half a second
in our experience. Furthermore, we observed that the verbal and nonverbal communication
channel can be shifted so far that communication becomes uncomfortable.

Accuracy is critical for applications that require precise and detailed motion tracking.
Marker-based systems offer unparalleled precision (<0.3mm), ideal for applications requir-
ing micro-gestures. However, this precision is not typically required for NVC. Lighthouse
with IK follows with excellent accuracy (<2mm). In contrast, RGB-D and IMU-based
systems offer moderate accuracy, and standard RGB systems have the lowest accuracy
(about 20mm) with a relatively high noise level. IMU-only systems typically need to be
recalibrated after a period of time (a few minutes to an hour) as they record a constantly
increasing offset.

The spatial range in which motion can be accurately captured varies widely. While RGB,
marker-based and Lighthouse with IK systems offer large tracking volumes (up to 10 m
x 10m for Lighthouse with IK), RGB-D systems are limited to smaller distances due to
their limited field of view (maximum 5m). IMU-based systems have the unique advantage
of not being limited to a field of view and offer a large tracking radius (up to 50m and
more). They are only limited by the WiFi signal.

Setup time per person and cost are considerations that affect the deployment of tracking
technologies, practical applicability, ease of use, and the chance to gain mainstream accep-
tance due to low price. Marker-based systems are the most time-consuming and expensive
to set up. RGB and RGB-D systems offer fast setup times and lower costs, making them
accessible to more casual users for a "quick call" without any preparation time. Lighthouse
with IK and IMU based systems represent a middle ground, requiring moderate setup time
and offering a range of prices that can be justified by their benefits such as good precision
and therefore good reconstruction of NVC gestures.
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4.2.4. User Interface

Figure 4.5.: The MotionHub user interface. The left side shows all currently running
BTS and found skeletons. The bottom left is the timeline. In the lower right corner is the
log window. On the right side is the tracker overview and the corresponding detail window
called Inspector — similar the Ul of Unity.

ra 7 nect 0

tracker_optiTrack_1

property value
id

name acker_azureKinect_0

Figure 4.6.: MotionHub user interface: Tracker Control Panel (1-3) and Tracker Prop-
erty Inspector window (4). Fig. from [Lad+20a].
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The main MotionHub user interface is shown in Fig.4.5. A close-up of the right side of
the interface is shown in Fig.4.6. Numbers 1 and 2 in white mark the buttons for adding
and removing BTSs. Number 3 identifies a toggle button that either starts or stops the
global main tracking loop. All BTSs have the ability to be enabled or disabled collectively
or individually.

As shown below number 4 in Fig.4.6, selecting a tracker from the list (highlighted by the
orange box) reveals its properties in the Tracker Property Inspector. Different tracking
systems report in different coordinate systems. For example, OptiTrack’s center is in
the middle of the tracking area on the ground, while Azure Kinect’s origin is inside the
depth sensor itself. When multiple BTSs are integrated into a single tracking area, their
origins must be spatially aligned. Therefore, the Tracker Property Inspector allows the
user to manually adjust the coordinate system origin of different BTSs. However, manual
alignment can be tedious. The following section introduces and discusses several methods
for automatically aligning and merging different BT'Ss in the same physical space.

4.2.5. Conversation Matrices

Processing joint position data into the MotionHub’s unified coordinate space involves sev-
eral steps: applying translation, rotation, and scale offsets to merge tracking spaces, and
mirroring the correct axes if necessary. Joint rotations, however, are the most compli-
cated and vary from BTS to BTS. A list of the specific rotations of the implemented BTSs
can be found online in the MotionHub documentation: https://github.com/Mirevi/
MotionHub/tree/master/doc. In addition to the coordinate system, we also had to con-
sider the skeletal structure. In some BTSs, the skeleton is hierarchically structured so
that the joint rotations are in local coordinate spaces. These local values are transformed
into global rotations by the MotionHub before being transmitted to the receiver side. For
example, each joint rotation of the Azure Kinect system is offset by different values.

R; = I,O;'T

The output rotation quaternion R for all joints ¢ of a tracker is the product of the tracker-
specific global coordinate system transformation 7, the inverse global offset orientation O,
and the raw input rotation I.

4.2.6. Game Engine Client

In order to receive skeleton data in a game engine, we developed a receiver package for
the Unity engine. It contains code that creates a character for each received skeleton and
animates it with given rotation values as shown in Fig.4.7. The character animation is
solved in the plug-in code by multiplying all inverse joint rotation values of the character
in a hierarchy order and the joint rotation in T-pose.

-1
Ri(client) = LT, H Tf(i7k)
k=3 (i)+1

For all joints 4, the transmitted rotation quaternion [ is multiplied by the joint rotation of
the character in T-pose T and the product of all inverse joint rotations r in the skeleton
hierarchy above the current joint. While f(i,k) returns the joint that is k£ nodes above 7 in
the hierarchy, j(%) shows on which hierarchy level the joint is located. The process iterates

59


https://github.com/Mirevi/MotionHub/tree/master/doc
https://github.com/Mirevi/MotionHub/tree/master/doc

4. Standardizing Body Tracking

60

upward through the joint hierarchy, starting with the parent of the joints and ending with
the root joint, where n is the number of iterations. Then the product quaternion R is
applied to the local rotation of the character.

When developing a plug-in and integrating a BTS into MotionHub, it is critical to
preview the processed data to identify and debug rotation offsets on different axes. Typi-
cally, there is little documentation from the BTS developer as to how exactly the received
data is oriented in Cartesian space. To facilitate this process in Unity, our plugin is able
to visualize debug options, as can be seen in Fig.4.7b. These options include toggling
the display of the skeleton ID, avatar position, joint axes, joint names and avatar meshes.
The skeleton ID is the same as the MotionHub’s internal skeleton ID and is passed to the
client via OSC data packets.

The plugin is also designed to be avatar mesh independent. This means that it is possible
to switch between different skeletons without any code changes, as long as Unity recognizes
them as humanoid.

Debug Settings:
/| Show Avatar Name avatar 15

| Show Avatar Position 0212121
Show Avatar avatar_1006

Show Joint Name 26:10.05) avatar_14
05,06,091

/| Show Joint

Figure 4.7.: The Unity game engine plug-in: a) shows the avatar view in the Unity
renderer. b) shows the debug view, which shows the position and rotation of all joint axes.
Fig. from [Lad+20q].

4.3. Spatial Alignment of Different Body Tracking Systems

Manually adjusting and aligning two BTSs in the same physical space using the Tracker
Property Inspector window (Fig.4.6) is usually very tedious and difficult, since several de-
grees of freedom such as translation and rotation have to be taken into account. However,
there are some methods that can superimpose the coordinate systems of different BTSs in
an automated procedure. In this section, we will briefly discuss how different BTSs based
on different base technologies, such as an optical BTS and an IMU-based system, can be
spatially calibrated.

Basically, the basic technologies used for BTSs can be seen in Tab.4.1. These are RGB,
RGB-D, infrared marker-based, IMU-based, and as an exotic that is gaining more and more
importance in the BTS field, the Lighthouse system invented by Valve [YS19; okr16]. The
Lighthouse system uses several basic technologies and is, strictly speaking, not a single
technology, but a combination of several. It is also sometimes classified in the literature as
outside-in tracking and sometimes as inside-out. However, an explicit listing in this section
of the Lighthouse system is useful because working with other BTSs has several practical
advantages, such as using Lighthouse-based HMDs with other body tracking technologies.
The following Tab. 4.2 shows the specific calibration procedures that can be used when
combining different BTS technologies.
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Table 4.2.: When spatially aligning different BTS technologies in the same physical space
multiple algorithms can be applied depending on the combination of technologies. Numbers

RGB | RGB-D IR marker | Lighthouse | IMU
RGB lor2|1lor?2 1 1 1
RGB-D lor2|lor2o0r3|1%* 7 1
IR marker | 1 1* 4 ] Hokek 1
Lighthouse | 1 7 ] Aok 4 1
IMU 1 1 1 ) 6

and asterisks are explained below.

The numbers in the table have the following meaning:

1.

*

Singular value decomposition (SVD) based Iterative Closest Point (ICP) on skeleton

joint locations (aligning both skeletons in multiple frames)

. Perspective-n-Point solution (e.g. with OpenCV’s solvePNP function)
. Non-SVD-based-ICP on both point clouds
. No alignment necessary

2
3
4
5.
6
7

Procedure available for xSens [BVb]

. Alignment procedure from manufacturer [BVa]
. Alignment procedure proposed below in this section

: In our experiments, we observed interference between OptiTrack and Azure Kinect,

which use the same infrared spectrum for their measurements. The Kinect showed sig-
nificantly higher errors than OptiTrack. The errors can be reduced by manually lowering
the frame rate of OptiTrack significantly (e.g. to 30fps). It is also possible to connect
OptiTrack and Kinect to a synchronization device [Nat23] to achieve higher frame rates.

kk

: Combining the Lighthouse technology with infrared-based RGB-D sensors such as

Intel RealSense or Azure Kinect can affect the tracking performance. We have investigated
which combinations work and which do not, as shown in Tab.4.3 and 4.4:

Lighthouse v1 receiver Lighthouse v2 receiver
RealSense D415 No interference Strong interference
Azure Kinect <lm: bad // >1m: OK <1m: bad // >1m: acceptable

Table 4.3.: Compatibility with RGB-D sensor when using Lighthouse v1 base stations.
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Lighthouse v1 receiver Lighthouse v2 receiver

RealSense D415 Not compatible with LH v2 <1m: bad // >1m: acceptable

Azure Kinect Not compatible with LH v2 No interference

Table 4.4.: Compatibility with RGB-D sensor when using Lighthouse v2 base stations.

##%: Combining Lighthouse and OptiTrack requires a synchronization device [Nat23].

Sensor 1

/\ Sensor 2

Lighthouse Origin

€

Figure 4.8.: a) 3D-printed Vive tracker mount; b) Tracker mount attached to the ChArUco
pattern; ¢) Complete calibration pattern (60 cm x 80 cm) with Vive tracker v2 in the upper
right corner; d) Real-time camera pose estimation without a pattern can also be performed
by a Vive tracker attached directly to an RGB-D sensor; e) Relationships between the global

coordinate system, RGB-D sensors, a Vive tracker, and the ChArUco pattern during the
calibration phase. Fig. from [Lad+21].
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Off-the-shelf HMDs such as Meta Quest or HTC’s devices do not provide reliable full
body tracking. Although arms and individual fingers are tracked, the correct position of
the hips is missing and legs are usually completely ignored. For better embodiment, it is
possible to use external sensors to transfer the missing limb into the virtual space. This
section prototypically shows how to calibrate the RGB-D sensors Azure Kinect or Intel
RealSense and the Lighthouse tracking system.

RGB-D sensors usually locate their coordinate origin at the position of the depth sensor
with the Z-axis pointing outwards as the depth. Lighthouse tracking typically places the
origin somewhere in the middle of the floor of the tracking area. The goal is to spatially
align the origins as well as find the correct orientation between the rooms.

The bespoken systems lack an inherent interface to spatially unify them. Some kind
of visual connection and information transfer must be established between them. Beck
and Frohlich, [BF17] introduced a method for registration between RGB-D sensors and
an optical marker-based infrared tracking system. We have incorporated their concept
into our system framework and improved its efficiency. While Beck and Froéhlich used a
standard chessboard calibration pattern, our approach uses a ChArUco pattern as can be
seen in Fig.4.8. This pattern not only adds robustness, but also speeds up the calibration
process. In addition to Beck and Frohlich, we present the calibration of a novel combination
of devices: Azure Kinect and Intel Real Sense using the Lighthouse system.

The standard chessboard pattern used by Beck and Froehlich [BF17] shows a significant
decrease in detection performance when the board is not fully captured in the camera
frame. However, the ChArUco board remains reliable even with partial occlusion, which
is critical for speeding up processing during camera pose estimation. This is made possible
by uniquely identifiable visual markers (also called patterns) from the ArUco library. With
these ArUco markers, each corner point of the checkerboard pattern can be uniquely
identified. This makes it possible to uniquely identify only parts of the pattern and use
them for calibration. This is especially important for the calibration of the IR-based depth
Sensor.

In the course of this thesis, a large number of different samples from different printing
companies were tested. It was found that not all printed Charuko patterns reflect infrared
light in such a way that the printed pattern is visible to the IR sensors for performing the
calibration. However, with a diffuse surface coating, which is offered by several companies,
the infrared light is fully reflected and can be used for calibration. However, the printed
pattern can sometimes produce bright reflected spots (much stronger than visible light
spots), so that parts of the pattern are not detected. This is where the Charuco pattern
shows its advantage. Despite only partial areas of the pattern being overexposed due to
reflection artifacts, camera calibration is still possible. We have observed this problem on
a large scale, especially with the Azure Kinect. However, the Azure SDK can be used to
enable a "passive AR" illumination mode, which disables the active IR light source on the
sensor and uses only ambient light. In order to illuminate the scene sufficiently, it may be
necessary to set up additional light sources, preferably IR light sources, to achieve better
calibration results.

We present a two-step method for identifying fixed cameras in the Lighthouse tracking
setup. The first step is to calibrate and determine the intrinsic properties of each camera
separately in order to accurately determine the position and orientation of the pattern
relative to the camera’s own coordinates in a second step. We compute the orientation of
the camera and translate these measurements to the coordinates of the Lighthouse tracking
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system. To facilitate this transformation, a Vive tracker is attached to the ChArUco
pattern using a 3D-printed mount, as shown in Fig. 4.8 a—c).

For effective spatial calibration, it is essential to first optically calibrate each sensor to
identify its unique intrinsic camera parameters and distortion coefficients. This involves
taking multiple RGB images of the ChArUco pattern with each sensor from different
angles and distances. From these images we can derive the intrinsic camera data. From
our experience we can say that 50 images per sensor are sufficient for calibration.

Our experience has shown that even sensors from the same model series can have different
intrinsic parameters. Although some sensors also provide intrinsic and extrinsic data from
the factory for RGB and D sensors (which are often mounted in the same housing with
an offset of a few centimeters, such as Intel RealSense or the Azure Kinect), this data is
often inaccurate. The data provided is sufficient for a quick and initial test setup of the
system, but if accurate scans are required, each sensor must be recalibrated individually.
We suspect that the internal factory calibration becomes less accurate over time due to
temperature changes or forces applied to the sensor, such as during shipping.

Once all the cameras are set up, their exact position and angle in the room must be
determined (extrinsic calibration). This is done by presenting the ChArUco pattern to
each sensor in the acquisition area again. Additionally, the position and orientation of
the pattern is documented with the attached Vive tracker. This allows the transformation
matrix of each camera to be calculated as follows:

Mcam = Mtracker ' Moffset : Mil (41)

pattern

with the following components, also shown in Fig. 4.8e):

o Myattern (red and green line in Fig. 4.8 ¢e): The transformation matrix of the pat-
tern in camera coordinates extracted from the captured image using a 3D-2D point
correspondence function and the camera’s intrinsic properties.

o Mysrser (blue line): The constant offset from tracker to pattern provided by the
user.

o My qcker (purple line): The tracker matrix in global coordinates.

4.4. Evaluation

To test the real-world applicability and additional value of MotionHub in creating and
running an application, we created an interactive game called "Human Tetris". This game
involves the movements of two players. The procedure is as follows: Player #1 starts with
a random body pose. The shadow of this pose is cast on a wall and is fixed when player
#1 says he or she is ready. Next, player #2 gets ready and tries to mimic player #1’s
body pose and shadow as a virtual wall appears and moves toward them. When the wall
reaches player #2, the game calculates and displays a score based on how accurately the
pose was copied. The game is shown in Fig. 4.9, and a video of the game is uploaded here:
https://youtu.be/0_b5hiweZQhE


https://youtu.be/O_5hiweZQhE

4.4, Evaluation

ROUND3

Figure 4.9.: Playing "Human Tetris" with the MotionHub. a) shows the physical set-up
with OptiTrack and Azure Kinect. b) shows our evaluation game created in Unity 3D.
Figures from [Lad+20a/.

4.4.1. Procedures

We performed three experiments: 1.) a game of Human Tetris, 2.) timing the switch
between different BTSs, and 3.) measuring the latency introduced by MotionHub.

For the first experiment, we played two rounds of Human Tetris using two Azure
Kinects and an OptiTrack motion tracking setup with 24 cameras (12x Prime 13 and
12x Prime 17W) and a suit containing 50 passive retroreflective markers. We ran one in-
stance each of the game, OptiTrack Motive, and MotionHub, which processed data from
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three BTSs simultaneously. Both Azure Kinects and OptiTrack Motive were run on a
single PC (Intel i7 6700K, Nvidia GTX 1080), and communication between the BTSs and
MotionHub was managed through localhost. In the first round, only one Kinect and the
OptiTrack were activated, while the second Kinect was covered with a small blanket to
demonstrate the deactivation of the second Kinect for the demo video. At the start of
the second round, the OptiTrack player left the tracking area and a second player uncov-
ered the second Kinect and joined the game. At this point, the OptiTrack system was
deactivated and both players were tracked by one of the two Kinects. After the test, we
collected qualitative feedback from the players through informal interviews.

The second experiment involved measuring the time it took to switch between the Opti-
Track and Kinect systems within MotionHub, using our Human Tetris game setup.

In the final experiment, we recorded visual reaction times using a high-speed camera to
determine the delay induced by each system. We recorded the time lapse from a physical
movement to its detection by each BTS, both with and without MotionHub integration.
For the MotionHub tests, visual responses were analyzed in both the MotionHub rendering
window and the Unity game engine renderer. MotionHub and the Unity engine ran on a
single PC (Intel i7 6700K, Nvidia RTX2080) connected via a 1 Gigabit localhost UDP con-
nection. A 144 Hz refresh rate monitor and a 1000 fps camera (Sony DSC-RX10M4) were
used. Both OptiTrack and Kinect updated at 30 Hz (33.3 ms each). Notably, increasing
the update rate of OptiTrack reduced the tracking quality of the Kinect due to infrared
interference. The software versions used were Motive:Body v2.0.2 and Azure Kinect Body
Tracking SDK v1.0.1.

4.4.2. Results

The first experiment described above confirmed the effectiveness of the MotionHub con-
cept. The participants, who were already familiar with both tracking systems, did not
observe any irregularities in the system behavior, except for a slightly increased delay
with the Azure Kinect.

In the second test, it took 8 seconds to switch from OptiTrack to Azure Kinect within the
GUIL In the third test, the measurement results of the induced delay, performed with a
high speed camera, are presented in the following tab,4.5.

Table 4.5.: Delays between physical motion and recognized motion by two specific BTSs
(MH stands for MotionHub). Tab. from [Lad+20a/.

System @30Hz With MH Without MH Induced delay

OptiTrack 127 ms 114 ms 13 ms
Azure Kinect 222 ms 151 ms 71 ms

Previous tests showed that delays were significantly longer when the packet transmis-
sion frequency was tied to the MotionHub’s main application loop. Reduced delays were
achieved by using separate tracker threads that transmit new data as soon as it becomes
available, without waiting for the main application loop, which also handles the user inter-
face and user input processing and therefore delays the entire processing pipeline. More
details on this approach are provided in the following Sec. 4.2.2.

We speculate that the difference in induced delays between OptiTrack (13 ms) and Azure
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Kinect (71 ms) observed in MotionHub may be due to the different refresh rates of their
respective SDKs. While OptiTrack Motive and NatNetSDK’s thread within MotionHub
interact at over 240 Hz (even though the cameras operate at 30 Hz), the Azure Kinect
body tracking SDKs communicate at 30 Hz.

We have omitted the delay between MotionHub’s internal renderer and Unity’s renderer
in the Tab. 4.5 because no visible difference could be detected in the high-speed camera
images; both renderers had synchronized outputs, thus showing the same delay. However,
to assess the network delay between MotionHub and the game engine, we analyzed the
timestamps of network packets. Our measurements of the time to send and receive a
UDP packet on the same PC (localhost) consistently showed delays of less than 1 ms, even
during MotionHub’s data transmission.

4.5. Future Work

The concept and functionality of the MotionHub can be extended significantly. One
obvious way to extend the concept of MotionHub would be to add additional tracking
modules such as face or hand tracking. Many manufacturers and research publications
focus on either body, face or hand tracking. With some minor modifications, MotionHub
could be extended to track these areas of the body.

Another idea would be to set up a node-based network where different MotionHub in-
stances, each with different BTSs, work together. In this setup, each MotionHub node
could receive tracking data, convert it, and send it to a central master node. This master
node would then integrate the data into a unified coordinate system and perform sensor
fusion. This setup could improve tracking accuracy for individual tracking or enable simul-
taneous tracking of many individuals. In this way, data acquisition for machine learning
could also be realized, as (unified) data from different sensors could be acquired simultane-
ously within one application. For example, RGB-D data could be acquired simultaneously
with high quality tracking such as OptiTrack or xSens. With this high quality data, you
would have solid ground truth data to train a tracking algorithm based on the RGB-D.
This approach has already been used by Shaikh and Douglas[SC21]. In addition, this
functionality could be used to benchmark different systems simultaneously.

As an unexpected benefit, we found that the MotionHub reduces the initial time to pro-
totype an application or game in Unity, since some Unity plug-ins of certain BTSs require
special handling of skeletal data and assignments for joints. The MotionHub plugin auto-
matically adapts to any humanoid skeleton in Unity, significantly speeding up the process.

4.6. Conclusions

We have introduced and evaluated MotionHub, our open source platform designed to
integrate tracking data from different body tracking systems (BTS) into a unified skele-
ton structure that can be streamed to client applications such as game engines. In this
way, MotionHub is able to transfer NVC more consistently between collaborators. We
believe that an open and comprehensive body tracking standard is necessary for efficient
remote collaboration and the sustainable development of the so-called "metaverse". Our
system demonstrates how this can be realized in an applied system. The software and
the evaluation is the answer to research question 4 (RQ4) that was: "How can different
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body tracking systems and protocols be standardised to ensure that the representation of
nonverbal communication in a telepresence application looks as identical as possible, even
with the use of different tracking systems?".

MotionHub adds a delay of 13ms when using a marker-based optical tracking system
(OptiTrack) and 71 ms when using a markerless system (Azure Kinect). The platform
allows users to seamlessly switch tracking systems without additional configuration on
the receiver side. MotionHub demonstrates the potential for features that extend and
unify the capabilities of existing BTSs. In the future, we plan to extend these capabilities
by introducing additional automatic calibration processes to align different coordinate
systems between BTSs, and by extending MotionHub to support additional systems such
as OpenPose [Cao+17], as well as hand and face tracking. We believe, we have provided
a valuable tool to the community and academic field.



5. Face-Tracking Head-Mounted Display

A critical component of future interaction in immersive environments will be the capture of
the user’s facial expressions, providing a rich layer of nonverbal communication. The CTO
of Meta (formerly Facebook) still acknowledges in Nov. 2023 that the current high cost
of eye and mouth tracking technologies makes them infeasible for mainstream consumer
devices [Mix24]. However, it is expected that these capabilities will eventually be built
into every device. The current difficulty lies in retrofitting existing models, such as the
Meta Quest, with these advanced modules. Competitor HTC already offers aftermarket
devices for mouth and eye tracking [HTC24b; HTC24a; HTC24c|. It underscores the
need for further research in this area to provide affordable mainstream technology and
demonstrates the gradual evolution of MR, VR, and AR technologies where future devices
will likely have these capabilities built in from the start. With this in mind, we investigated
potential eye and face-tracking technologies and designed our own face-tracking system
for an HMD, as shown in Fig. 5.1.

This chapter extends the previous chapters, which focused on body tracking, with the topic
of face tracking. For this purpose, established full-face tracking methods are examined to
see how they react to partial face occlusion or how they deal with unusual camera angles
or focal lengths. It turns out that established full face-tracking solutions cannot be used
in an HMD due to the cropped face area, steep angles and fish-eye focal length as shown in
Fig.5.2 and 5.3. Therefore, in this dissertation, a neural network is designed that performs
the detection of 36 landmarks of the lower part of the face using a miniature wide-angle
camera. The gaze tracking is realized using off-the-shelf eye-tracking hardware.

An additional image processing algorithm is developed to track the movement of the user’s
eyebrows. Furthermore, a simple solution with pressure sensors in the foam of the HMD
(the contact area between the face and the HMD) was developed and evaluated, but was
found to be error-prone due to head movements such as nodding.

An alternative approach using optical sensors and image processing was developed to track

Figure 5.1.: To expand and improve the face tracking capabilities of an off-the-shelf eye-
tracking HMD, we added three miniature IR sensors/cameras to it. Two of these sensors
are used to track the movement of the eyebrows (right), while the remaining sensor focuses
on the lower part of the face (left).
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the eyebrows. For this purpose, additional IR sensors were placed next to the Fresnel lenses
in the HMD (see Fig. 5.1 right) to track the user’s eyebrow movements. Since our approach
uses the off-the-shelf eye-tracking solution of an HMD, special attention must be paid to
the LEDs already installed to illuminate the area and the HMD. Typically, they operate
with their own pulse-width modulation, which leads to image artifacts with our sensors.

The goal of our efforts is to reliably track facial movements under an HMD, which will
later be used for facial reconstruction. The contribution of this chapter is the introduction
and evaluation of a system that recognizes 68 facial landmarks of the user in real time
under an HMD. Later in this thesis, the user’s face will be reconstructed and animated
almost photorealistically according to his facial movements.

We started our research at the beginning of 2019, while there were few solutions in this
research area. In recent years, there has been a significant increase in research activities in
this field, which is certainly also caused by the establishment of mainstream VR hardware.
In addition, we would like to point out that even beyond the analysis and transmission of
NVC, this technology can improve human-machine interaction by providing an alternative
input modality to mouse, keyboard, finger gestures, or controller input.

Figure 5.2.: SOTA methods fail when processing image streams with the upper part of
the face covered. The tracking results with green landmarks in a) and b) show the tracking
method "ensemble of regression trees" [KS14]. In b) no landmarks are shown because the
method fails in the first of two steps, finding a face. The second step would be to determine
the landmarks. The blue landmarks in c¢) and d) show the results of the Facial Alignment
Network (FAN)[BT17]. Both methods work as long as a "full face" is shown. However,
when only the lower part of the face is shown, both methods fail.

Figure 5.3.: Some methods, such as the "ensemble of regression trees" approach by Kazemi
and Sullivan [KS1/], fail even when a full face is shown, particularly when the camera is
too close to the face. The figure shows the same input image on the left and right, but
the application of the algorithm yields different tracking results, as shown by the green
overlays. This leads to unusable tracking results.



5.1. Related Work

5.1. Related Work

This section first gives an overview of available and established full-face tracking algo-
rithms. This is followed by a section on specific methods that can also deal with partial
occlusion, e.g. occlusion while wearing an HMD. Full-face methods are discussed because
partial-face tracking is usually derived from full-face solutions.

Full-face tracking is a well researched topic. In contrast, tracking the user’s facial expres-
sions while the face is partially occluded, e.g. with an HMD, is a much less researched topic
and is particularly challenging when real-time frame rates are required along with robust
tracking quality. Beyond the tracking and transmission of natural communication cues,
face tracking is considered a method with as yet unrealized potential for human-computer
interaction [JHHO05; LHT17; Yam+17]. It can not only receive explicit user input, but
could also implicitly provide valuable information for intelligent assistants [Ess00]. For
example, it provides data about the user’s mood, subconsciously transmitted information,
or even ironic speech, for example, as indicated by a small grin while speaking.

A well-known system for classifying facial expressions is the Facial Action Coding System
(FACS), developed by Paul Ekman and Wallace V. Friesen in 1978 [EF78]. While it is a
comprehensive tool for objectively categorizing the physical expression of emotion through
the analysis of facial movements, and is also used in the context of facial animation for
special effects in movies, it has relatively little application in academic face-tracking re-
search, especially in the context of applications with neural networks. Facial expressions
are much more often expressed in quantitative terms, such as the positions of facial land-
marks or the blendshape values of a statistical face model (e.g., a 3SDMM), than in FACS
parameters. Our presented system also provides position information via landmarks. This
section is based on the detailed state of the art report by Zollhofer et al. [Zol+18] and has
been extended with recent research results, especially from the field of deep learning.

5.1.1. Statistical Face Models

Most of the methods mentioned in this section are based on the analysis-by-synthesis ap-
proach, which uses some kind of loss function or energy minimization function based on
the difference between the original image and a synthesized image. This method is based
on the seminal work of Blanz and Vetter [BV99]. It involves rendering a parametric face
model and iteratively fitting it to the target image using a loss function (usually L1 or
L2 loss) until the (photometric or geometric) error falls below a certain threshold and the
optimization loop is terminated. The advantage of using a parametric model is that the
high dimensionality of the face alignment problem can be reduced to a limited number
of parameters of a system of equations, which transforms it into an optimization prob-
lem. Proposed solutions can be categorized into optimization-based methods (e.g. [Thi+15;
Thi+18a]) and (deep-)learning-based methods (e.g. [Den+19; Fen+21; ZBT22b; DBB22)).
These methods regress parameters of a statistical face model within a linear shape space.
Some works first determine identity parameters from a single or a few frames of the per-
son’s face with neutral expression, and then estimate expression parameters. Determining
the specific identity shape of a person usually leads to better tracking solutions in later
steps.

When estimating the parameters of a statistical shape model, determining facial landmarks
is free of charge if a landmark embedding is known. These embeddings correspond to
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vertices or faces of the model that represent standardized landmark positions such as
Multi-PIE [Gro+10]. While many accurate dense alignment solutions are slow, sparse
feature detection is much faster and is often used to initialize dense tracking.

Statistical face models are an important part of today’s face-tracking algorithms and
are also called 3D morphable models (3DMM). These models are generated by non-rigidly
deforming a face template to multiple high-quality scans of different subjects with different
expressions. These deformations are stored as vertex offsets that are added to an initial
generic neutral face representation. These offsets have many names, but are often referred
to as blendshapes, morph targets, or shape keys. Each of these offsets is linear and
can be weighted independently of other offsets. Optimization algorithms use these vertex
offsets to minimize an energy function (in machine learning it is called loss function rather
than energy minimization function), such as the Euclidean distance between a face scan
acquired by a depth sensor and the statistical face model.

By integrating these statistical face models, face-tracking methods benefit from a strong
inductive bias. In particular, the 3DMM acts as a powerful regularizer that aligns the
derived functions. Thus, these models not only provide a fundamental framework for
understanding and replicating human facial dynamics, but also ensure that the extrapo-
lations made by face-tracking algorithms are based on realistic and physically plausible
facial movements and expressions.

Statistical face models commonly used in academic research include the Basel Face
Model [Pay+09] and FLAME [Li+17]. The ICT FaceKit [Li+20] is newer than the pre-
vious two models and less referenced in academic work, but offers the most detailed rep-
resentation with a complete mouth interior with tongue and teeth, as well as detailed eye
areas with, for example, geometry to represent tear fluid at the contact points between
sclera and skin. All three models are available for research purposes and the FLAME and
ICT FaceKit are free for commercial use as well. For more details on 3DMMs, the author
refer the reader to Egger et al. [Egg+20].

5.1.2. Sparse Feature Alignment

Sparse feature detection and alignment are important algorithms to provide initial cues
for more accurate alignment in later processing steps. A first step in training a face-
tracking algorithm is to detect the region of interest in an image, in our case the face.
Simple algorithms such as Histogram of Oriented Gradients (HoG) [DT05] or Haar Cascade
Classifier [VJ01] can perform this task in a few milliseconds today. HoG is a feature
detection algorithm that counts the occurrences of gradient orientation in patches of an
image. Haar Cascade Classifiers use image filters (kernels) to detect certain structures in
images, and are more robust to variations in face orientation than HoG.

Once the image region containing the face has been detected, further alignment algorithms
can provide more information about the face’s orientation and expression. Kazemi and
Sullivan introduced the "ensemble of regression trees" to faces [KS14] and were able to
detect 68 face landmarks, based on the Multi-PIE scheme of Gross et al. [Gro+10], in a
few milliseconds.

However, major advances in accuracy and speed for sparse feature matching have been
achieved in the last decade by neural networks. As mentioned in the full-body tracking
Chap. 4 above, the architecture of the Stacked Hourglass Network [NYD16] also plays
a central role in facial tracking. The Facial Alignment Network (FAN) by Bulat and
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Tzimiropoulos [BT17] has been used in many research papers for both face detection and
more detailed face landmark detection in images. The combination of speed, accuracy, and
open source has long established the FAN as an important building block in many face-
tracking systems. It uses an advanced architecture of four Stacked Hourglass Networks
and has also been trained with the Multi-PIE landmark scheme. A major drawback of the
FAN for interactive applications is its speed. On a high-end gaming machine from 2020,
the FAN runs at about ten to 15 frames per second. This approach was later extended
by Google’s Mediapipe face landmark regressor. This solution provides 400 landmarks,
higher accuracy (especially around the eyes due to image cropping transformations and
cascading nets), and gaze tracking while reducing the overall inference time of the system.
MediaPipe’s landmark regressor uses a fraction of the computational resources of the FAN
with comparable tracking quality.

While the ultimate accuracy of current neural networks is limited by inaccuracies and er-
rors in the available datasets, the authors of "Fake it until you make it" [Woo+21] sought
to further increase accuracy by creating a synthetic "perfect' dataset. To do this, the
authors developed a pipeline to generate photorealistic images of a variety of different
synthetic humans. The humans were generated based on parametric 3D models with dif-
ferent skin colors, hairstyles, facial shapes, ethnicities, ages, and wearing different clothing
and jewelry. Based on the availability of the exact positions of individual landmarks of
the synthetic images, which are directly related to the polygon mesh of the face, a perfect
dataset can be generated. In addition, a large number of images can be easily generated by
scaling the entire dataset. With such a dataset, it is possible to significantly improve the
accuracy of landmark prediction and to have much less noise in the prediction of similar
images. This is especially noticeable when processing video.

5.1.3. Dense Photometric Alignment on RGB Data

Usually, one of the methods from the previous section "Sparse Feature Alignment" is
used to roughly fit a (parametric) face model to the input image, in order to have a
good starting point for further dense photometric (or also geometric, see next section)
optimization algorithms. This process is commonly used by many high-precision face
alignment approaches [Gar+13; SKS14; Thi+15; Cao+15; Thi+18a; Thi+18b; Wu-+16a;
ZBT22b; DBB22|. Several works show the importance of a good initialization, which
brings the parametric model as close as possible to the convergence region, leading to
shorter processing time and better overall results.

Other methods, such as analysis-by-synthesis or inverse rendering, can then be used in a
slower (often offline) process to compute highly accurate results. Good examples in face
tracking are MICA and its Metrical Tracker by Zielonka et al. [ZBT22b] and the Video
Head Tracker by Grassal et al. [Gra+22]. The pioneering work of Thies et al. [Thi+15;
Thi+18a] seems to be one of the best real-time face-tracking solutions on RGB data
so far. It is a Gauss-Newton optimizer, highly optimized for data-parallel processing.
Unfortunately, the code has never been released to the public.

5.1.4. Dense Geometric Alignment on Depth Data
The Iterative Closest Point (ICP) [RLO1] algorithm is critical for fitting statistical shape

models in dense geometric alignment tasks within approaches that use depth data streams.
ICP is used to resolve depth ambiguities, ensuring that the geometry of the face model is
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accurately aligned with the depth data. It often uses point-to-point distance metrics (using
simple Euclidean distance) between model faces and the input depth. It can be enhanced
with first-order surface approximation (point-to-plane variant) for improved robustness
and handling of translational motion. The ICP can be used for rigid and non-rigid align-
ment. Typically, rigid alignment is used first for transformation and rotation optimization.
The non-rigid alignment is then used to optimize the identity shape parameters and also
the expression parameters of the statistical face model.

The solutions of Thies et al. [Thi+15] and Weise et al. [Wei+09; Wei+11] are based on
the ICP algorithm to determine the dense geometric alignment of a face to a statistical
face model. BinaryVR’s solution [BinVR19; Upl23] is probably based on this as well.
The sensor used by BinaryVR only provides depth data. Therefore, it can be assumed
that BinaryVR also uses a variant of the ICP and therefore only uses Dense Geometric
Alignment. However, many other solutions use a combination of color and depth data.
Apple’s current face tracking (in 2022) via ARKit probably also uses the front depth
sensor. In general, however, there is a trend that face tracking using RGB data is used
more often in academic work than depth data. The practical advantage is that RGB
sensors are more common in smartphones or as webcams on laptops than depth sensors.
Compared to RGB sensors, depth sensors are more expensive and require more power for
depth measurement and often for data processing, which is done in 3D space instead of
2D.

The following part of this section will focus on data processing using neural networks.
Depth information is very helpful for our specific use case, but at the time of development
(2019-2020) there was a supply bottleneck for suitable depth sensors.

5.1.5. Face Tracking for Mixed Reality Devices

While full-face tracking with off-the-shelf sensors is a well-researched area, it still poses a
challenge in MR applications. Available open-source solutions for full-face tracking, such
as DIib [KS14] or the Facial Alignment Network (FAN) [BT17], fail when the upper face is
covered. Some hardware manufacturers have announced or released lip-tracking modules
for their HMDs, such as HTC for the Vive, HP for its Reverb G2 Omnicept HMD, or
in Meta Quest Pro [HTC24b; HTC24a; Mix24|, but these are closed-source hardware and
software and cannot be easily extended.

Theoretically, it is possible to segment hidden areas of the face and make only the visible
areas available to the tracking algorithm. In practice, however, there are several prob-
lems: the solutions described in the above sections are often trained on a fully visible
face. This means that the neural networks must be trained, often from scratch, on a new
data set. This requires adapting the data set, which is not always easy. On the other
hand, prior segmentation of the input data, e.g. using deep learning approaches such as
BiSeNet [Yu+21a], means additional computational effort. Since low-latency interactivity
is a prerequisite in the telepresence scenario, this can lead to computational bottlenecks.
Therefore, prior segmentation should be avoided and alternative solutions should be pre-
ferred.

Li et al. [Li+15a] did pioneering work in this area. Similar to our methodology introduced
in Chap. 5.4, they 3D printed a mount for a sensor. Because the minimum focal length of
their sensor was larger than the one we use in Chap. 5.4, their mount was more protruding,
appears to be much heavier, and is rather uncomfortable to wear.
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Several approaches have been presented in which ordinary spectacle frames are equipped
with photosensitive sensors to measure the distance between the face, especially the cheek,
and the spectacle frame [Mas+16b; Asa+17; Yam+17]|. This approach is only suitable for
AR HMDs, such as Microsoft HoloLens. The majority of VR HMDs are placed directly on
the user’s skin. Common to this group of devices is that facial expression reconstruction
provides mediocre to poor results for authentic nonverbal communication. The error rate
of misrecognized expressions is high, and a continuous representation or a linear transition
between expressions is often not possible. In addition, tracking noise is high and moving
the HMD leads to tracking errors.

Olszewski et al. [Ols+16] used a simple RGB camera attached to the bottom of an HMD.
They created a plausible mouth animation using a CNN and implemented a direct regres-
sion from the images to the blendshape parameters of their 3D face model. This approach
requires a significant amount of manual work by a 3D artist and does not provide land-
marks without an additional software extension, which means that it cannot be trained
continuously.

Thies et al. [Thi+18b] achieve reasonable real-time lip tracking results with good visual
reconstruction quality. This work is based on optimizing the expression parameters of a
3DMM presented in [Thi+18a] and [Thi+15]. The tracking pipeline code is not open
source. Offline full-face trackers for 3DMMs were presented later, such as the Metrical
Tracker by Zielonka [ZBT22b] or the Video Head Tracker by Grassal et al. [Gra+22].
They could theoretically be extended to optimize only the lower part of the face. For
full-face tracking, they provide good results, but are not capable of real-time frame rates.
Analyzing a frame with these offline trackers usually takes several seconds.

Lombardi et al. [Lom+18] and Wei et al. [Wei+19] proposed the most advanced systems
so far. It is based on a high-quality 3D morphable face model previously acquired with 40
DSLR cameras pointed at the user’s face from different directions. Wei et al. [Wei+19] use
image-to-image translation based on Generative Adversarial Networks (GAN) to transfer
infrared images from cameras of a face-tracking HMD to the style of the rendered avatar.
Differentiable rendering methods allow regression of real images to rendered images and
enable face tracking. The tracking system is person-specific and does not generalize be-
tween faces. Although the tracking quality is superior to other approaches, the system
is probably one of the most expensive solutions invented so far. Due to the complexity
of the pipeline and the computing power required, these systems can only be used in a
laboratory environment.

BinaryVR [BinVR19] was a company that offered lower face tracking for various virtual
reality HMDs until 2020. The company was acquired by Epic Games in 2020 and the
products are no longer available [Upl23]. The software was closed source, but they offered
an SDK with compiled binaries.

The work of Brito and Mitchel [BM19] is closely related to our approach presented in
Chap.5.4. They reprocessed a given facial landmark dataset with an image distortion
function to obtain images similar to those provided by introspectively mounted cameras
in an HMD. These cameras typically have wide-angle lenses and are positioned close to the
user’s face. The new dataset was used to train a shape predictor based on the "ensemble
of regression trees" (ERT) of Kazemi and Sullivan [KS14]. The difference with our work is
that we use a lightweight CNN without using ERT'. In addition, we create a person-specific
dataset and do not reuse other sources for supervised learning.
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5.1.6. Tracking Methods without Optical Sensors

For the sake of completeness, this section also discusses other tracking alternatives that
do not use photosensitive sensors. Bernal et al. [Ber+18; Ber+22] use sSEMG (surface elec-
tromyography), EEG (electroencephalography), EDA (electrodermal activity), and ECG
(electrocardiography) sensors. These sensors provide physiological data that can be used
for more than face tracking. However, despite their complexity and price, these sensors
do not appear to be superior to photosensitive sensors in terms of face-tracking accu-
racy. There is also the factor of wearer comfort, which is generally inferior because the
sensors often require direct skin contact and are poor at wicking sweat. However, off-the-
shelf products such as those from Emteq Labs [Emt24] have become established, especially
in academic research. Emteq primarily uses sEMG (surface electromyography) to track
muscle movement.

Strain gauges, such as those used by Li et al. [Li415a], have a similar problem with comfort
and sweat removal. These sensors were attached to the foam of the HMD and thus
represent a relatively large surface on which the user’s sweat cannot be dissipated, as the
surface of the sensors is largely made of non-breathable plastic film. The advantage of
strain gauges is that they are relatively inexpensive. However, measurement errors can
also be introduced by head movements, which must be removed from the tracking data in
order to achieve more reliable face-tracking results.

In summary, photosensitive sensors provide a lot of data per unit of time for their low
cost, while alternatives such as various forms of electrography are more expensive with
only mediocre data quality. However, it is worth noting that there has been little research
on pressure sensors in the contact area and foam between the skin of the face and the
HMD. Therefore, in Sec. 5.5.1, pressure sensors will be investigated for their suitability for
face tracking.

5.2. Design Requirements and Rationale

Based on the literature review in this area and the previous development of several pro-
totypes, the following points can be summarized:

1. Real-time processing and low latency: The primary goal of our face-tracking
system is to operate in real time with minimal latency. This ensures that the system
can immediately interpret and respond to user expressions, enhancing the immersive
experience and ensuring that users feel truly connected to the virtual environment
or another person during a teleconference.

2. Compactness: Given the spatial constraints of an HMD), the face-tracking system
should be designed to be small so that it does not interfere with the aesthetics or
add unnecessary weight, allowing for extended comfortable use.

3. Cost-effective: In order to make the face-tracking system accessible to a wider
audience, it should preferably be designed with low-cost hardware components where
available.

4. Open source: It allows researchers, developers, and users to contribute, refine, and
distribute face tracking in MR.

5. Fisheye camera with short focus distance: To minimize the distance between
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the camera and the user’s face while maximizing the captured area of the face, a
fisheye camera with a short minimum focus distance of less than 10 cm should be
used.

6. Handling steep angles: Because of the distorted field of view characteristic of a
fisheye camera, the tracking algorithm must be able to interpret the steep angles.

7. Minimum frame rate of 30 Hz: For fluid face-tracking, our system guarantees a
refresh rate of at least 30 Hz. This rate is essential to maintain real-time tracking
and ensure that even subtle facial movements are captured without any noticeable
lag.

8. Minimum image noise of the HMC: Given the potential difficulties of neural
networks with noisy images, our system should use cameras with low image noise
and good light sensitivity to ensure optimal tracking performance and accuracy.

9. Infrared capable: Due to the limited illumination inside the HMD, it is necessary
to illuminate the hidden parts of the face with infrared light, which cannot be seen
by the human eye. Therefore, the tracking cameras should be equipped with an
IR band-pass filter that allows only the wavelength of the IR LEDs used to pass
through.

10. Reporting facial landmarks: We have found that landmarks are a good input
modality, compared to blendshapes, for rendering a photorealistic face using neural
rendering (see Chap. 7) and especially using image-to-image/video-to-video transla-
tion networks such as the pix2pix GAN by Isola et al. [Iso+17].

5.3. Sensors and lllumination

Cameras are the sensors that provide the richest and most detailed information at relatively
low cost and good availability. The majority of related work in the field of face tracking
therefore relies on RGB or RGB-D cameras. Unfortunately, very few publications describe
which exact models were used with which lenses or filters. Therefore, in this thesis, we
will research in advance which type of camera sensor (IR, RGB or D or RGB-D) should
be used with which specifications.

5.3.1. Depth Sensors

Face tracking based on a data stream from an RGB-D sensor is well researched and pro-
duces reliable results. Most current solutions use a form of the Iterative Closed Point
algorithm [RLO01], as explained in Sec.5.1.4. However, the choice of sensor for our spe-
cific application of face tracking with an HMD is very limited. RGB-D sensors like the
Intel Real Sense or Microsoft Kinect are out of the question due to their size, weight and
too small closest focusing distance (sometimes much more than 10cm). At the time of
the research in 2019, there was only a small selection of RGB-D or only-D sensors small
enough to be considered for our application. The majority of these sensors had a res-
olution that was much too low (often less than 32x32 pixels) and a temporal sampling
rate of less than 10 Hz. The D-sensor that met all our requirements was the PMD Pi-
coFlexx [PMD23], which was not available at the time. We received a PicoFlexx camera
from BinaryVR (acquired by Epic Games [Upl23] in 2020), but the firmware was flashed
with a BinaryVR-specific version, so we could not access the raw data with the original
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camera manufacturer’s SDK from PMD. BinaryVR did not provide raw data in their SDK
either. Therefore, using RGB-D or D cameras for our application scenario was not possible
at this time.

5.3.2. RGB and IR Sensors

As mentioned in the previous chapter, a depth sensor was not available for our specific
application at the time of development. Therefore, RGB sensors were used, which could
be converted to IR sensors with an appropriate filter. The main advantage of an IR
sensor over an RGB sensor is that IR cannot be registered by the human eye - it is
therefore invisible. Since there is usually only a small amount of illumination in the space
between the HMD and the user’s eye area, or even below the HMD, these areas need to be
illuminated. If visible light were to illuminate the space between the HMD and the user,
it would significantly reduce user comfort.

Another reason for using IR sensors, which also block visible light, is to better control
external lighting situations. For example, the displays built into HMDs are optimized to
emit mostly visible light (RGB light) and relatively little IR radiation for efficiency. This
is helpful when sensors are aimed at the user’s eyes, which are illuminated by the HMD
displays. Significant changes in the brightness of the displays can change the illumination
of the eye area, which would negatively affect tracking performance.

It is often not possible to read relevant parameters, such as the closest focusing distance,
from a datasheet because they are usually not specified. Other parameters, such as image
quality, are difficult to describe objectively in a datasheet. Therefore, we pre-selected
seven sensors based on their data sheets and ordered them for further testing in the lab.
The data for the preselection were mainly the resolution, which had to be at least 640x480
pixels, the size, which had to be at most 18 x18x20mm (20mm is the height from the PCB
to the top of the lens), and the field of view, which had to be at least 160°. In a further
step, we subjectively evaluated these sensors for our specific application using 5 criteria
on a scale of 1 to 6. The evaluation is based on the German school system. Here, 1 is the
best and 6 is the worst. With such a metric, we were able to quantify different features
and decide on a sensor. The sensors were installed one after the other in the HMD and
evaluated. The table below shows the results in Fig.5.1:

B .}
Camera 9 é ’ ’ .",. w ,
# R\ | ¥ |7
Manufacturer Caddx ePath Kobert-Goods | Kobert-Goods ePath Kobert-Goods jcheng
Name and/or serial number | Turbo EOS2 | LYSBOOIEXTO U1-MwWD 205IRLWD [EPC_CCT_528 1959 MINIC800W002
Field of view 1(160°) 5 (<80°) 1(160°) 2(150°) 5(<90°) 2 (150°) 1 (160°)
Closest focusing distance 1 (20mm) 1 (20mm) 1 (20mm) 1 (20mm) 1 (20mm) 4 (40mm) 1 (20mm)
Light sensitivity 1 3 5 2 5 3 4
Size (L, W,H in mm) 3 (14x14x16) 1 (12x12x5) 2 (12x12x10) 2(12x12x10) | 4 (15x15x10) 2 (12x12x10) 4 (15x15x18)
Subjective image quality 1 3 2 3 %) 2 1
Frame rate 30Hz 30Hz 30Hz 30Hz 30Hz 30Hz 30Hz

Table 5.1.: Seven miniature cameras in direct comparison. Since some specifications
are often mot mentioned in the data sheet, or certain features are difficult to quantify
objectively, such as image quality, these seven cameras were installed in the HMD and
subjectively rated for the given task based on 5 criteria on a scale of 1 to 6 (based on the
German school grading system).
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The best sensor for this task is the Caddx Turbo EOS2 with a 1/3inch CMOS sensor, a
2.1 mm wide angle lens (160° field of view) and a size of 14x14x16 mm. The weight is 3.72 g,
which is negligible as additional weight for the HMD. With a resolution of 720x480 pixels,
the sensor achieves a refresh rate of 30 Hz. The sensor transmits the image stream as
a CVBS signal (Color, Video, Blanking, and Sync) and can be received by a PC with
a Composite-CVBS-to-USB converter. The camera is recognized as a USB Video Class
device version 1.5 and can be read by OpenCV via the standard interface. Each camera,
including a Composite-CVBS-to-USB converter, is affordable and costs approximately
40USD in 2019. The complete wiring of a camera with power supply is shown in Fig. 5.4:

¢ 12V power supply

for camera

<—— Composite-CVBS-to-USB
converter

Miniature camera
<« '
Caddx Turbo EOS2

Figure 5.4.: Wiring of a camera. 12V power supply with a CVBS to USB converter.
The image stream is received as a USB video class device on a PC and can be read with

OpenCV.

Possible advantages of choosing more expensive sensors could be the manual control of
exposure and ISO speed (light sensitivity) via software and higher frame rates such as
60 Hz or 120 Hz. The sensor we chose supports 30 Hz.

As IR-pass filter a thin polyester filter from Lee Filters (product name "LEE 87") is used.
This filter blocks light below 730nm. To attach the filter, the built-in IR blocking filter
can be removed from the lens without damaging the sensor, and the IR filter can be glued
in place, as shown in Fig. 5.5 below:

Miniature camera . . N N Lens with IR filter
‘Caddx Turbo EOS2' Lens with original RGB filter Removed RGB filter ‘Lee Filters LEE 87'

without lens

Figure 5.5.: The RGB filter was removed and a IR filter, that passes light above 730nm,
was inserted.
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5.3.3. llumination Safety Considerations

IR radiation can have several effects on the human body. It can damage the retina and
cornea of the eye and cause burns to the skin. The retina is particularly sensitive to
IR radiation in the near and mid-infrared spectrum and is a sensitive target for thermal
damage because it has no pain receptors and the damage is not immediately apparent,
which can lead to irreversible damage if exposure is severe or prolonged. However, the
cornea can also be damaged and the formulas and limits for the cornea are also briefly
summarized.

During the development of our prototypes, we used Harvatek HT-170IRPJ LEDs. These
are 0805-sized SMDs with 140° radiation at 7mW /sr radiant intensity with a near infrared
spectrum at 850 nm, which is almost invisible to the human eye.

There are two guidelines for evaluating the safety of our setup. First, EU Directive
2006/25 [Eur06] focuses on protecting workers in the EU from health risks arising from ex-
posure to artificial optical radiation at work, and requires employers to assess and manage
these risks. Second, IEC 62471 is a standard for manufacturers that provides guidelines
for the photobiological safety of lamps and lamp systems to ensure they are safe for hu-
man eyes and skin. In essence, the EU directive is about protecting workers, while IEC
62471 is about ensuring product safety. Both directives set the same limit of 100 W /m?
for exposure times greater than 1000s for the risk to the human eye from IR radiation.

In the following two subsections, we summarize the relevant information and equations for
our specific scenario of IR exposure as outlined in the two directives. IR exposure to the eye
typically lasts as long as the teleconference, which can range from a few minutes to several
hours. These guidelines use different equations depending on the length of exposure to
the eye. Typically, values greater than 10 seconds and up to 1000 seconds (16.66 seconds)
are considered for maximum exposure. Therefore, calculations are always based on the
maximum exposure duration. Another critical aspect is the very short distance between
the eye and the LED, which is only a few centimeters. The limits, formulas and additional
information are derived from the two guidelines mentioned above and two application
notes from OSRAM GmbH [JS24; Hall4]. The cases for the cornea and the retina are
considered separately as both may be affected by exposure.

5.3.3.1. Corneal exposure limits

The maximum allowable IR exposure to the cornea as a function of time can be calculated
for t > 1000 seconds as follows:

3000 197
Err =Y Ex*A, <100— (5.1)
780 m

E), is the spectral irradiance per unit area and per unit frequency interval in %, A
is the wavelength of the emitted light in nm, and ¢ is the exposure time in seconds.

The irradiance can be calculated with the radiation intensity I;gz and the squared distance
between the radiation source and the target using the formula 5.2:

Itr
Err="m

The corresponding information can be derived from the data sheet of the IR LED.

(5.2)
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5.3.3.2. Hazard exposure limits for the retina

The pupil diameter, the size of the emitting source area of the LED, and the wavelength are
required to determine the threshold for the retina. Since IR radiation does not exert any
visual stimulus such as photopic adaptation or aversive response, the natural protective
mechanism of the iris to adapt and protect the eye to ambient light conditions does not
function. Therefore, we must assume the maximum value of an open pupil, which is 7 mm.

The next step is to calculate the angular expansion « of the light source. This is done by
dividing the length L and width W of the emitting area by 2 times the distance d between
the eye and the light source, as described in the following equation.

LW

a=—0 (5.3)

Depending on the exposure/irradiation time, there are different minimum limits used for
the calculation. The upper limit for a4 is always 0.1rad. The following table shows
how to calculate the lower limits.

Time range Qmin,eff
t<0.25s 0.0017 rad

0.25s <t <10s 0.0017 - /55 rad

t>10s 0.011rad

Table 5.2.: Limits of the angular subtense o and measurement field of view (FoV) for
different time ranges. Source of the table is [JS24]

The following "Burn Hazard Weighting Function" considers thermal stress as a function
of wavelength:

{700— /\}

500
R(\) =10 (5.4)

Based on these formulas, radiation intensity and retinal hazard can be determined with
varying degrees of accuracy using different data sheet specifications. An accurate formula
that applies to the near IR range of 780 nm to 1400 nm is the following:

1400
w
Lin = X:LAJ%M-AAgﬁmm[ ! } (t > 10s) (5.5)
A=780 [0 m= - 8r

where Lp, is the spectral radiance in W/m2/nm/sr and « is in radians and t is in seconds.
However, there are other formulas that simplify the calculation and give good approxima-
tions based on the radiant intensity and the size of the emitting area of the LED (I and
w). It is advisable to take the maximum rather than the typical radiant intensity from
the datasheet to exercise caution:

R(\)

LIR ~ Imaz . (56)
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5.3.4. Pressure Sensors

Pressure sensors in the foam of an HMD
seem to be well suited to capture fa-
cial expressions in a cost-effective man-
ner. By exerting pressure on the sensors
through the movement of facial mus-
cles, it is possible to evaluate differen-
tiable data on specific parts of the face
and transfer it to a virtual avatar. We
have built several prototypes using thin-
film resistive pressure sensors and have
found sensors suitable for our applica-
tion. These sensors are based on the
piezoelectric effect. This means that the sensors report a variable voltage proportional to
the pressure on the sensor. There is a wide range of pressure sensors available. The sensor
model RFP-602 was preferred to other models because this sensor has a better sensitivity
in a range of 10g - 500 g compared to alternatives that usually have a sensitivity range
between 50g and 2000g. In our experiments we have found that pressures higher than
250 g rarely occur.

Figure 5.6.: A pressure sensor RFP-602 that
we used in our experiments.

5.4. Lower-face Tracking beneath an HMD

As mentioned earlier in this chapter in the Related Work sec-
tion, proven face-tracking methods become ineffective when
an HMD covers the upper half of the face (see Fig.5.2 and
Fig.5.3). As mentioned in the introduction of this chap-
ter, there is no special data set of close-up and wide-angle
lenses, neural networks, or similar alternatives that allow face
tracking of the lower face. The seminal work by Thies et
al. [Thi+18a] did not publish any source code. An implemen-
tation turned out to be very complex, as the code has to be
executed in a highly parallelized and optimized manner on
the GPU in order to maintain real-time capabilities. In the
meantime (2023), optimization-based face trackers similar to
Thies et al. [Thi+18a] have emerged, such as the Video Head
Tracker (VHT) by Grassal et al. [Gra+22] and the Metrical
Tracker by Zielonka et al. [ZBT22b], but the optimization of
a single image takes several seconds. This is too slow for real-time interactive applications.
With the FAN [BT17], it turned out that it was not easy to train the network (especially
on current hardware) because the training code was based on a machine learning library
that was no longer maintained. It was written in Torch, the Lua-based predecessor of
PyTorch. Today, only PyTorch is under development, led by Meta (formerly Facebook).
Porting or rewriting the code to a newer library turned out to be difficult and buggy
during training because of hardware and driver changes. Among other things, the Stacked
Hourglass architecture seemed too complex for our use case, with runtimes that were too
long.

Figure 5.7.: The red
area represents the track-
ing area covered in this
chapter.

In the following section, we present a method that can analyze the user’s facial expressions
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from steep camera angles of the lower face sensor and report them as facial landmarks
at more than 900 frames per second. The targeted tracking area is shown in Fig.5.7.
To implement this, we take advantage of freely available "full face" tracking methods
to create a labeled dataset of 19 individuals with ground truth facial landmarks. We
perform a special case of "transfer learning" by transferring the "knowledge" from a slow
but powerful neural network based on a large training dataset to a much smaller network
capable of real-time inference. We do not exchange weights and biases, but labeling
information. The acquired data is then cropped to the lower part of the face and a
traditional convolutional neural network (CNN) with fully connected layers is trained in
a supervised learning fashion. Our proposed solution is person-generic, meaning that we
do not need any person-specific data to track/infer a new face that is not present in the
dataset. We show that our conventional but lightweight CNN is faster in inference than
previous full-face-tracking solutions and achieves results comparable to those of SOTA
tracking. Our contributions are:

e An end-to-end supervised-learning pipeline for a lower-face-tracking CNN.

o A CNN (with traditional architecture) for the area beneath and HMD with tracking
quality comparable to state-of-the-art full face tracking that is suitable for real-time
tracking framerates that uses minimal GPU resources to leave resources for other
GPU-intensive tasks such as rasterization or network inference.

e To the best of the author’s knowledge, the first open source solution for a face-
tracking pipeline (data set creation, training and weights) of the lower part of the
face targeting VR, AR and MR hardware.

e CAD files for 3D printing the camera mount.

The code for the following section can be downloaded here: https://github.com/
Mirevi/UCP-Framework/tree/main/Lower-Face-CNN

At the time of development (2019) of this part of the thesis, no system existed that could
track only the lower part of the face when the upper part is covered. In the last four
years, several commercial systems have become available for purchase, such as HP Reverb
G2 Omnicept, Oculus Quest Pro, HTC Vive/Focus Lip Tracker, and Vive XR Elite Full
Face Tracker [HTC24b; HTC24a; Mix24; HTC24c]. Please note that these commercial
solutions are more expensive compared to our simple monocular approach of about 40 USD
in hardware costs.

At the time of development, the only device designed for the special case of face tracking
under HMDs was produced by BinaryVR [BinVR19; Upl23]. We received two devices
from the company and were able to experiment with them, but due to supply bottlenecks
on the part of the company PMD Sensors, neither BinaryVR nor PMD were able to send
us any more devices. The access to the tracking data of our devices was very limited by
the BinaryVR SDK. In addition, the devices used special firmware on the depth sensor
that was owned by BinaryVR and was closed source. Due to the lack of access to the raw
tracking data as simple 2D landmark coordinates, which we needed for our neural rendering
solution presented in Chap.7, a solution had to be found as it is a basic technology to
achieve the goal of this thesis. Therefore, we created our own face-tracking solution. The
following section does not present a novel neural network architecture for face tracking,
since face tracking is well researched and relies on an established network architecture,
but it does explain a novel pipeline for acquiring labeled training data. The network
architecture consists of typical encoder-like convolutional layers followed by several fully
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connected layers and is based on pioneering work such as LeNet by LeCun et al. [LeC+89]
or AlexNet by Krizhevsky, Sutskever, and Hinton [KSH12].

The following Fig. 5.8 shows the process. First, data is collected using an HMC. The data
is processed and compiled into a training set. After training, the person’s lips can be
tracked with a sensor on the HMD, even though the upper half of the face is covered. The
last image on the right shows the resulting landmarks. The landmarks are connected by
lines.

Preprocessing & Training Inference Landmarks

Data acquisition

Figure 5.8.: Pipeline of our approach: In the first step, full-face images of several people
are acquired for a training dataset. Next, facial landmarks are detected for the full face
and stored as a training dataset with cropped images showing only the lower half of the
face. Then, our lightweight CNN is trained on the labeled dataset. After training, the
CNN can be used while wearing an HMD. Our CNN provides 36 facial landmarks of the
lower face.

5.4.1. Sensor Mounts and lllumination

To ensure good tracking performance, the sensors must be mounted in the appropriate
positions on the HMD. Two mounts have been developed for this purpose. One to acquire
the training data set for our CNN (the training mount) and another mount that attaches
the sensor to the HMD during the inference stage and sends the images to the trained
CNN (the inference mount).

The training mount consists of a bicycle helmet with a flexible arm, as shown in Fig. 5.9.
For illumination purposes, four IR LEDs (Harvatek HT-170IRPJ) were soldered to a circuit
board to illuminate the area around the mouth. The camera, which can also be seen
in Fig.5.9, is a modified RGB sensor, as described in Sec.5.3.2. This setup allows the
acquisition of images of the entire face to create a labeled dataset with an existing full-
face face tracker solution.
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4x IR LEH

Figure 5.9.: Data acquisition using the "training mount”: A bicycle helmet was modified
by adding a mount with 4 infrared LEDs and a modified RGB sensor with an infrared
band-pass filter instead of an RGB filter.

IR Sensor

The inference mount consists of three parts, as shown in Fig.5.10. The parts are held
together with miniature screws and nuts (size M1 and M2). The mount is designed so
that the distance of the sensor and also the angle at which the sensor faces the user can
be manually adjusted by loosening and tightening the corresponding screws. In addition
to the sensor, and similar to the training mount, four IR LEDs (Harvatek HT-170IRP.J)
were mounted on a circuit board to illuminate the area around the mouth. The mount is
significantly smaller and lighter than the mounts of previous work such as that presented
by Thies et al. [Thi4+18b] and Olszewski et al. [Ols+16], who introduced a similar system,
but larger than the mounts currently (writing this in August 2023) available face-tracking
systems such as the HTC Vive Lip Tracker. The mounts were modeled in Blender and
printed using Fuse Deposition Modeling (FDM) with polylactide (PLA) as the material.
The 3D files are available here: https://github.com/Mirevi/UCP-Framework

Top

Side

Figure 5.10.: Top and side view of the 3D prints for attaching the sensors. The coin is
for size comparison.
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IR Sensor

4x IR LEDs

Figure 5.11.: The assembled and mounted camera mount for the lower face-tracking
area. Image from [Lad+20b]. The 3D printing files are available at https: // github.
com/ Mirevi/ UCP-Framework

5.4.2. Data Acquisition and Data Set Preperation

The first step in our pipeline is to acquire full-face images of a user and to detect landmarks
in those images. To do this, we use the training helmet described in the section above
and shown in Fig.5.9. Our supervised learning approach requires a labeled dataset. The
goal is to take advantage of the available (but slow) full-face tracking to trim the acquired
images and landmarks to the lower half of the face and thus generate a labeled dataset for
training our proposed CNN. For full face tracking, we compared Dlib’s [Kin09] method,
which is based on "ensemble of regression trees" by Kazemi and Sullivan [KS14], with FAN;,
which is based on a CNN by Bulat and Tzimiropoulos [BT17]. The challenge in our setting
is the small distance between the camera and the face, which results in a difficult viewing
angle for the face-tracking solutions. We found that undistorted images from our fisheye
camera tended to give better results. Therefore, we calibrated the wide-angle camera using
Zhang’s method [Zha00] to determine the intrinsic and undistorted images before passing
them to the face trackers. The calibration pattern is a 6x9 chessboard with an edge length
of 10 mm. The pattern is small so that the sensors can be calibrated at the target working
distance of about 10 cm.

Dlib’s method fails with our miniature camera when processing images from distances
closer than about 40 cm, as shown in Fig.5.3. FAN fails at a distance of less than 5cm
because parts of the face are cut off at the image boundaries. However, it can still deliver
reasonable results from distances greater than 8 cm. For this purpose, our final helmet
mounts have a camera-to-face distance of 10 cm and we created the final dataset with the
labeling information from the FAN.

For the acquisition process of the training data set, we use the training mount. The
acquisition process involves recording a person’s face for about 5min at 30 fps, resulting
in a dataset of about 9000 unique images. We recorded 19 individuals (six women, 13
men) while they were speaking and making grimaces, as shown in Fig.5.12. During the
recording, we didn’t have a strict protocol, but we talked to the person to record natural
mouth movements and asked the person to make at least 13 grimaces that we had prede-
fined. Pictures of these grimaces were shown and the participants were asked to imitate
these expressions. This resulted in a total of 171000 unique facial images. Furthermore,
we applied data argumentation to increase the dataset to avoid overfitting to 342000 face
images. Each of the originally captured images was flipped horizontally (i.e. from left to
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Figure 5.12.: Four images of different people from the training dataset of 19 individuals.
The images have different camera positions and lighting parameters.

right flipped, not top to bottom flipped), doubling the number of images in the dataset.
In addition, we randomly cropped, rotated, or scaled each of the 9000 original images,
resulting in 27000 images per person and 513000 images for the entire dataset.

After acquiring the full face images, we detect the facial landmarks with the FAN [BT17]
and store them with the corresponding images. After detecting the landmarks, we com-
pute the mouth bounding box based on the minimum and maximum coordinates of the
landmarks of the lower face over the whole dataset. Then, we crop the images and the
previously detected landmarks in the acquired dataset to this bounding box and store
these new cropped images as well as the corresponding landmarks as a labeled training
dataset for our CNN. These steps are visualized in Fig. 5.13 below:

Figure 5.13.: Building the training set for the lower face-tracking CNN. a) Shows the
uncovered face captured from the same angle as the one in the face-tracking HMD. b)
The Facial Alignment Network [BT17] determines 68 landmarks based on the MultiePIE
scheme. c) The upper face is cropped and the remaining image area and landmarks are
used as the labeled training set for the lower face-tracking CNN. Image from [Lad+20b].

5.4.3. Neural Network Training and Architecture

Our primary goal was to create a CNN capable of delivering solid real-time frame rates
on ordinary gaming hardware, while leaving enough GPU resources for rasterization and
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inference for other networks, such as generating photorealistic images of the user’s face
in an immersive telepresence scenario, as described in Chap.7 and 8. As an architecture
for our CNN, we considered the Stacked Hour Glass Architecture by Newell, Yang, and
Deng [NYD16], which has been used in several body tracking and face alignment works
such as the FAN [BT17]. However, our experiments showed rather unsatisfactory frame
rates and results. The architecture is too deep, requires too many network parameters, and
needs an additional step at the end of the forward pass to analyze the generated heatmaps,
as mentioned by Guo et al. [Guo+20]. Furthermore, when we reduced the network depth,
we experienced an unstable training process without satisfactory convergence after several
epochs. It also often resulted in heatmaps with high image noise. Lowering the learning
rate reduced this effect to some extent, but it still occurs randomly. Therefore, we chose
a simpler, more traditional, and well-documented architecture that is faster than FAN
and also provides reasonable tracking quality. Furthermore, the classical architecture
inspired by LeNet [LeC+89] or AlexNet [KSH12] has already been successfully applied to
face landmark detection as shown by Wu et al. [WY17].

The output of the CNN is a set of 36 tuples of landmarks of image coordinates. The
network has a total of 1.982million parameters. We trained the network for over 15
epochs with a batch size of 8 using the Adam optimizer and a learning rate of 0.001. Grid
search is also used for hyperparameter tuning [BB12]. Training and validation are split in
a ratio of 70 to 30. To speed up training and inference, we implemented Mixed Precision
Training by Nvidia APEX, a PyTorch extension [NVI24]. Furthermore, for inference, the
trained model was converted into a traced module using TorchScript, which further speeds
up the inference pass. Each convolutional layer is batch-normalized.

We used the Normalized Mean Error (NME) as metric and loss function. For face align-
ment, a reasonable metric is crucial and helps to quantify the tracking quality. The metric
for face alignment is usually the point-to-point Euclidean distance normalized by the in-
terocular distance[CC06; Sag+13; She+15]. In our case, we cannot rely on the interocular
distance because we do not have eye landmarks. Therefore, we normalize by the bounding
box of the lower half of the face. A similar approach based on a bounding box for the
whole face was also used by Bulat and Tzimiropoulos [BT17]. In particular, we used the
Normalized Mean Error (NME), defined as

NME:iiiuxi_yi’b (5.7)

N~ d '
where x denotes the ground truth 2D landmarks for a given face, y the corresponding
prediction, and d is the square root of the ground-truth bounding box, computed as
d = VJwidthyper * heightppos.
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Type | Size Structure Output
Conv | 5x5 | BatchNorm, ReLu, MaxPool (2x2) 16
Conv | 5x5 | BatchNorm, ReLu, MaxPool (2x2) 32
Conv | 3x3 | BatchNorm, ReLu, MaxPool (2x2) 64
(2x2)
(2x2)

Conv | 3x3 | BatchNorm, ReLLu, MaxPool 128

Conv | 3x3 | BatchNorm, ReLu, MaxPool (2x2 256
Conv | 2x2 BatchNorm, ReLu 512
Lin - ReLu 500
Lin - ReLu 500
Lin - Sigmoid 72

Table 5.3.: Architecture of the proposed CNN. The input to the network is a single-channel
tmage of size 156 px x 204 px. The output of the network is 72 values representing the x
and y coordinates of 36 2D face landmarks.

5.4.4. Evaluation

We quantitatively compared our solution with the FAN by Bulat and Tzimiropoulos [BT17]
using the NME metric, as shown in Fig. 5.14. Our proposed CNN achieves a tracking error
of 1.98% compared to FAN on a 1.5min image sequence captured by our face-tracking

HMD.

Note that we show our unfiltered results without positional smoothing. Brito and
Mitchel [BM19] used a Kalman filter for noise reduction of the detected landmark po-
sitions. Since they did not provide the source code or the trained model, we were not able
to directly compare the two solutions.
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Figure 5.14.: Results: The images show a comparison of our proposed solution with the
FAN[BT17]. The green landmarks are the ground truth data of the full face detected by
FAN. The red ones are predicted landmarks of our proposed CNN for the lower half of the
face. The images are from the test set. Therefore, the network has not seen these images
during training.

5.4.4.1. Time Measurements

For inference in our experiments, we used PyTorch 1.7.1 on an Intel i7-4790K, 16GB RAM,
NVidia RTX 2080Ti with 11GB VRAM, Windows 10 x64 (Build 19042.867), and Nvidia
driver 461.09. The network was trained in ~410min (almost 7hours) on a dataset of
513000 images, which we acquired through 95min (19 individuals x 5min) of recording
with the camera in the helmet mount (Fig.5.9). On average, the execution of a forward
pass of our network with cropping of the input image to a smaller and predefined area
(depending on the position of the camera mount and can be adjusted manually) takes
1.107ms (903 fps) on the GPU. However, the final frame rate is limited by the native
frame rate of the IR sensor from Sec.5.3.2, which is only 30 fps, meaning that we only use
33.21 ms per second for our face-tracking solution.

Compared to the work of Brito and Mitchel [BM19], our solution is more than 29 times
faster. Their mouth landmark detection takes 33 ms (30.3 fps) on hardware that is 4 years
older. They used an NVIDIA 4G Quadro K2200 with an Intel Xeon CPU E5-2630 v4, but
it is not clear whether their application runs on the GPU or the CPU. Our approach is
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also faster than FAN. The latter’s full-face tracking runs at 71.4ms per frame (14 fps) on
the test hardware, which is 64.5 times faster.

5.4.4.2. Limitations

We observed a degradation of tracking quality with expressive facial play, face movement
close to the edge of the camera field of view, and motion blur, as shown in Fig. 5.15. We
believe that the occurrence of motion blur can be easily avoided by using brighter IR LEDs
and a better camera with shorter exposure time. Another limitation is the fact that the
CNN is not able to track the tongue because the ground truth data does not contain the
necessary information.

Expressive facial play
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Figure 5.15.: Limitations: Limitations of our CNN include expressive facial play (first
and second images from left). Furthermore, we observed a degradation of tracking quality
with motion blur during fast changing expressions (third and fourth image) and when the
camera is shifted (far right).

5.4.5. Discussion und Future Work

As mentioned above, we also experimented with the Stacked Hourglass architecture
(encoder-decoder architecture without fully connected layers), but could not find an ac-
ceptable trade-off between speed and accuracy. The FAN is too slow and resource intensive
for our application and we tried to reduce the stacks in the FAN from 4 to 1 and 2 stacks.
As T write this text 4 years later in 2023, I believe that the HourGlass architecture would
have yielded a better result if we had done extensive hyperparameter tuning with more
appropriate initialization of the network weights. Unfortunately, at the time we were try-
ing to solve the problem in 2019, there was little documentation and few code repositories
and best practices for training Stacked Hourglasses, as they had only recently been in-
vented [NYD16]. In contrast, the classic architectures, which are over 30 years old, such
as the LeNet [LeC+89], were very well documented. Furthermore, the classical architec-
ture has already been successfully applied to the face landmark regression problem, as
demonstrated by Wu et al. [WY17].

We believe that a combination of a Stacked Hourglass architecture and the positional
encoding introduced by Vaswani et al. with the Transformer networks [Vas+17] could out-
perform our current implementation. Current facial landmark prediction research relies
on it, and researchers report superior performance over SOTA [Wat+22]. In 2021, position
encoding was also one of the key technologies for the invention of Neural Radiance Fields
(NERF) [Mil+21]. From our own experiments with coordinate-based networks, such as
NeRFs [Mil+21] or creating the FF2EXP-Net in Sec. 8.2.4, we can confirm that positional
encoding makes the networks leaner by giving better results during testing time. Fur-
thermore, although current papers on face landmark detection recommend a multi-stage
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approach (cascading networks), such as AttentionMesh [Gri+20] (also known as Medi-
aPipe Face Mesh[Lug+19]) or Lv et al. [Lv+17]. We also have the limitation as shown in
Fig. 5.15, but we do not recommend this in our specific application because the image area
to be analyzed remains relatively the same due to the mount and does not require any
further adjustment or cropping. Rather, we recommend a fast method for rough alignment
and cropping of the lip area due to minimal sliding of the HMD on the user’s face. Simple
and fast methods that can perform this task well are Histogram of Oriented Gradients
(HOG) [DT05] or Haar-like features by Viola and Jones [VJO1].

We would like to draw the reader’s attention to the work of Grishchenko et al. [Gri+20].
This work was done and published after the completion of our solution. Grishchenko et
al’s solution is optimized for fast inference and achieves real-time frame rates for landmark
regression on full faces even on mobile GPUs. Unfortunately, they do not present detailed
information about the architecture and what kind of layers are used. MediaPipe’s land-
mark regression is one of the most accurate tracking methods available today (January
2024) and is often used as a basis for face alignment problems.

5.5. Eyebrow Tracking

Some of today’s HMDs come with eye tracking out of the
box or can be upgraded with hardware to make it possible. In
addition to the direction of gaze, some systems can also detect
the degree to which the eye is open, but few systems can also
detect the position of the eyebrows [BMF24]. The following
section presents two solutions that can track eyebrows under
an HMD. One approach uses pressure sensors and the other
uses optical sensors.

5.5.1. With Pressure Sensors

Related work has shown that little research has been done on
using pressure sensors in the contact area between the user’s
face and the HMD. As mentioned in Sec.5.3.4, we found a
suitable sensor for our application. To read the sensor data,
which is reported as voltage changes, the sensors were con-
nected to the general purpose input/output (GPIO) pins of an ESP8266 microcontroller.
A script running on the microcontroller sends the measurement data via UDP over Wifi to
a computer, which converts the measurement data into corresponding facial expressions.

Figure 5.16.: The red
area represents the tracking
area covered in this chap-
ter.

Three sensors were added above the eyebrows in the foam of the HMD as shown in Fig. 5.18.
Due to their narrow design, the thin-film pressure sensors were not able to detect pressure
through the foam without further modification. As shown in Fig. 5.19, additional adhesive
rubber studs were attached to both sides of the sensor to significantly increase the pressure
on the sensors. As a result, reasonable data can be generated and the sensors do not
adversely affect user comfort by causing painful pressure points on the forehead.
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Figure 5.17.: A ESP8266 microcontroller read out the pressure sensor data in the HMD’s
foam in order to control an avatar. Image credits by Juan Schupp.

Figure 5.18.: Position of the pressure sensors in the preliminary study. Slits were cut
into the foam of the HMD frame and three sensors were glued into them.

I

a) Pressure sensor b) Adhesive rubber ¢) Pressure sensor with adhesive rubber studs
studs

Figure 5.19.: The RF602 pressure sensor is thin and does mot provide reasonable data
in the foam of the HMD without rubber studs. a) shows the sensors without modification.
b) shows the rubber studs. They have a diameter of 8mm. c¢) shows the sensors with two
rubber pads on each side.

Because each person has a different facial geometry, the sensors experience different pres-
sure with different facial expressions, depending on the shape of the face. In addition, each
person has a different preference for how tightly they want to wear the HMD. This means
that the initial pressure ratios for a neutral facial expression are always different for differ-
ent people. To get reasonable tracking results, the three sensors must be calibrated in three
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simple steps. Each step consists of making an expression and recording the corresponding
pressure values. The recorded expressions were 1.) a neutral expression, 2.) a full raised
eyebrow (frown) and 3.) an angry expression (full lowered eyebrows). Fig.5.20 shows the
expressions as well as the corresponding tracking data of the sensors. For visualization
purposes, we use only the frame of the HMD without the attached displays.

In a preliminary study, we linked the data from the pressure sensors to the corre-
sponding blendshapes of a virtual avatar. To create an avatar, we used the FaceGen
SDK [FaceGen24]. If the person does not move and only repeats the recorded expression,
the tracking data is generally very reliable. However, there were three reasons against
further use.

1. Even slight head movements, such as a slight nod, influenced the tracking data. This
means that the eyebrows showed different expressions without any actual movement
of the user’s brows. It might be possible to filter out such erroneous data using the
HMD'’s tracking data, but the following additional disadvantages meant that we did
not pursue the entire pressure sensor approach any further.

2. expressions, such as a laugh, also moved the brows. Laughing raises the cheeks and
creates higher pressure on the sensors in the forehead area. In practice, this meant
that the eyebrows always moved upwards when people laughed.

3. Another decisive reason against the pressure sensors is the susceptibility of the sys-
tem to a rapidly occurring lack of calibration of the system. Because the HMD can
slip during use and the user may have to reposition the HMD, the pressure ratios
for the previously recorded expressions also change. This situation quickly leads to
strong facial expressions on the avatar that the user does not intend. The uncanny
valley effect quickly occurs here.

Another reason for eliminating the system was the sensor noise. We used the unfiltered
sensor data and used the on-chip analog-to-digital converter (ADC) of the ESP8266. Using
this device in combination with the RFP-602 thin-film sensors, we were able to determine
a noise of +- 15g. This leads to a slight twitching of the eyebrows, which could be easily
reduced by using appropriate filters such as 1€-Filter CRV12]. In summary, after this
preliminary study, we did not pursue pressure sensors any further due to their susceptibility
to tracking errors, which quickly lead to uncanny facial animation.
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Figure 5.20.: Three sensors were embedded in the foam of the HMD frame to detect
eyebrow movements. The actual HMD was removed for visualization. S1: sensor above
right eyebrow, S2: centered between both eyebrows, S3: left eyebrow. The values of the
sensors are read out with a resolution of 1024 steps, while the maximum pressure represents
a pressure above 500g. Subfigure a.) shows a neutral facial expression. S1 and S3 show
no pressure, while S2 reports a pressure of about 120g - 150g. Subfigure b.) shows raised
eyebrows. The middle sensor shows almost double the pressure. The two lateral sensors
show only a few grams of pressure. Subfigure c.) shows lowered eyebrows. The foam above
the eyebrows is significantly relieved. The center sensor shows about 20-30 g of pressure,
while the two side sensors show no pressure. Image credits by Juan Schupp.
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Figure 5.21.: In addition to eyebrow tracking, the system can track other expressions,
such as a grin, with two sensors inserted into the foam on the cheeks. When grinning,
the person’s cheeks exerted a clearly measurable pressure on the sensors in the lower part
of the foam. The pressure sensor approach was not pursued further because it was too
susceptible to tracking errors during head movements. Image credits by Juan Schupp.

5.5.2. With Optical Sensors

Although pressure sensors are less expensive than RGB sensors, optical sensors provide
significantly more information for analysis. As a result, more reliable tracking data can be
generated. Today’s SOTA image processing for face tracking is largely based on CNNs. In
our specific application case of telepresence, we assume that a computer has to compute
the entire face tracking, the photorealistic rendering as well as the representation of the
virtual environment. We deliberately decided not to use another CNN for eyebrow tracking
in order to save computational resources, since there are already other heavy tasks to be
performed. Due to the relatively static image area of the eyebrows in the HMD and
the usually strong contrasts and clear boundaries between eyebrows and skin, we rely on
classical image processing algorithms, which have significantly lower computational costs.
The images we obtain with our system from inside the HMD are of high quality and well
suited for image processing, as can be seen in the following Fig. 5.22:
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Figure 5.22.: The goal of this section is to develop an optical tracking solution for eye-
brows. This image shows the final results of our eyebrow tracking setup with four landmarks
in red.

5.5.2.1. lllumination and Sensor Attachement

Our goal is to add eyebrow tracking to current eye-tracking systems. In all current eye
tracking HMDs, the eye area is already illuminated by several infrared LEDs for eye
tracking. Cameras behind the Fresnel lenses use this illumination for eye tracking. In our
particular case, we use the HTC Vive Eye Pro, which uses LEDs with a wavelength of
850nm. These LEDs are arranged in a ring around the Fresnel lenses. The brightness
of these LEDs is adjusted by the manufacturer using pulse width modulation (PWM)
and synchronized with the eye-tracking cameras behind the Fresnel lenses. Our goal was
to place two additional sensors in the cavity between the HMD and the face to perform
eyebrow tracking. Unfortunately, we were unable to synchronize the gaze tracking sync
signal with our eyebrow tracking sensors, resulting in image artifacts during recording due
to the pulse-width modulation of the gaze tracking LEDs. Due to these artifacts, robust
eyebrow tracking would not be possible as the individual images were often exposed very
differently.

To solve this problem, a first prototype was developed in the form of a PCB ring with
several IR LEDs soldered to it, as shown in Fig.5.23. The IR LEDs (Harvatek HT-
170IRPJ) have the same wavelength of 850 nm as the original HTC Vive gaze tracking
LEDs. These rings were placed over the original LEDs, blocking the original light source as
shown in Fig.5.24. We did not use pulse width modulation and controlled the brightness
of the LEDs by voltage. This solution works well for the gaze tracking of the HTC Vive
Eye Pro as well as our eyebrow tracking.
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850nm Infrared LED
(Harvatek HT-170IRPJ)

Figure 5.23.: First prototype of the rings for illumination of the eye area. The ring is
equipped with eight SMD IR LEDs.

i

Figure 5.24.: First IR-LED-ring prototype built into the HMD. HMD 1is a off-the-shelf
HTC Vive vl. Image credits by Juan Schupp.

It is important to note that infrared light, which is invisible to humans, can also cause
permanent damage to the eyes or cornea. In Sec.5.3.3 "Safety Considerations Regarding
[lumination" details the limits to be observed and how to calculate them. In the EU
Directive 2006/25 [Eur06] limit values can be derived. For our LED with a wavelength
of A = 850nm, we can take the following limit for the continuous total irradiance in the
infrared wavelength range from A = 780nm to 3000nm: Err = 100W/m?. From the
LED data sheet we take the radiant intensity, which is I.;s = 6 mW/sr. The distance
between the LED and the eye in the HMD is about 25mm. FErr can be calculated from
Err = Ieff/dZ, where d is the distance between the LED and the eye. In our case,
Err = 9.6 W/m?2. There are eight LEDs installed per eye, which simply added together
gives Ejp = 76.8 W/m?, which is below the limit of E;g = 100W/m?. [Hall4]

With the first prototype of the PCB rings, we were able to ensure that our approach
worked in principle, but it was prone to loose contacts and cables in the user’s field of
view in front of the Fresnel lenses. As a result, a new PCB design was created as shown
in Fig.5.25. These PCBs were professionally manufactured and soldered by the company
jlepeh.com. In an automated process the PCBs were cut and soldered with SMD resistors
(20 Ohm and SMD package size of 0402) and eight Harvatek HT-170IRPJ IR-LEDs. The
production of 20 PCBs costs about 30 Euro.
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Figure 5.25.: Final IR LED ring prototype. PCB design by Bernhard "Earny'
Wohlmacher.

Figure 5.26.: The second prototype of the IR-LED ring circuit boards is mounted around
the Fresnel lenses. For eyebrow tracking, two cameras were mounted inside the HMD, as
highlighted by the green frames.

Figure 5.27.: Top and side view of the wedge for mounting the eyebrow tracking sensor
inside the HMD next to the Fresnel lenses as shown in Fig. 5.26. The coin is used for size
cCoOmparison.

99



5. Face-Tracking Head-Mounted Display

100

The first mount is a simple wedge attached to the inside of the HMD with double-sided
tape (next to the coin in Fig.5.10), as shown on the top right and left in Fig. 5.26.

5.5.2.2. Tracking Algorithm

To get details about the positions of the eyebrows, we convert the HMC streams (the
sensors in the green frames in Fig.5.26 above) into a binary image format. Setting a
grayscale threshold is necessary to get images where the eyebrows are clearly contrasted
with the skin. This means, for example, that darker areas in the grayscale image become
black (pixels are set to a value of 0) and lighter areas become completely white (pixels
are set to a value of 1 for white). In this way, we can detect the transition between skin
and eyebrow in the binary image to track the relative position of the eyebrow, as shown
in Fig.5.28. In this Fig. two vertical bars along the Y-coordinate of the binary eyebrow
image can be seen. Within these bars, the average position of all white pixels is calculated
and represents the eyebrow position, shown as red dots.

BT Left = a X
Blur: 9 '

Brightness: 167 (]

Threshold: 209 '

B Left = o X
Blur: 9 '

Brightness: 167 [}

Threshold: 209 '

b) Rised eyebrow position

Figure 5.28.: The section of the image in the green frames is converted into a binary
image on the right. This binary image is determined based on a brightness threshold. In
the image shown, the eyebrow is represented in white in the binary image on the right. An
algorithm recognizes two landmarks (red) that track the average Y-position of the white
area and thus the eyebrow. The upper half shows a relaxed eyebrow and the lower half a
raised eyebrow.

In the common Multi-PIE landmark format, each eyebrow actually has five landmarks.
In the camera image shown in Fig.5.28 it can be seen that the exposure of the eye area
decreases towards the outside. The presented method is not able to extract these un-
derexposed, low-contrast areas. However, since the eyebrows show little deformation and
either go up or down in one piece, we found that two landmarks are sufficient. These two
landmarks control all five landmarks of each eyebrow. However, this approach requires
individual calibration of the gray threshold for each person, since people have different
skin and eyebrow colors. An obvious limitation is that the method fails if the contrast
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between eyebrows and skin is too low, or if there are no eyebrows at all. The higher
the contrast, the better the tracking. Low contrast can lead to noise, which can have a
negative or uncanny effect on the later rendering of the face. To minimize this problem, a
1€-filter [CRV12] with a mineuors = 0.004 and a beta = 0.007 was implemented. Among
other things, the use of a Gaussian blur is helpful to reduce the flickering of lighter areas
in the eyebrows, which can be caused by reflections from individual hairs.

After a firmware update to the HTC Vive Eye Pro in 2021, eye tracking did not work
reliably with our ring PCBs. Once the PCBs were removed and the HTC Vive’s original
IR LEDs were no longer obscured, eye tracking returned to normal. Unfortunately, HTC
did not release information on exactly what changes they made to the firmware, and we
were unable to restore working eye tracking with our ring PCBs. However, after the
firmware update, the image artifacts without our PCB were significantly less severe than
before the update. Our solution to restoring our eyebrow tracking was to minimize the
minor image artifacts that can be seen in the top row of Fig.5.29 so that our image
processing algorithm described above could work again without error. The solution to the
problem is to create an image based on the average of three consecutive images and make
it available to the eye tracking algorithm. The formula is simple:

i(t) +i(t 4+ 1) +i(t +2)

3 (5.8)

where i(t) is an image of the HMC from time step ¢. One drawback was that the tracking
frequency was cut in thirds, resulting in an effective tracking rate of 10 Hz.

i(t) i(t+1) i(t+2)

Final averaged image

Figure 5.29.: After updating the Tobii eye tracker firmware on the HTC Vive Pro Eye,
image artifacts in the form of flickering became visible. The solution was to overlay the
last three images to reduce the flickering significantly. This would not be a solution for
eye tracking, as can be seen from the blurred iris, but the eye brown tracking algorithm
delivers good results.
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5.6. Merging Tracking Data

The Face Tracking HMD consists of 3 independent tracking modules that must be com-
bined to achieve full face tracking. The modules are the eyebrow tracking from Sec. 5.5,
the lower face tracking from Sec.5.4 and the standard eye tracking solution. Each of
these modules provides positions of facial landmarks that are concatenated into 70 facial
landmarks, each consisting of two coordinates, similar to the structure of the Multi-PIE
dataset with two additional landmarks — the irises. In the following, the concatenated
image of all landmarks will be called the Facial Landmark Map (FLM), which will play a
key role in face reconstruction in the next chapter. In the next chapter, the FLM is given
as input to a generative neural network that can synthesize a photorealistic image of a
person based on the facial landmarks. Due to the extreme camera angles from the eyebrow
and the lower face sensor, the reported landmarks must be modified in three steps before
they are given to the generative neural network. An overview of these steps is given in
Fig. 5.30 below:
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1.) Concatenation 2.) Applying offset  3.)Limit landmarks 4.) Final 5.) Eroded
of raw based on to minimal Facial Landmark and clipped
tracking data neutral face and maximal Label Map (FLM) RGBD output
calibration positions for the generator of the generator

Figure 5.30.: Processing the data generated by the face-tracking HMD into an FLM.
In the following course of the dissertation, the FLM is used to synthesize an avatar face
through a generative neural network. Image from [Lad+20b]

In the first step, the reported landmarks from each tracking module are concatenated into
an "uncalibrated" FLM representing the raw face-tracking data.

The second step consists of a calibration step between two neutral facial expressions. The
user wearing the HMD is asked to make a neutral face, and offsets are now added to this
raw tracking information, which comes from a data set that is used to generate a facial
avatar, discussed in the next chapter. A relationship is established between a neutral face
in the face-tracking HMD and the neutral face without the HMD. This helps to ensure
high quality representation of the face avatar synthesized by a generative neural network.
This offset is continuously added to each of the incoming landmarks during real-time face
tracking.

In our experiments, we found that the tracking results can deviate significantly from the
average in some cases. This happens, for example, when the HMD is put on or taken off,
or when the user makes expressive facial play, there are large tracking errors. These errors
quickly lead to the occurrence of the uncanny valley effect. Therefore, in the third step,
a minimum and maximum position limit is applied to the landmarks to filter out unusual
positions. We call this a "cage" because each landmark can only move within a certain
range, which was also part of the training set on which the face avatar was trained. In
this way, we include all positions in the cage across the entire training dataset and add
an additional 3px dilation (at a resolution of 512 x 512 pixels). The gray area around the
landmarks in step 3 in Fig. 5.30 represents the cage area. Our tests have shown that the
cage increases the range of possible expressions. This is important because the quality
of the output of the generative neural network decreases when it receives landmarks that
were not in the range of the training data set.



5.7. Evaluation

The fourth step is not directly part of the face-tracking HMD process, but is included for
completeness and to illustrate the complete use case. It passes the final FLM to the neural
network (the generator) to synthesize the facial avatar with the corresponding expression.
Note that the system requires very little network bandwidth, since we can choose whether
to send the image data (including the FLM or the data of the final generated avatar) or
only the position data of the 70 landmarks. This corresponds to only 140 float values 30
times per second, which means a network bandwidth of only 67 kbit/s is required.

5.7. Evaluation

A direct comparison with other systems was difficult after the development in 2019 and
2020, because there were no comparable systems at that time. Therefore, the face-tracking
HMD is evaluated with an image-generating neural network, which will be introduced in
the next chapter. We have summarized the results in Fig.5.31. The first column shows
the ground truth results captured by the face-tracking HMD. The ground truth images
were taken by the person with the shown expression while a second person removed the
face-tracking HMD and took an image of the person without the HMD. The second column
shows the FLM generated by the face-tracking HMD. The third column shows the images
generated by the generative neural network, which receives the FLM and generates the
corresponding avatar image. The last column shows the difference image between the first
and third columns. The darker an area, the greater the difference. Please note that we
also generated the images in Fig. 7.11 on page 138 using the same procedure. These images
were also generated with the face-tracking HMD. Lines C, D and E are also included and
are analyzed in the context of the generative neural network. Therefore, it also generates
depth information and we have removed the background because it is not relevant in a
telepresence scenario.

The results show that the face-tracking HMD is able to track and reproduce facial expres-
sions in the majority of cases with sufficient accuracy to recognize the user’s expression.
However, we found that even small tracking errors, especially around the eyes, can lead to
quite different interpretations of facial expressions. For example, only a small difference
in the degree of eye opening leads from a neutral expression to a surprised expression, as
can be clearly seen in row D of Fig. 5.31.

A limitation of the system, which is difficult to show in single images in this document,
is the temporal coherence of the results. This plays an important role for an authentic
representation, as jitter or twitching due to noise or tracking outliers or errors can quickly
lead to the occurrence of the uncanny valley effect. Filtering the results is a trade-off
between minimizing noise and tracking errors and achieving interactive, fast, and authentic
face animation. The used 1€-filter [CRV12] performs well in this area compared to e.g. an
average value filter, because otherwise movements like laughing are transferred unnaturally
slowly to the avatar’s face. Under certain circumstances, a strong filter can make it look
like a slow motion video of the person is being displayed.
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Ground truth FLM generated from FLM generated from Generated image Difference

(held expression) ground truth Face Tracking HMD based in FLM (darker -> more difference)
N A

Figure 5.31.: Results of the face-tracking HMD: The first column shows ground truth
tmages of facial expressions captured without the face-tracking HMD. These were generated
by photographing the subject after removing the face-tracking HMD. The second column
shows the face landmark model (FLM) generated from the ground truth and the third
column shows the FLMs generated by our face-tracking HMD. The fourth column shows
avatar images generated by a neural network (GAN) using the FLM. The neural network
will be introduced in the next chapter. The last column shows the difference between the
ground truth and the generated images, with darker areas indicating greater differences.



5.8. Discussion and Future Work

5.8. Discussion and Future Work

A few years have passed (it is May 2024 now) since the development of the face-tracking
HMD and some findings from the academic field can be noted. The use of facial landmarks
as input to a neural network is decreasing and there is a trend towards the use of 3DMMs.
Although facial landmarks are still used to align the 3DMM initial in a good position for
further optimization steps, the blendshape parameters, which often consist of only 50 to
60 float values, are finally fed into the network as input. This is significantly less than the
140 values entered in our 70 landmark approach.

In addition, now there are a number of different off-the-shelf tracking systems from well-
known HMD manufacturers such as Meta or HT'C that offer comparable and often better
performance than the system presented here. It should be noted, however, that the track-
ing data provided is sometimes very encapsulated and available in manufacturer-specific
data formats. This means that the tracking information is received in the form of blend-
shapes designed for a specific predefined animation standard or 3D face model of the
company. Connecting other models can be cumbersome. For privacy reasons, the SDKs
offered by the manufacturers usually do not allow direct access to the camera streams.
Image processing is done internally, so there is no access to the image feeds via an API or
open source interface, and there is no technical documentation on how the face-tracking
process works.

In our observations, we found that a frame rate of 30 fps can sometimes be insufficient
to accurately represent facial expressions, especially lip movements during speech. This
problem likely arises because while most elements are rendered at a high frame rate of
90 fps, the lips remain static for a period of 3 frames. To solve this problem, it might be
beneficial to implement a blending technique such as a Bezier curve or simple linear inter-
polation. This would require interpolation of the facial landmarks (FLMs), specifically the
68 landmarks used to define facial features, to achieve a smoother motion representation.
Gaze direction interpolation may look unnatural and would need to be further explored.

5.9. Conclusion

In this chapter, we developed and evaluated a face-tracking HMD system designed to cap-
ture and interpret facial expressions in real time. We have answered research questions 5
(RQ5) "How to track a face beneath an HMD?" and presented approaches that integrate
different types of sensors into the HMD for face tracking. Our results show that traditional
full-face tracking methods for "images from the wild" fail under the specific constraints
required for HMDs, such as close-distance shots, steep angles and fish-eye lenses. To over-
come these limitations, we developed and trained a convolutional neural network focused
on the lower face region to analyze the sensor data. This network effectively detects 36 fa-
cial landmarks with 900 frames per second using a wide-angle IR sensor. With 900 frames
per second, our solution runs 60x times faster than other common networks such as the
FAN [BT17] with around 15 frames per second.

In addition, we explored two methods for eyebrow tracking — a feature that many of to-
day’s face-tracking methods in the year 2024 still do not support. The first method, using
pressure sensors embedded in the foam of the HMD, proved to be unreliable. There-
fore, we developed an optical tracking solution using two additional IR sensors, which
showed superior performance in tracking eyebrow movements using classical image pro-
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cessing algorithms without neural networks. The challenge here is to combine the eyebrow
tracking system with off-the-shelf eye-tracking without interference from the illumination,
as the off-the-shelf solutions use pulse-width modulation to dim their IR, LEDs. Hardware
synchronization was not possible, therefore a software-based solution was introduced to
remove image artifacts.

The combination of the lower face, eyebrow, and off-the-shelf eye tracking modules results
in a facial landmark map (FLM) containing 70 feature points. This map can serve as
input to methods that generate photorealistic imagery of the user’s face, as shown in later
stage of this dissertation in Chap.7 and 8. Our face-tracking HMD achieved a solid level
of accuracy by addressing issues such as noise and tracking errors with effective filtering
techniques. Although our neural network theoretically runs at 900 fps, the actual frame
rate is limited to 30fps by the given frame rate of the low-cost IR sensor used. This
issue highlights the need for interpolation techniques in the future to ensure smoother
transitions and more natural avatar animations. However, our system is not yet able to
completely bridge the uncanny valley.

In summary, this chapter contributes a novel face-tracking HMD system that overcome
current technological gaps and provides a robust, low-cost solution for real-time facial
expression tracking that requires minimal hardware computational capacity. This work
lays the foundation for future developments in immersive telepresence applications by
enhancing the fidelity of virtual interactions through improved NVC cues driven by the
user’s face.
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Real-time Face Rendering
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6. The Impact of Personalized and Tracked
Face Avatars in Immersive Telepresence
Environments

With today’s advances in technology, it is becoming easier to create and manipulate per-
sonalized and authentic 3D avatar faces for use in social VR applications. However, the
process of creating a personalized avatar with facial expressions is resource-intensive, re-
quiring significant time, computational resources and expertise, as well as high-end hard-
ware for interactive rendering. This raises the question of whether the investment in such
an elaborate avatar with facial expressions is justified. It is conceivable that a simple, an-
thropomorphic and generic avatar might suffice, potentially providing an equivalent sense
of presence compared to an "expensive' personalized avatar.

In a study with 22 participants divided into two groups, we investigated copresence and
social presence. Copresence refers to the state of being in the same physical or virtual
space with something or someone at the same time, while social presence describes the
degree to which individuals feel a sense of personal and emotional connection with others in
mediated communication. We observed evidence that a non-personalized (in this context
called "generic") anthropomorphic representation of the interlocutor can lead to a reduced
sense of social presence compared to a personalized representation that resembles the
interlocutor. However, our results suggest that the sense of copresence remains unchanged
by the use of a personalized avatar. In summary, our results suggest that it is useful
to generate personalized avatars that resemble their real-world counterparts because it
increases participants’ sense of social presence.

6.1. Introduction

For many years, researchers in the field of AR/VR/MR have explored the nuances of
social interaction, remote collaboration, and their impact on the sense of different types of
presence. Different avatar designs and levels of rendering fidelity have been experimented
with, but the challenge of creating authentic avatars has remained a technical hurdle with
its own set of limitations.

In the early 2000s, researchers Nowak and Boccia [NB03] pioneered the study of the influ-
ence of facial expressions on anthropomorphic agents and avatars in virtual environments.
They demonstrated that people perceive less copresence and social presence from dialog
partners represented by low-anthropomorphic representations than from those consisting
of high-anthropomorphic representations. It is worth noting that the technology of the
time severely limited the realism of facial representations. However, even 14 years later
in 2017, avatar capture systems are still not photorealistic. For example, the creation of
full-body avatars with detailed facial capture is described by Achenbach et al. [Ach+17],
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who present a fairly sophisticated system. Although the system is complex and delivers
comparatively good quality, the avatars are still in the uncanny valley.

Compared to Nowak and Boccia [NB03|, more contemporary studies have dealt with
the social and perceptual consequences of using realistic self-avatars, as investigated by
teams such as Piryankova et al. [Pir+14], Latoschik et al. [Lat+17b], and Waltemate et
al. [Wal418b]. The 3D scanning technologies used by these groups are sophisticated and
require laboratory facilities and specialized personnel to operate. However, these technolo-
gies have not been used to compare the effects of personalized anthropomorphic avatars,
designed to reflect the actual appearance of individuals with facial expressions, to generic
avatars with standardized facial expressions in a VR-based remote face-to-face conversa-
tion.

Although the study presented in this chapter was conducted in early 2019, and our system
is not photorealistic either, it is (in the author’s perception) more detailed in the facial
domain and less "creepy" than other systems, such as that of Achenbach et al. [Ach+17].
As T write this chapter for my dissertation in March 2024, great progress has been made in
the field of photorealistic representation of photorealistic avatars. Although there is still no
commercial product that can create unique avatars, more and more work is being presented
that can generate photorealistic avatars in real time under laboratory conditions with
comparatively little computational effort and time. The chapters 7 and 8 dive deeper into
current technologies such as GANs and Implicit Neural Representation (INRs). With these
technologies, the effects investigated in this study could presumably be better measured
and more clearly isolated.

To the authors’ knowledge, this was the first work in 2019 to use a real-time facial capture
system under an HMD with rendering of personal facial avatars to investigate its effects on
copresence and social presence. Thus, it is an open question whether personalized avatars
can promote a greater sense of presence than their generic counterparts. This chapter
explores the following hypotheses:

H1: The use of a personalized avatar face, with facial expressions based on predefined
blendshapes and animated in real time by a human, enhances the perception of
copresence compared to a generic avatar face using the same facial expressions
(the expressions are the same but the identity is different, see Fig.6.1).

H2: The use of a personalized avatar face, with facial expressions based on predefined
blendshapes and animated in real time by a human, enhances the perception of so-
cial presence compared to a generic avatar face that uses the same facial expressions
(the expressions are the same but the identity is different, see Fig.6.1).

The contribution of this chapter is to investigate the influence and effects of both person-
alized and non-personalized (in this chapter referred to as "generic") avatar faces equipped
with facial expressions on social presence and copresence. We present both quantitative
and qualitative results, and report and discuss participant feedback. To do so, we devel-
oped a technical pipeline to generate and control personalized avatar faces while wearing
an HMD via eye and lip tracking. The implications of this research extend to social in-
teractions and conferencing applications in AR/VR/MR contexts. The concepts of social
presence and copresence are critical to effective communication. The results of this re-
search could enhance our understanding of avatar-based remote interactions and provide
preliminary insights into the advantages of using personalized avatars over generic ones.
It also motivates further prototype development in the course of this dissertation.
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a) Source Image b) Virtual 3D avatar face c) Blend shape deformation

d) Source Image for a genric  e) Generic virtual 3D avatar face f) Blend shape deformation
avatar face from [RJJT11]

Figure 6.1.: a) Input image for creating a personalized avatar. Green crosses are man-
ually annotated landmarks for the 8D avatar face generation algorithm; b) Personalized
3D avatar created from image a); ¢) Personalized avatar deformed by blendshapes; d)
Generic avatar created from the androgynous norm of Rohdes et al. [Rho+11]. Gener-
ation of avatar head is identical to a) e) Generic 3D avatar created from image d); f)
Generic avatar deformed by identical blendshapes as shown in c¢). Image from [LG190b].

6.2. Related Work

6.2.1. Presence, Social Presence and Copresence

The concept of presence is interpreted differently by scholars, leading to a plethora of
definitions, interpretations, and subtypes [Gof63; SWC76; BH87; Bio97; BC02; BHB03;
NBO03; You03; OBW18b|. Some researchers use the terms "immersion" and "presence'
interchangeably. However, a distinction can be made between "technological qualities"
and "psychological experiences" [SW97]. The characteristics of a technical system, such as
resolution, field of view, frame rates, and so on, can affect the degree to which the system
is immersive [Wel+96]. In contrast to immersion, presence is the subjective experience of
actually being in a mediated virtual environment [SW97]. According to Lee [Lee06] and
Oh et al. OBW18b], presence can be further divided into tele-presence, self-presence, and
social presence: Tele-presence can be defined as "the extent to which one feels present
in the mediated environment rather than in the immediate physical environment" [Ste06,
p. 75]. In contrast, self-presence is the extent to which the "virtual self is experienced as the
actual self' [AKB12] and is closely related to immersive virtual body ownership [LLL15].
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The third type, social presence, refers to the "sense of being with another" [BHB03] and
depends on the ease with which a person perceives having "...access to the intelligence,
intentions, and sensory impressions of another" [Bio97, p. 19].

As this chapter focuses on copresence and social presence, it includes a more detailed view
of the term and goes beyond Lee’s definition of the three subcategories of presence. [Lee06]

The definition of social presence by Youngblut[You03], Biocca[Bio97; BHBO03],
Oh[OBW18b] and Nowak and Boccia [NB03] divides the term into copresence and
social presence itself. Copresence is defined as '...the subjective experience of being
together with others in a computer-generated environment, even when participants are
physically situated in different sites.". [You03]. Goffman [Gof63] described copresence
as a situation in which individuals report that they actively perceive others while also
feeling that they are actively perceived by others. Some researchers emphasize that the
term "others" does not explicitly mean "humans" because it is possible to feel copresent
with computerized agents or inanimate objects. Social presence excludes agents and
objects, while it addresses social interaction with a real person as well as "...access to
the intelligence, intentions, and sensory impressions of another" [You03]. Biocca stated
that "social presence occurs when users feel that a form, behavior, or sensory experience
indicates the presence of another intelligence" [Bio97]. Short et al. [SWCT76] popularized
the concept by defining social presence as "the degree of salience of the other person in the
interaction and the consequent salience of the interpersonal relationships.". However, their
measures focus more on the user’s perception of a medium’s ability to convey another’s
presence than on the actual perceived presence of the other person.

A meta-study by Oh et al.[OBW18a] found that most current evidence suggests that
people experience higher levels of social presence when shown a visual representation of a
person compared to no representation of a person. The study also summarizes the extent
to which the effect of social presence is enhanced when the visual representation of the
avatar is animated with the authentic movement and behavioral realism of a real person.
Here it is clear that the degree of social presence increases when the movements look real
and match what is being said, such as matching hand gestures, head nods or shakes, as
well as blushing when a virtual human/agent makes a mistake. [Gar03; RKG09; Kul+11;
Kim+16]

In contrast to the consistent effects of behavioral realism, studies of the effects of pho-
tographic and anthropomorphic realism on social presence show mixed results. While
some studies show an increase in social presence with more realistic visuals, others find
no difference or even a decrease [NB03]. This inconsistency may be due to three factors:
1.) photographic realism may be less important than behavioral cues, 2.) questionnaires
may not capture subtle differences, and 3.) varying levels of photographic and behavioral
realism across studies due to limitations of technology at the time of the study, e.g., the
much-cited study by Nowak and Boccia [NB03]. Consistency between behavioral and pho-
tographic realism appears to be critical, as higher social presence is reported when both
are consistent.

Not directly part of this study, but very relevant in this area, is the uncanny valley effect.
It is still unknown how this effect has influenced various previous studies, as it is difficult to
quantify. However, it seems clear that expressive human-like movements and appearance,
as well as facial expressions, reduce this effect and lead to similar perceptions between
virtual characters and real people RW18; MC16; McD+-08].

In light of current developments and discussions about the performance and Turing test
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of Large Language Models (LLMs) from companies such as OpenAl, Anthropic, Mistral,
and others, it would certainly be necessary to further differentiate the notion of social
presence at this point. In this study, we focus on the interaction between real persons in
a remote environment.

6.2.2. Face and Body Capture

Human scanning has been the subject of extensive research using a wide range of technolog-
ical methods. The market also offers numerous commercial solutions for body scanning and
capture. Inexpensive and simple systems have been introduced by Nagano et al. [Nag+17],
Straub and Kerlin [SK14], Gesslein et al. (GSG17], and Shapiro et al. [Sha+14]. Casas et
al. [Cas+15] developed a system for generating different facial blendshapes. More com-
plex face and body scanning systems have been demonstrated and used by Achenbach et
al. [Ach+17] and Bogo et al. [Bog+17], as well as in social and perceptual experiments by
Latoschik et al. [Lat4+17b] and Piryankova et al. [Pir+14]. Some systems are capable of
performing scans in real time, capturing multiple frames per second, as demonstrated by
Orts et al. [Ort+16]. Systems with high quality results usually require expensive hardware
or can only be used in a laboratory environment. A significant challenge for many systems
is the accurate capture and animation of facial expressions and the avoidance of the un-
canny valley effect, a challenge our system also faces. A comprehensive literature review
on avatar face generation and rendering with neural rendering can be found in Sec. 7.2.

6.2.3. Facial Expression Recognition under a Head-Mounted Display

Since 2016, when HMDs became significantly cheaper while getting better technical spec-
ifications, a number of papers on face-tracking HMD prototypes have been published. We
refer the reader to the extensive literature review in Sec.5.1. In this subsection, we only
mention specific similarities and differences to other works that are related to the technical
aspects and not to the user study.

The choice of comparable prototypes is small. Thies et al. [Thi+18b] presented a system
called FaceVR, designed to reproduce the user’s facial expressions in a video. This system
tracks the mouth area using a standard fixed webcam (unlike our approach, which is
not attached to the HMD), while eye movement is captured by a single IR eye-tracking
camera mounted inside the HMD. The visual quality of the system is impressive and almost
photorealistic. In particular, the reproduction of authentic facial expressions looks realistic
and does not produce the uncanny valley effect. In comparison, our system uses generic
blendshapes, which do not reproduce person-specific characteristics very well. Thies et
als system also uses a 3D head like ours, but it is embedded in a video (which may loop)
to display the background, scalp hair, and torso. Therefore, Thies’ system has a limited
ability to move freely around the head. We do not have these limitations, but we also do
not display a background, scalp hair, or torso.

Li et al. [Li+15b] presented a system that uses a depth camera mounted on the
HMD to track the area around the mouth that is not covered by the HMD. Unlike
FaceVR [Thi+18b], Li et al’s system does not track eye movements, but can detect move-
ments around the eyes using thin strain sensors placed in the foam liner of the HMD.
Casas et al. [Cas+16] developed a system capable of capturing personalized face meshes,
textures, and corresponding blendshapes via an RGB-D sensor for real-time facial anima-
tion. The visual quality is reasonable, but the system seems to be limited to a small set
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of facial expressions. Our approach of using generic blendshapes allows us to display a
variety of facial expressions.

Lombardi et al. [Lom+18] presented the most sophisticated systems to date. They intro-
duced a deep appearance model for rendering human faces, using Generative Adversarial
Networks to create personalized avatars with photorealistic facial animations. The sys-
tem incorporates cameras both inside and outside the HMD to capture the area around
the mouth and eyes, enabling tracking of eye and eyebrow movements and facilitating
the creation of highly expressive avatar faces in this research area. The work of Wei et
al. [Wei+19] further extended this technical approach, resulting in improved visual quality.
Chu et al. [Chu+20] further improved the so-called "codec avatars" and conducted a user
study on the subjective perception quality of the avatars.

None of the systems described in this subsection have been evaluated for their impact on
the qualitative or quantitative aspects of presence.

6.3. System

This section outlines our technical approach for real-time generation and animation of
personalized avatar faces. Our developed pipeline allows us to generate a fully rigged
and textured personalized avatar head for an immersive telepresence application within
two minutes. A demonstration video of the system running can be found here: https:
//youtu.be/_SJYunw6kVU

6.3.1. Avatar Creation

Custom avatars are created using the FaceGen SDK [FaceGen24]. Three images of the
target person’s face are taken (front, right, left) and processed by FaceGen. This process
is largely automated, with a script processing the input images to construct a 3D avatar
head. The only manual step involves manually marking 29 facial landmarks on the front
and side images. These landmarks are marked with green crosses in Fig.6.1a and d.
FaceGen generates a single personalized avatar face in less than 90 seconds.

FaceGen applies the input images to a standard base head mesh and modifies specific
regions based on these images. This is done using statistical shape models (SSM) and
statistical appearance models (SAM). For facial images, SSMs and SAMs quantify the
average shape and texture distribution of a face within a given population, along with the
primary variations in shape and texture distribution from these averages. Having access
to this detailed quantitative data on facial anatomy allows for the precise deformation of
the base head mesh to match the input image.

Our workflow excludes the generation, capture, or animation of scalp or beard hair, as
well as eyeglasses. Only short beards and eyebrows are included as texture information
in the 2D face texture. In addition, we do not perform any form of teeth or tongue
capture/scanning due to the technical challenges of reproducing a believable oral cavity. As
a result, the personalized avatars have a standard set of teeth and tongue that is consistent
across all models. Please note that we do not use physically-based skin rendering or other
techniques such as spherical harmonics. Lighting is a simple setup with Lambertian skin
shading.

The generic avatar face shown in Fig.6.1d was created from a single gender-neutral com-
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6.3. System

posite frontal face image derived by blending 48 photographs (24 female, 24 male) into a
single average face, based on the work of Rohdes et al. [Rho+11].

Figure 6.2.: Example of FaceGen input images and output avatar head. Rendered with
the Unity game engine. The green crosses in the upper images are landmarks that need to
be set manually for avatar creation. Image from [LG19b].

6.3.2. Facial Animation

In addition to the mesh and color map, FaceGen outputs 112 different blendshapes for
facial animation. For our study, we use only 16 of these blendshapes. The generated
blendshapes are universal and not tailored to each individual. This means that facial
idiosyncrasies such as wrinkles or the personal style of smiling are not captured and re-
produced, as shown for example in Fig.6.1c and 6.1f.

In the application we used for our study, the blendshapes that control eye movements are
driven by a Tobii Pro eye tracking device integrated into an HTC Vive HMD. This eye
tracking technology captures the direction of gaze and blink for each eye and is located be-
hind each Fresnel lens. Additionally, mouth movements are tracked by a PMD Pico Flexx
depth camera attached to the HMD with a 3D printed mount (Fig.6.3). The BinaryVR
SDK [BinVR19] is used to determine the positions of various parts of the lower face, such
as the chin and mouth corners. The system is developed on Unity version 2018.3.11f1.
The system is designed so that the head generated by FaceGen can be imported into the
Unity application without any further adjustments, and all blendshapes are automatically
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registered between the BinaryVR SDK and the Tobii Eye Tracking SDK. At runtime, the
system achieves real-time performance, maintaining a rate of 90 fps.

It is worth mentioning that the lip tracking of the BinaryVR device is not accurate enough,
and the available blendshapes for the avatar heads are not detailed enough to reproduce
the various mouth movements when speaking. In addition, there is a delay of about 70-
120 ms for the lip tracking pipeline, which also causes unsynchronized mouth movements
when speaking. Please watch the following video for more details in motion of the study
and setup: https://youtu.be/_SIYunw6kVU.

Figure 6.3.: A depth camera mounted on an HMD tracks the lower facial movements.
The BinaryVR software, [BinVR19] maps actual facial expressions to the virtual avatar’s
expressions. Image from [LG19b].

6.4. Experiment

6.4.1. Participants

A total of eleven dyads, i.e. 22 German individuals (consisting of two females and 20
males, with an age range of 21-36 years, mean age = 27.04 years, standard deviation
= 4.26) participated in the study. These participants were all students affiliated with
the local computer science department and had previous experience with MR, technology.
Each pair within the dyads was acquainted with one another beforehand, allowing them to
be familiar with each other’s personality traits, facial expressions, and voices. The average
time required for each dyad to complete the post-experiment questionnaires, participate
in an unstructured interview, and undergo debriefing was approximately 25 minutes. The
average time spent in the VR environment was approximately 10 minutes.


https://youtu.be/_SJYunw6kVU

6.4. Experiment

Figure 6.4.: Study setup; a) Participant wears HTC Vive with eye and lip tracking and
speaks remotely with a person in another room. The experimenter at the table observes

the experiment; b) The participant in another room listens while the remote person speaks.
Image from [LG19b].

Figure 6.5.: An in-game camera shows the setup inside the Unity game engine. No
hands, controllers, or bodies are shown. Image from [LG19b].
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6.4.2. Method

The experimenter used a standardized and structured procedure to introduce the experi-
ment to the participants, ensuring that everyone received identical information. The main
objective of the study was not disclosed to the participants in terms of measuring presence
and gaining insight into telepresence with personalized avatars; they were only informed
that the experiment aimed to evaluate the impact of eye and lip tracking technology in
VR. This approach was adopted to ensure that participants’ perceptions of the study were
not biased by prior assumptions, thereby minimizing the risk of bias in their responses to
the questionnaires. The experimental design was structured as a between-groups design.

Participants were physically located in separate rooms, but met in the same virtual en-
vironment. The experimental setup is shown in Fig. 6.4. After agreeing to participate
in the experiment, each dyad was asked to sign an informed consent form and was then
instructed to don the head-mounted display and headphones. The interpupillary distances
(IPD) were adjusted and the eye and lip tracking systems were calibrated. This took ap-
proximately 30 to 60 seconds per person. To facilitate the calibration process and to help
participants get used to the environment, a virtual mirror was provided at the beginning,
allowing participants to see themselves and their partner’s avatar. Facial expressions were
controlled in real time by the Tobii eye tracker and the depth camera facing the mouth.

Participants and the experimenter could hear each other via a digital audio stream. The
task was to engage in casual conversation about topics such as recent weekend activities,
upcoming vacation plans, and similar topics. The experiment officially began when the
conductor left the audio channel, remaining only as a listener. He removed the virtual
mirrors for the participants and they could see each other. The virtual environment is
shown in Fig.6.5. Often, people would start talking immediately when they saw each
other for the first time. When the conversation slowed down, the conductor introduced
new topics by displaying a virtual board with questions such as "What are you working
on?" or "Tell a joke!

After an average duration of 8.25min in VR (min=5.1min, max=13.95min, me-
dian=8.07 min), the conductor asked the participants to remove the HMDs and presented
a post-experiment questionnaire. The questionnaire collected demographic data and in-
cluded 14 questions rated on a five-point Likert scale and three questions rated on a
ten-point Likert scale. The questions are detailed in Tab.6.1 and were translated into
German and shown to the participants to avoid misunderstandings and bias in the results.
All participants were able to read and understand German. Our questionnaire is a reduced
version of the study by Nowak and Boccia [NB03] and is also used by other researchers
to assess the importance of copresence and social presence, which in turn are inspired by
Short et al. [SWC76] and Burgoon and Hale [BH87]. Latoschik et al. [Lat+17b] also used
this questionnaire in a reduced version.

Specifically, we reduced the number of questions from a total of 24 to 17 and used a 5-
point Likert scale for copresence instead of a 7-point Likert scale. We used 11 questions
for copresence and 6 questions for social presence. For social presence, instead of a sliding
scale for all questions, we used a mixture of a 5-point Likert scale (Q12-14) and a 10-point
Likert scale (Q15 to Q17). We used the questionnaire of Nowak and Boccia [NB03] as a
template, but are not sure about the exact interpretation of the documented questions and
their metrics due to ambiguities in their paper. However, we have chosen it for reasons of
simplicity, ease of use, and the possibility of obtaining more likely at least a tendency due
to a lower resolution of the scales (from 7 to 5-point Likert). In addition, the possibility
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of choosing a neutral point allowed us to check whether the participants could understand
and apply the questions to the experimental setting, which is an important finding in the
context of a first study in order to structure further studies in the future.

The questionnaire is available at the following link: https://docs.google.com/forms/
d/e/1FAIpQLSeH1Lt6xNs3ER9GzXbNTCQVIPC39ROFBALCXCIMZEKFASZWBA/viewform

Of the 22 participants, ten participated in dialogues with "personalized-face-to-
personalized-face" avatars, another ten participated in "generic-face-to-generic-face"
dialogues, and two participated in a "generic-face-to-personalized-face" dialog. In total,
eleven personalized 3D avatar heads were created using FaceGen for the study.

6.4.3. Results

A Mann-Whitney U test for independent samples was performed for each question, using
a significance level of p = .05. The results of the tests are presented in the right column
of the Tab. 6.1 and as box plots in Fig. 6.6 and 6.7 for the "personalized avatar face" and
"generic avatar face" scenarios. The results suggest that there is no statistical difference
in the copresence responses between the two conditions (Q1 to Q11). This could provide
a basis for rejecting H1.

However, the analysis reveals a significant difference between the groups in terms of social
presence, particularly highlighted by questions Q13 and Q14. The difference in responses
to question Q14 is even highly significant. In two out of six questions about social presence,
a significant difference between conditions was observed, which could indicate that H2
should be considered confirmed.

The informal interviews conducted with both members of each dyad after the tests support
the validation of H2: Four out of eleven people in the group exposed to the personalized
avatars praised the quality of the dialogue and mentioned something similar to "the meet-
ing was surprisingly real", whereas none of the group members exposed to the generic
avatar emphasized the realism. During and after the interview, there was a sense of ex-
citement in the group that saw the personalized avatar. Note that this is a subjective
opinion of the experimenter and the authors and was not recorded in the questionnaire.
Two participants in the group that saw the personalized avatars said that especially the
faces in a neutral expression are very similar to their real counterparts, but when they
make movements, such as laughing or speaking, the representations sometimes deviate
strongly from reality.
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highlights significant results.

ID | P. Type | Range | Question U/p
Q1 | Cop. Likert | I did not want a deeper relationship with my | U= 43.5
5 point | interaction partner. p=.28
Q2 | Cop. Likert | I wanted to maintain a sense of distance be- U= 56
5 point | tween us. p =.795
Q3 | Cop. Likert | I was interested in talking to my interaction | U= 56
5 point | partner. p = .79
Q4 | Cop. Likert | My interaction partner was intensely involved | U= 43.5
5 point | in our interaction. p=.28
Q5 | Cop. Likert | My interaction partner seemed to find our in- | U= 52.5
5 point | teraction stimulating. p = .624
Q6 | Cop. Likert | My interaction partner communicated coldness U= 58
5 point | rather than warmth. p = .897
Q7 | Cop. Likert | My interaction partner created a sense of dis- | U= 49.5
5 point | tance between us. p = .490
Q8 | Cop. Likert | My interaction partner seemed detached during | U= 43.5
9 point | our interaction. p = .280
Q9 | Cop. Likert | My interaction partner acted bored by our con- | U= 60
5 point | versation. p=1.0
Q10 | Cop. Likert | My interaction partner was interested in talk- | U= 55.5
5 point | ing to me. p = .764
Q11 | Cop. Likert | My interaction partner showed enthusiasm | U= 49
5 point | while talking to me. p = 471
Q12 | Social P. | Likert | To what extent did you feel able to assess your | U= 45.5
5 point | partner’s reactions to what you said?7—Able to | p = .342
assess reactions, not able to assess reactions.
Q13 | Social P. | Likert | To what extent was this like a face-to-face
5 point | meeting?—A lot like face to face, not like face
to face at all.
Q14 | Social P. | Likert | To what extent was this like you were in the
5 point | same room with your partner?’—A lot like be-
ing in the same room, not like being in the same
room at all.
Q15 | Social P. | Sliding | To what extent did your partner seem U= 33
1-10 “real”?—Very real, not real at all. p=.077
Q16 | Social P. | Sliding | How likely is it that you would choose to use | U= 44.5
1-10 | this system of interaction for a meeting in | p = .308
which you wanted to persuade others of some-
thing?— Very likely, not likely at all.
Q17 | Social P. | Sliding | To what extent did you feel you could get to U= 42
1-10 know someone that you met only through this | p = .238
system?—Very well, not at all.
Table 6.1.: The questionnaire used to asses copresence and social presence. Yellow text
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Figure 6.7.: Results of questions Q15 to Q17 of our questionnaires (Tab. 6.1) visualized
as box plots. Fach box represents an answer on a sliding scale from 1 to 10.

6.5. Discussion and Limitations

Despite the lack of photorealistic features of the avatars, such as scalp hair, generic teeth,
generic blendshapes, no eyebrow and tongue tracking, and missing bodies, the two avatar
face versions were subjectively perceived differently by the groups, as the results show.
Another interesting metric might be to measure the perceived level of the uncanny valley
effect. For example, Latoschick et al. [Lat+17b] measured the perceived "creepiness" of
their avatars in their study.

Another aspect to consider is that the dyads participating in each session were acquainted
with each other. We suspect that this may have influenced the experimental results. Feng
et al. [Fen+14] conducted research using 3D avatars that were scanned and animated based
on a real person, with a set of body gestures recorded and then applied to different human
avatars. Their results showed that observers rated the performances of 3D avatars that
replicated the body gestures of the original human subject as more similar to the original
subject, especially among groups familiar with the subject, compared to avatars that used
gestures from a different human subject. Although facial gestures and expressions were
not examined in Feng et al’s study, which is different from our research, we believe that
the effect they reported could also apply to facial expressions and could have influenced
the questionnaire ratings in our study, i.e. familiarity between participants could be a
significant variable. After conducting the experiment, the authors believe that it could
also make a difference whether people know each other briefly from work and have only
been in direct contact for a few minutes or hours, or whether they have been friends for
many years. This could possibly be measured in the form of a multiple-choice question in
which the "previous contact time" with the experimental partner is noted.

In our experiment, we had also originally planned to use a logger to measure the virtual
distance between the participants every 5 seconds, similar to the experiment by Bailen-
son et al. [Bai+03]. Unfortunately, due to technical problems, we were unable to record
reliable data and therefore did not include these measurements in the study. Our origi-
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nal hypothesis was that people who saw a personalized avatar would maintain a shorter
distance compared to the other group.

Future research should include various questionnaires such as those introduced by Blas-
covich et al. [Bla+02], Egerto et al.[EOT64], and Smith and Neff [SN18]. In addition,
Slater [Sla04] notes that questionnaires are only one of several tools available. Quantita-
tive measures such as biological signals or the analysis of unconscious and unintentional
behavior (as elicited in the Rubber Hand Illusion experiment [IKHO06]) could provide ad-
ditional insight and lend more credibility to the study’s conclusions.

6.6. Conclusion

We can affirmitly answer research question 3 (RQ3), at least for social presence. The ques-
tion was: "Does a personalized avatar increase copresence and social presence compared
to a non-personalized?'. We have provided evidence that a virtual personalized avatar
face that resembles the real person but includes generic facial expressions, as opposed
to a generic face with identical derived facial expressions, may not increase the sense of
copresence. Nevertheless, our results suggest that it could increase the sense of social pres-
ence. Our findings are based on a questionnaire, inspired by Nowak and Boccia [NB03],
consisting of 17 questions in total: 11 on copresence and six on social presence. Among
these, one question showed a significant difference (p<0.05) and another showed a highly
significant difference (p<0.01) for social presence between the two groups (those who saw
a generic face vs. those who saw a personal face).

In the context of remote collaboration, this study highlights the value of using a personal-
ized avatar rather than a generic one to increase participants’ social presence. We suspect
that the measured effect could be increasingly stronger with more authentic and realistic
avatar representations. Our research provides initial evidence that addresses the ques-
tion posed at the beginning of the chapter: Does the investment in creating personalized
avatars pay off? If these avatars enhance the sense of social presence and therefore also
the psychological connection within the participants, then personalized avatars may be
crucial for authentic social interactions in MR collaborative environments.
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7. Neural Rendering for Conveying
Nonverbal Facial Communication Cues

7.1. Introduction

Direct, face-to-face communication is multidimensional, involving both spoken words and
nonverbal cues. Eye contact, facial expressions, gestures (kinesics), and the physical space
between individuals (proxemics) are crucial elements of a conversation [LG19a]. Currently,
popular computer-mediated communication tools such as Microsoft Teams, Google Meet,
or Apple’s FaceTime offer video conferencing. These platforms allow users to observe
facial expressions, but they lack features such as real eye contact, full display of broad
gestures, spatial interpretation of pointing gestures, and the sense of physical proximity
between users.

Today’s head-mounted displays provide realistic and engaging 3D experiences, including
telepresence applications. However, even in 2024, they fall short in displaying the real
face of the users, at least for off-the-shelf hardware and software. When the face is ob-
scured by a VR headset, important nonverbal facial cues are lost, which are essential
for interpersonal communication. This limitation is not only relevant in VR meetings
(e.g. in VRChat [VRc20], Altspace [Mic22], or Meta’s Horizon Worlds [Met22]), but also
in scenarios where a person in VR interacts with an audience. Examples include archi-
tects presenting building designs in VR, virtual YouTubers (VTubers), Twitch streamers
broadcasting from MR environments, or friends playing MR games together. Our pro-
posed method enables real-time reconstruction and animation of "trained" faces for such
applications.

Creating and rendering photorealistic humans in real time traditionally requires extensive
manual work by skilled 3D artists, including scanning, modeling, and texturing. Current
digital humans require the explicit simulation of geometry, materials, and the way light
interacts with them, a process that, while effective, is both costly and time-consuming due
to the need to meticulously model every three-dimensional detail of the face. Advances
in neural rendering, however, propose a transformative approach: by learning from data,
this technology aims to transform the complex task of rendering graphics into a problem
of model learning and inference. By training neural networks on face datasets, the process
of generating avatars could become much simpler, less labor-intensive, and even more
realistic.

Few research groups have addressed this challenge and developed methods for generating
realistic facial avatars in MR without extensive manual annotation of data and modeling
of 3D shapes [Thi+18b; Lom+18; Wei+19; Raj+21]. Academic trends are shifting toward
NERFs and Gaussian splatting [Gra+22; ZBT22a; Qia+23], although many of these ap-
proaches only work with expensive hardware setups that require many cameras capturing
images simultaneously. Other solutions are not publicly available or run only in labora-
tory environments due to the many manual steps involved in acquisition, training, and
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inference [Lom+-18; Wei+19]. However, it is clear that it is only a matter of time before
mainstream users will be able to create photorealistic avatars and use them in MR.

Studies in various fields have examined human avatars and their perception. A systematic
review on social presence notes that vivid perception of another person often increases
enjoyment and social influence OBW18a]. In Chap.6 we found that a personal avatar
face has advantages over a generic avatar in terms of social presence. Despite its age, the
media richness theory [DL84], which posits that the richest exchange of information occurs
during face-to-face interactions, is still supported by recent research [ILC19]. A major
challenge in creating virtual face-to-face presence is the uncanny valley effect [MMK12],
where minor unnatural deviations in virtual faces can evoke negative reactions.

Recently, Variational Autoencoders (VAE) and Generative Adversarial Networks (GAN)
have successfully crossed the uncanny valley. So-called "deepfakes" powered by VAEs and
GANS produce results so lifelike that they are being studied to distinguish them from real
images with algorithms, as the human eye often cannot [Ros+19]. In this work, we use
similar algorithms from the "deepfake" domain and add an extra dimension (depth data as
textured point clouds instead of only RGB images) to create realistic 2.5D facial avatars.
Our pipeline requires very little manual work, no annotation and no 3D modeling, and
exploits the potential of unsupervised learning. We capture faces from a static frontal
view with an RGB-D sensor, do not generate textures for side views, but still maintain
stereoscopic perception in virtual face-to-face conversations. GAN image generation is
computationally intensive and typically done offline, but our VR applications require high
frame rates, typically more than 30 frames per second for an acceptable impression.

This chapter presents three iterative prototype stages that provide an end-to-end learning
pipeline for digital faces that is less costly and requires moderate computational resources.
A separate paper was published for each iteration [LPG20; Lad+20b; Lad+25]. The
goal for all prototypes was to use a standard graphics card to capture and reconstruct
facial features with high detail and interactive frame rates, creating authentic avatars that
outperform the visual quality of current tools such as VRChat [VRc20] or Meta’s Horizon
Worlds [Met22]. We aim to reduce the initial barriers for users and provide real-world
applicability, focusing on readily available hardware and maintaining real-time frame rates.
Our research focuses on enhancing the quality and speed of current GAN technologies.
Additionally, we are exploring ways to tailor these technologies specifically for user-friendly
telepresence scenarios. We share our work through publicly available repositories of our
three iterative prototypes at:

https://github.com/Alpe6825/RGBD-Face-Avatar—-GAN
https://github.com/Mirevi/UCP-Framework
https://github.com/Mirevi/face-synthesizer-JVRB

We encourage viewers to watch the accompanying oral presentation videos for visual results
and comparisons in motion:

https://youtu.be/Wa95qDPV8vk

https://youtu.be/fBofqRfvoiM

7.2. Related Work

While face tracking and reconstruction under an HMD for VR is a young field of research,
computer graphics researchers have been trying to synthesize computer-generated faces
realistically for decades. Raytracing and pathtracing technologies have enabled this ca-
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7.2. Related Work

pability offline since the 2000s, but achieving photorealistic rendering of human faces in
real time is still considered very difficult in the field of computer graphics. This section
discusses systems that primarily use CNNs, such as VAEs and GANSs, for image synthesis,
as well as earlier systems that used alternative generation methods, such as traditional
meshes, optical flow, or similar techniques. In the next chapter of this dissertation, we will
discuss systems that use Implicit Neural Representations (INRs), also called coordinate-
based neural networks, such as NeRFs [Mil+21] and SIRENSs [Sit+20].

Similar to our approach, Casas et al. [Cas+16] captures data with an RGB-D sensor and
transforms it into a rigged and textured face mesh. Changes in the texture are realized
by a form of optical flow. The system can reconstruct trained poses with high accuracy,
but it is time-consuming to create many different facial expressions, as each expression
requires several manual steps. Our solution has significantly fewer manual steps and is
more automated due to an unsupervised learning approach.

Frith et al. [FSK17] also use an RGB-D sensor to generate facial data as a mesh and
capture gaze information. The system is able to reconstruct only the directly occluded
face area of an HMD in a green screen environment, where the green screen is replaced by
the virtual environment. The mouth is not captured and reconstructed, which means that
once the user tilts the head down and covers the mouth region with the HMD, it cannot
be reconstructed in the video feed.

The systems of Lombardi et al. [Lom+18], Wei et al. [Wei+19], and Raj et al. [Raj+21]
create photorealistic avatars with authentic facial expressions. While previous work com-
pleted the generation of personalized avatars in a few minutes, Lombardi et al’s system
requires more than a day to compute. The three-dimensional avatar is generated using a
large number of high-resolution images from different angles and facial expressions, with
an expensive hardware setup that generates a large amount of data for further process-
ing. The system uses an encoder-decoder convolutional network similar to our work, but
requires high-end hardware and is therefore only applicable in a laboratory environment.

A key component of the system of Lombardi et al. [Lom+18] and Wei et al. [Wei+19] is
the use of Variational Autoencoders (VAEs). Both VAEs and GANs have been shown
to be suitable for authentic face reconstruction. However, since the literature shows
that VAEs combined with only L1 loss tend to produce more blurry results, we use
GANs[Joh19] to produce more detailed results with higher visual quality. The foun-
dational work on Generative Adversarial Networks (GANs) was introduced by Goodfel-
low and colleagues [Goo+14], with significant improvements later made by Radford and
colleagues [RMC16]. Karras and his team [Kar+17] further advanced the technology to
produce images of portraits that are virtually indistinguishable from actual photographs
through the implementation of the "Progressive Growing GAN". However, Karras and
colleagues noted a limitation of GANs: the lack of direct control over specific features of
the generated images, such as hair color, facial expression, or gender, because the input is
a latent vector with no clear connection to these attributes. Subsequent developments by
Karras and his team refined the GAN architecture, allowing for the separation of high-level
attributes (such as pose and identity) from random variations (such as freckles and hair).
However, this model still did not provide explicit control over facial expressions.

Conditional GANs (¢cGANs) have demonstrated the ability to learn and reproduce spe-
cific input-output relationships that are understandable to humans. Mirza and Osin-
dero [MO14] extended the generator and discriminator inputs with a label y, facilitating
the generation of images within a specific category y. This approach to conditioning
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GANSs was further developed by Radfort et al. RMC16] with the DCGAN and by Isola et
al. [Iso+17] with the Pix2Pix GAN, where the traditional noise input vector z is replaced
by a user-defined input vector. The absence of the noise vector eliminates the latent
space Z (since z € Z), and without compensating for the stochastic nature of the noise
vector, the GAN risks simply memorizing training examples, leading to poor performance
on inputs that differ from the training set, as observed by Isola et al. [Iso+17]. The inte-
gration of a U-net architecture [RFB15] with dropouts in the Pix2Pix GAN addresses the
stochastic element and the lack of latent space within the generator. The Pix2Pix GAN’s
discriminator is fed both the input image « and either the generated image ¥ ¢qre = G () or
the corresponding real image ¥, from the dataset, following the cGAN concept [MO14]
by evaluating the output of the generator with respect to the input. Unlike cGANSs, the
Pix2Pix GAN’s discriminator outputs a matrix instead of a binary decision, with each
element of the matrix corresponding to an n % m region of the input image, allowing
matrix-based abstract representations to condition the network for controlled output gen-
eration. This methodology was further refined by [Wan+18b] in the Pix2PixHD GAN
to produce higher resolution and more detailed images. In this section of the thesis, we
explore the adaptation of the cGAN framework, specifically the Pix2Pix and Pix2PixHD
models, for specific applications in our field of study.

The systems of Thies et al. [Thi+15; Thi418a], are compared to the aforementioned sys-
tems of Lombardi et al. [Lom+18], Wei et al. [Wei+19], and Raj et al. [Raj+21], require
only an RGB-D [Thi+15] or only an RGB sensor [Thi+18a] for the recording, but, simi-
lar to our system, they can only generate a frontal viewing angle as a result, while the
three aforementioned works can generate any viewing angle. From a stationary viewing
position, the representation of the synthesized faces is photorealistic and of the same vi-
sual quality as the three systems mentioned above. The uncanny valley effect occurs only
to a small extent (opinion of the author). Both systems by Thies et al. use a 3DMM
(Basel Face Model [BV99]) and optimizes the model parameters with a CUDA-accelerated
Gauss-Newton solver using an analysis-through-synthesis approach. This is similar to our
approach, but instead of analysis-through-synthesis with a 3DMM, we train GANs to
produce RGB-D data without any inductive bias such as a 3DMM.

A further iteration of this system [Thi+18b](called FaceVR) was extended to include a
stereoscopic rendering of two images — each for one eye in an HMD. The stereoscopic
rendering makes it possible to spatially display the person in VR. However, the position
tracking of the HMD was not used. This means that the user cannot look around the per-
son, but always sees the same camera position. A stereo rig consisting of two commercially
available webcams is used to capture a person and forms the data basis for the stereoscopic
face reanimation. The "Face2Face" method by Thies et al. [Thi+18a] is applied to each of
these video streams and rendered for each eye.

All of the previously mentioned systems by Thies et al. did not yet use VAEs or GANs,
and used traditional meshes and static textures or, in some cases, an appearance graph
for the mouth region for visualization [Thi+18a]. The work of Thies and his teams was
further enhanced visually through the use of GANs. In their work Deferred Neural Ren-
dering [TZN19], Thies and team used a generative neural texture on the face model that
was able to adapt to variations in facial expressions better than previous approaches.
This system was further developed with another iteration, called "Neural Voice Pup-
perty" [Thi420], and focused on authentic reconstruction of the mouth area with a real-
time text-to-speech approach.

GANSs have shown in the past that they can perform robust image-to-image translation,
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but this can lead to problems when multiple temporally related images are concatenated
into a video. This can result in visual temporal incoherence, which can lead to a kind of im-
age noise, especially in detailed regions, or to subjectively perceived visual inconsistencies
in general. Elgharib et al. [Elg+20] solved this problem by inserting a sequence of images
instead of only a single image into the U-net based Pix2Pix GAN. By inserting previous
and subsequent images, the neural network can better learn temporal relationships. The
system is also referred to as a video-to-video translation system.

7.3. Design Rationale

This section outlines several requirements and design principles that shape our approach to
creating a more immersive and authentic telepresence experience. The design of the system
focuses on the use of open-source software and low-cost hardware to automatically capture
and control a 3D facial avatar in real time. Our goal is to capture and reconstruct personal
expressions without the need for manual modeling or generic expression templates, using
only a standard RGB-D sensor such as Microsoft Kinect or Intel RealSense.

Our system is tailored for real-time performance on consumer-grade computers with a sin-
gle GPU, making the system accessible to mainstream users. To achieve this, we use depth
maps instead of meshes or voxels, and optimize the data structure for faster processing by
neural networks in an unsupervised learning strategy.

For immersive MR telepresence, it is sufficient to reconstruct only the user’s face, since
areas not hidden by the HMD can be captured and transmitted "from real reality" by
external RGB-D sensors in the room. This eliminates the need for full head reconstruction
and allows the face to be integrated into a combined point cloud consisting of data from
multiple sensors distributed throughout the room. Our approach therefore focuses on
producing a realistic facial animation with minimal computational cost.

7.4. System Overview
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Figure 7.1.: Our conceptual pipeline: First, we capture several RGB-D images using a
helmet camera mount. These images are processed and serve as the input data for our
GAN. After training, the GAN produces textured point clouds in real time. Image from
[Lad+25]

In the development of neural network based approaches, there are four pillars that should
receive the main attention: 1.) The quality of the training data, 2.) the architecture of
the neural network, 3.) the loss function, and 4.) the training parameters. These four
pillars will be discussed in the following sections of this chapter. The development of our
face-synthesizing GAN progressed through three major iterative stages, each improving
on the previous version.

Research prior to 2017, such as Wu et al. [Wu+16b], has shown that three-dimensional
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data represented as a voxel-based structure is associated with high training and execution
times and is not suitable for interactive framerates. However, since we are aiming for a
telepresence system with interactive frame rates, an RGB-D-based solution was pursued,
which reduces the three-dimensional problem to a simplified 2.5D approach similar to a
geometric projection. The advantage of our specific use case is that this approach works
because human faces do not require a full 3D representation, as faces do not have over-
lapping or occluding surfaces that would be relevant for an authentic representation. The
advantages of an RGB-D storage format lie in the compact representation of the data
as a point cloud and the ability to adapt previous and successful RGB-based methods.
However, one of the main advantages is that the rendering of the points can be done very
efficiently and quickly by a graphics card, since point rendering is a hardware-accelerated
computational task. Approaches to hardware-accelerated point cloud rendering were in-
troduced by Zheng et al. [Zhe+23].

This short section outlines the design and operation of our proposed system, illustrated in
Fig.7.1: Our pipeline starts with a ten to 15 minutes recording session to collect a personal
RGB-D dataset. This data is pre-processed by an automated process. We extract a Facial
Landmark Map (FLM), shown in Fig.7.2, for each RGB image and store it alongside
the original RGB and also D image. These FLMs contain 70 facial landmarks and translate
the facial expressions from the RGB image into a binary format. Our GAN is trained using
the pairs of RGB-D images and their corresponding FLMs. In this way, the FLMs are the
intermediate state between the real facial expression of the individual in the training set
and also while wearing the head-tracking HMD mentioned above. During preprocessing
of the data set, we create FLMs, and later, when the person is wearing the HMD, we
concatenate the eye, brow, and lower face tracking information into an FLM.

Each individual’s data requires training the GAN from the beginning. We do not use a
3DMM [BV99] and do not learn cross-person correspondences. After training, the system
is suitable for real-time applications. In the inference stage, we use only the trained
generator module of the GAN. In a virtual reality setup, users would wear a face-tracking
head-mounted display capable of generating an FLM in real time, such as proposed in
Chap. 5. The FLM is fed into the generator module of our GAN. The GAN then generates
both RGB and D images of the "learned" individual based on the FLM. Finally, we merge
these generated RGB and D images to create a textured point cloud with interactive
refresh rates. Although the GAN is much faster than the usual refresh rates of HMDs
with about 250 frames per second, the system is limited by the speed of the tracking
systems, which in our case is 30 fps for the mouth area and 10 fps for the eyebrows.

Figure 7.2.: Visual examples of Facial Landmark Maps (FLMs). Images by René Eber-
towski.

It is difficult to do direct evaluations of the system with others because it is one of the first.
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There are a few comparable systems, as described in Related Work, but they either require
special laboratory hardware that is not easily accessible, or the software is not published
or open source, as in the case of the Gauss Newton Solver for the Basel Face Model
by Thies et al. [Thi+15; Thi+18a]. Today in 2024, face trackers with good performance
exist in the form of the Video Head Tracker (VHT) by Grassal et al. [Gra+22], DECA
by Feng et al. [Fen+21], EMOCA by Radek et al.[DBB22], or the Metrical Tracker
by Zielonka [ZBT22b], but this was not the case at the time of developing the pipeline
introduced in this chapter. Therefore, it was not possible to reproduce the results of the
other researchers.

7.5. First Prototype: The Foundation Network and Data
Acquistion Pipeline

The first prototype laid the groundwork by using the Pix2Pix Patch-GAN by Isola et
al. [Iso+17] and extending it with a fourth channel to derive a depth map alongside the
RGB output, resulting in an animated texture point cloud of a face for telepresence sce-
narios that can be driven by the aforementioned face-tracking HMD and is capable of
conveying nonverbal facial communication cues. The second prototype builds on this
foundation and extends it with new ideas from seminal research. The architecture, loss
functions, hyperparameters, and training process were refined to increase the learning
efficiency and effectiveness of the model.

As mentioned in the introduction of this section, an RGB-D dataset of a specific individual
is fundamental to the training process. The data is acquired using a Microsoft Azure
Kinect RGB-D camera mounted in a fixed position on a helmet mount, as shown in Fig.
7.3. We chose the Azure Kinect because of its good data quality, but our approach is
generic and other RGB-D cameras such as Intel RealSense or PMD sensors could be used
for this task.

As learned from previous experiments, by using the helmet mount from Fig.7.3 to help with
a stable position of the face in the images, we saw not only a much better reconstruction
quality, but also a faster convergence of the GAN to an acceptable loss (measured by
SSIM [Zho+04] and LPIPS [Zha+18]). Furthermore, by using the helmet mount, we were
able to reduce the capacity of the neural network in terms of layers and neurons. Reducing
the complexity of the neural network is a critical part as we strive for interactive frame
rates. Our goal is to ensure that the face, and therefore the landmarks in the FLM, are in
the same position across the entire dataset, without changes caused by head rotation, for
example. The head rotation is later transferred to the virtual face by the tracked rotation
of the HMD. This approach allows us to 1) significantly minimize the size of the data set,
2) reduce the size of the neural network and save training time, and 3) achieve interactive
frame rates.

Our initial approach in building the first prototype was to place the RGB-D sensor on a
table and let the captured person move his head freely during the recording. We found
that the network had to be large to achieve reasonable reconstruction quality. The helmet
mount helps to minimize the entropy of the dataset by eliminating varying distances
between the sensor and the face (z dimension in sensor space), face positions (x and y
dimensions in image space), and head rotations.

131



7. Neural Rendering for Conveying Nonverbal Facial Communication Cues

132

RGBD Camera

(Microsoft Azure Kinect) - ‘

Figure 7.3.: A low-cost helmet mount helps reduce variance in the data set, resulting in
shorter training times, smaller neural networks, and higher reconstruction quality. Image

from [Lad+25; Lad+20b; LPG20).

In order to achieve a reasonable quality of facial identity and expression reconstruction, the
dataset for an individual includes approximately 26 facial expressions (captured multiple
times), 20 phonetically balanced sentences, and approximately 5 minutes of speech. This
comprehensive approach ensures a good balance between recording time, training time,
and reconstruction results. In several experiments, we have found that about 600-700
RGB-D and infrared images is a good compromise between training time and final visual
quality. The following section describes the steps necessary to generate a dataset for
training our GAN.

7.5.1. Training Data Set Acquistion and Processing

The main goal of the dataset processing is to minimize the amount of data to what is
necessary for a good tradeoff between visual quality, acquisition, and training time. It is
essential to preserve the original quality of the images, as the generator within the GANs
relies on learning the transition from FLM to both RGB and depth images using the
dataset. Therefore, maintaining high quality images in the dataset is critical for successful
training of the model.

1.) Face Landmark Detection

The basis for the following steps is the determination of facial landmarks and their con-
version into Facial Landmark Maps (FLM, shown in Fig. 7.2), which serve as crucial data
for controlling the GAN output and the person’s facial expressions. These landmarks are
determined for each RGB image and also correspond to the depth map in the dataset. As
described in the chapter 5.1 'Related Work" of the Face Tracking HMD, there are several
methods to perform landmark detection. We experimented with the implementation in the
DLib library [Kin09] with "Ensemble of Regression Trees" by Kazemi and Sullivan [KS14],
but after some testing switched to the Facial Alignment Network (FAN) by Bulat and Tz
imiropoulos [BT17]. Although the FAN is much slower and not capable of real-time frame
rates, it shows more realistic landmark detection results. After the landmark detection
process, we obtained 68 landmarks for each RGB-D frame in our dataset, as shown in Fig.
74.
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Figure 7.4.: FExamples of facial landmark detection results for the dataset. Images by
René Ebertowski.

2.) Gaze Tracking

The FAN is not able to determine the gaze direction within an image, which is essential for
the reconstruction phase of the GAN to accurately reconstruct the person’s eyes and gaze
direction. In a first experiment, we implemented our own eye gaze tracking algorithm,
inspired by Xiong et al. [Xio+14], which works on infrared images provided by the Kinect
sensor. The infrared images are produced by the depth sensor of the Azure Kinect. The
accuracy of this solution was mediocre. In particular, a lot of tracking noise made the
final avatar look unbelievable and not very authentic, as the pupils trembled. Filtering
and smoothing the data was difficult due to the high level of noise. The next iteration
uses a Tobii 4C eye tracker attached to the helmet mount and calibrated with the RGB-D
image from the Kinect, as shown on the left in Fig.7.5 below the Azure Kinect sensor.

Figure 7.5.: A Tobii 4C eye tracker was used to reliably track the user’s gaze. The eye
tracker (black thin bar) is mounted below the Azure Kinect on the left side of the image.

The additional eye tracker made the helmet mount significantly heavier, but provided
better tracking results than the first prototype, especially in terms of tracking noise, and
was therefore an acceptable trade-off to improve visual reconstruction quality.

3.) Crop

Based on the minimum and maximum pixel positions per axis of the face landmarks, an
axis-aligned bounding box is created around the face. Additionally, we add a margin
around this bounding box of 15% of its edge length to improve the final visual image
quality of the trained GAN. In our initial experiments, we only used a narrow bounding
box, which led to poor visual results when the mouth was wide open or the eyebrows were
raised. The larger range of landmarks on the y-axis changed the aspect ratio of the entire
face, which caused the landmarks on the x-axis to be compressed. This means that the
face became smaller in the FLM and many landmarks left their "usual" position. Usual
means that landmarks usually stay in a certain area in a large part of the dataset. GANs
learn a stochastic distribution and deliver poor results in such "edge cases" where there
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is less training data available. To ensure that the size of the face does not change when
the mouth is opened or the eyebrows are raised, we added the margin of 15% of its edge
length. Theoretically, we would not need a margin on the left and right sides, but GANs
are better suited to process and generate square images (or at least edge lengths of a power
of two) than images with different or arbitrary edge lengths.

4.) Normalize, Clip, Mask, Resize, and Sort

To improve the data quality for GAN training, we perform a histogram normalization on
all RGB-D images to get a better distribution of pixel values over the whole range. This
process is straightforward for the color information, but more complicated for the depth
values because it requires an additional preprocessing step:

The RGB-D sensor captures images that store color information as 3-channel PNG files
(8-bit RGB) and depth information as 1-channel PNG files (16-bit grayscale). In our initial
experiments, we let the neural network predict 16-bit values for the depth pixels. Since the
numerical precision of the neural network is limited when passing data through multiple
layers, we obtained a "noisy" reconstruction and a "banding effect" in the predicted depth
maps, as shown in Fig.7.6.

o 250mm

50 200mm

100 150mm

450 100mm

200 50mm

250 O

Figure 7.6.: The image shows "banding" artifacts due to 16 bits per depth pizel when
using the full depth resolution of the RGB-D sensor with our GAN architecture. Reducing
the depth range from 16 bits (65535 mm) to 8 bits (255 mm) is critical to the visual quality
and size of the neural network.

The 16-bit depth resolution works in millimeters, so the full depth range is 0 to
65535 millimeters. However, the area of the face we want to reconstruct is much thin-
ner. With an 8-bit resolution, we would reduce the area to 255 millimeters, which is
sufficient for our application since the depth of the frontal area of a face is smaller than
that. By drastically reducing the depth data in our dataset from 65535 to 255 millimeters,
we achieve a much higher visual quality of the depth map. On the one hand, the depth
noise is significantly reduced, and on the other hand, the face is much better resolved in
terms of depth resolution and detail, and does not show any banding effects. Within this
downsampling of the depth data, it is important to note that the depth scale is normalized
and the actual absolute depth information is rejected. Please note that previous solutions
by other researchers store the depth data in a 32-bit EXR image format, which results in
much more data [Cas+16].

By clipping and reducing the depth resolution, the values in the background behind the
face are removed from the depth map. In the RGB images, however, there is still color
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information in the background. Since we have a direct correspondence between the RGB
and D images, we can also set the color information to 0 wherever there are no depth
values. Let p be a pixel, then the equation of the function is:

255 ifpg >0

dmask:(p) = { 0 else (71)

In this way, we cut out the face from the color images, which has another advantage for
training the GAN, as it only receives relevant face information. The background does not
need to be reconstructed in our application scenario. Furthermore, all images have been
resized to 256 pixel edge length.

The final step of the preprocessing consists of a randomized division into a training and
a test dataset. In our experiments, 85% for training and 15% for test turned out to be
a good ratio. Finally, we obtain a dataset with images and structure that look like the
following figure:

k

Figure 7.7.: The final data set: For each pair of acquired RGB-D images, a Facial
Landmark Map (FLM) is created. During training, the GAN learns the paired image-to-
image mapping from a FLM to an RGB-D image. Image from [LG19b].

7.5.2. Network Architecture and Training

Our initial prototype was developed using the Pix2Pix-GAN framework created by Isola
et al. [[so+17], which is heavily based on the U-Net architecture created by Ronneberger
et al. RFB15]. We refer the reader to the appendix of the paper by Isola et al. where the
architecture of Pix2Pix is explained in detail. In our adaptation of the original model, our
generator module produces not only three RGB channels, but also depth data for a fourth
channel. In our initial experiments, we modified the discriminator to process eight input
feature maps, as shown in Fig.7.8 on the left. The first four of these maps represent the
channels of an RGB-D image, and the last four maps contain the corresponding FLM as
a grayscale image. We entered the FLM four times with the hypothesis that the training
would be more balanced and the network would produce better results [LPG20]. In further
experiments, however, we found that this was not the case and that it only increased the
training time, but had no effect on the results. Therefore, in a further iteration of the
prototype, we added only five feature maps to the discriminator instead of eight, as shown
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in Fig.7.8 on the right. Formally speaking, our pipeline looks like this: Let L € R?*70

Featuremap

Featuremap
(shown in simplified form)

(shown in simplified form)

W 4x4 kernel

B 4x4 kernel

Convolutional result Convolutional result

Figure 7.8.: Example convolution for the discriminator input. Fach RGB-D channel and
the FLM are individually weighted. For the first iteration of our neural architecture, we
entered the FLM four times (shown on the left) with the hypothesis that the training would
be more balanced and the network would produce better results. However, this was a false
assumption and only increased the training time without improving the visual results. In
our final version (shown on the right), the FLM is fed into the discriminator only once.
Images from [LPG20] and[Lad+20b]

be the FLM, which contains 70 facial landmarks in image coordinates = and y, we can
illustrate the procedure as
T, Dy + Go(Ly) (7.2)

where G¢ is the generator of our GAN which produces T € R?562256 35 an RGB texture
and D € R?6%256 55 depth map at time instant . A rendered image R € R**" of the
face can be rendered from a rasterizer R:

Rt — R(Tt, Dt, Ct), (73)

where C denotes the camera position and projection function. Please note, the rasterizer
is hardware accelerated and does not involve any raycasting techniques or other volume
rendering methods. An OpenGL based rendering pipeline is used based on OpenScene-

Graph [OSG24].
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Figure 7.9.: The generator takes a 1-channel FLM and generates a 4-channel RGB-D
image that is displayed as a textured point cloud. The Fig. shows the dimensions of the
tensors in the network. The gray blocks are a Conv2D with InstanceNorm+ReLU layers

and blue and yellow are ConvTranspose2D layers+InstanceNorm+LeakyReL U layers. Im-
age from [Lad+200].
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Figure 7.10.: The discriminator receives an FLM and an RGB-D image and has to decide
if it is real or generated by the generator. Image from [Lad+200).

The dimensions of the passed tensors of the generator and discriminator of our first proto-
type are shown in Fig.7.9 and 7.10. We basically used the original architecture of the U-Net
based Pix2Pix with blocks from Convolution-Norm-ReL.u. We used the usual parameters
like kernel size of 4, strides of 2 and a drop out rate of 50% with up convolutions with
normal ReLLU and down convolutions with LeakyReLU with a slope of 0.2. The last layer
is a Tanh function layer, which has an output range of [—1, 1] and is therefore particularly
suitable for image generation. Compared to the original generator from Pix2Pix, we added
a fourth feature map to the output of the generator to be able to output a depth channel.
In addition, the discriminator receives five feature maps instead of six, each consisting of
two images with RGB channels. In our approach, the first four feature maps correspond
to the channels of an RGB-D image, the remaining one contains the corresponding FLM.
Our first prototype has the following objective to train the generator, which corresponds
to the objective function of Pix2Pix:

G = arg mén max Laan(G, D)+ ALr1(G) (7.4)

The losses are explained in more detail later in this chapter in section7.6.1. For each
individual, both the generator and the discriminator are trained from the beginning. The
training procedure is the same as for the Pix2Pix network. Before training, all weights are
set to random values, following a Gaussian distribution with a mean of 0 and a standard
deviation of 0.02. Training uses a batch size of 1 and runs for 100 epochs. The training of
both networks starts with a learning rate of 0.0002, which is linearly reduced to zero over
the last 70 epochs. The reduction of the learning rate of the discriminator, represented
by Lossp = (L0sSpreai + L0SSp fake) * 0.5, slows down its learning speed compared to
the generator. This setting is crucial because the discriminator is initially too efficient.
Slowing down its learning rate is essential to give the generator enough opportunity to
learn how to accurately generate the desired face.

7.5.3. Results and Evaluation

Fig.7.11 illustrates the facial expressions captured by the face-tracking head-mounted
display (HMD) from Chap.5. The first column shows the face landmark masks (FLM)
generated by the HMD, while the second column shows the output of our GAN. The
expressions were maintained when the face tracking HMD was removed, the helmet mount
(shown in Fig.7.3) was applied, and an image was captured, shown in the third column.
This setup allows a direct comparison between the generated and ground truth images.
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Figure 7.11.: Results: Please zoom in for details. Column 1 shows the Facial Landmark
Maps (FLM) provided to our GAN, which were not included in the training dataset and
were generated using the face-tracking HMD. The second column shows the images pro-
duced by our GAN based on these FLMs. The third column contains the actual images cap-
tured by the helmet-mounted RGB-D camera, which represent the actual expressions. The
participant maintained these expressions while the face-tracking HMD was removed and
replaced with the helmet mount (Fig.7.3). This method yields comparable results because
the helmet mount allows RGB-D images to be captured under identical conditions as the
training dataset. The fourth column shows the differences, measured by SSIM [Zho+04],
between the images from columns 2 and 3, with darker areas indicating larger differences.
Column 5 lists the computed values for SSIM [Zho+04] and LPIPS [Zha+18], using ver-
ston 0.1 from GitHub. Column 6 compares the depth information between the ground truth
(helmet-mounted camera) and the synthesized images. Columns 7 and 8 show renderings
of the textured depth maps generated by our GAN. Image from [Lad+20b].
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To evaluate the differences between the images in columns 2 and 3, we employed the
"structural similarity" (SSIM) [Zho+04] and "learned perceptual image patch similarity”
(LPIPS) [Zha+18] metrics. We isolated the face region for these comparisons by using
depth values to define this region and ignoring all other pixels.

As shown in Fig. 7.11, the individual’s identity remains clearly recognizable and authentic.
Although the images generated by our GAN are less sharp and detailed compared to the
original, they still prominently display subtle personal features, such as the birthmark
on the left cheek near the mouth and nose (please zoom in for details). The beard area
is noticeably less sharp. The SSIM results are similar to what one would expect from a
JPEG compressed to a quarter of the original file size of the images in the third column.

Depth discrepancies in the face area generally remain below 5mm, as shown in column
6. We present both the unaltered depth image from the Kinect and the raw output from
our GAN, without any filtering or smoothing. In columns 7 and 8, we applied erosion and
clipping techniques to remove the background.

7.5.4. Quality of Expressions

Our system is capable of recognizing and reconstructing a wide range of expressions.
However, human sensitivity to small variations in facial expressions means that even small
tracking and reconstruction errors can result in slightly different expressions being con-
veyed. For example, a small change in eyebrow height in row E appears to create a more
negative or critical expression than originally captured by our system. In addition, the
mouth animation during speech is not accurate enough for reliable reconstruction, falling
short of other SOTA approaches such as those of Olszewski et al.[Ols+16] and Wei et
al. [Wei+19]. In addition, expressions not included in the training set lead to blurred
results and noticeable degradation, especially around the mouth in row H.

7.5.5. Scalability

As shown in Fig.7.12, our prototype was tested on 5 individuals and did not require
any specific user adjustments to our data pipeline, except for the need to collect and
process a new dataset for each person. The data processing is end-to-end and largely
automated, requiring only a few console commands. Furthermore, each individual was
able to manipulate their avatar with a similar range of expressions.

Figure 7.12.: Results from the use of a face-tracking HMD on five individuals display-
ing different facial expressions. Our system is effective regardless of facial structure or
individual expression, and does not require additional manual adjustments for new users.
The images show different erosion and clipping settings that can either reveal or hide the
neck and upper chest areas. One notable limitation we identified is that highly reflective
surfaces, such as eyeglasses, lead to reconstruction errors, visible as black areas in the two
rightmost images. Image from [Lad+20b].
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7.5.6. Performance

All measured training and execution times were performed in PyTorch without any further
acceleration such as half/mixed presicion (Nvidia APEX or PyTorch’s AMP /autocast)
or "traced models" with TorchScript’s just-in-time compilation. Training a dataset of
600 samples takes about 19hours on an Nvidia GeForce RTX2080 using PyTorch 1.6
and Python 3.7. For inference and rendering tasks, LibTorch 1.6 is used along with an
OpenGL-based C++ rendering environment based on OpenSceneGraph [OSG24]. The
generation of an RGB-D image (8 bit per channel, 256 by 256 pixels) from an FLM (8 bit,
one channel, 256 by 256 pixels) is completed in 1.05ms. An additional 1.3 ms is required
for stereoscopic rendering of the textured point cloud, allowing a frame rate of over 90 fps
(equivalent to 11.1 ms per frame) for the HMD. In contrast, processing the facial tracking
on the HMD takes longer. However, the frame reconstruction rate for the face is limited to
30 fps (equivalent to 33.3 ms per frame) due to the frame rate limitations of the miniature
cameras built into the face tracking HMD.

7.6. Second Prototype: Experiments to Improve Visual Quality

In this subsection, we conduct experiments aimed at improving the visual quality of our
framework, focusing on both resolution and overall image quality while maintaining speed.
We incorporate SOTA methods into the architecture, mainly the discriminator network,
and use a variety of metrics and losses to obtain and evaluate improvements in image
quality. We conducted several experiments using as inspiration the Pix2PixHD frame-
work [Wan+18b], an advanced version of the original Pix2Pix GAN [Iso+17]. While it
delivers images of much higher resolution and quality, its inference speed is slower com-
pared to Pix2Pix because its architecture is more complex. The generator of Pix2PixHD
is capable of real-time processing only on high-end hardware from 2020. Even then, the
GPU is nearly maxed out, leaving minimal capacity for additional tasks like face tracking
and rendering the rasterizer. As a result, we kept the Pix2Pix framework as our foun-
dation, and gradually incorporated features from the Pix2PixHD framework along with
additional improvements from various works until we achieved a balance between image
quality, training time, and inference speed suitable for interactive applications.

The generation of the RGB-D image is real-time, and the rendering by the hardware-
accelerated rasterizer did not show significant latencies, as the first prototype in the last
chapter proved. However, the visual quality of the results required improvements such as
higher resolution and more detail. We tried adding more outermost layers to the network
of our first prototype to scale the output to 512x512 pixel, but we experienced inauthentic
reconstruction results, especially in image areas with high frequencies such as facial hair
or teeth. The current network architecture tends to generalize and over-smooth these
details, resulting in an unrealistic and uncanny appearance. To address these issues, we
build a test environment to test different conditions such as network architecture and loss
function.

7.6.1. Losses as Conditions of the Experiment

Several techniques are available from recent research published in papers after the release
of Pix2Pix. In the following, we list seven losses and three different architectures with
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upstream mapping networks that we have incorporated into the objective function of our
GAN training in 18 different experiments to achieve better visual quality while maintaining
real-time speed.

The losses are:

1. Generative Adversarial Network Loss (GAN-Loss)

This is the typical loss used in GANs, formulated to handle the adversarial na-
ture of the training process between the generator and the discriminator. This loss,
used also by Isola et al.[Iso+17], is usually a Binary Cross Entropy Loss inside
a sigmoid function (called BCEWithLogitsLoss() in PyTorch). The generator is
trained to minimize this loss by trying to fool the discriminator into "thinking" that
the generated images are real. The discriminator is trained to maximize this loss by
getting better at distinguishing real images from generated ones. The adversarial
loss can be expressed as:

‘CGAN(Gv D) = IE(x,y) [log D(X7 Y>] + Ex,z[log(l - D(G(Xa Z)))] (7'5)

where x is the feature map (in our case the FLM), y is the corresponding natural
image, and z is a noise vector. While in traditional conditional GANs the noise is
injected as input into the network, in our architecture the noise is injected by the
dropouts on multiple layers during training and testing time [Iso+17]. Note that we
use instance normalization instead of batch normalization because we only backprop
each step over a generated image, which makes the formula shorter.

2. Least Squares Generative Adversarial Network Loss (LSGAN-Loss, MSE-Loss or,
most common, L2 Loss)

As shown above, traditional GANs used the Binary Cross Entropy Loss and
sigmoid. Mao et al.[Mao+17] found that a Least Squares Loss is more stable, avoids
mode collapse (the generator learns to produce a limited variety of outputs), and
helps avoid vanishing gradients, leading to better results overall. Compared to the
GAN loss above, the LSGAN loss does not use a sigmoid layer. According to Isola
et al. [[so+17], a combination of L2 loss and GAN loss tends to produce blurry
results compared to using an L1 loss. However, follow-up work has shown that L2
in combination with other losses leads to good and sharp results, as we will show
in the following experiment. This could be due to the fact that images with higher
resolution are generated in our experiment. In this context, an L2 loss might work
better compared to Binary Cross Entropy Loss. According to Mao et al., the least
squares loss function may penalize samples far from the decision boundary more
than the binary cross-entropy loss. The objective of an LSGAN is:

m[i)n Viscgan(D) = Lrsgan p(D,G)

i (7.6)
min Visaan(G) = Lrsgan a(D,G)
with the loss function as follows:
1 1
Lisean_p(D,G) = 5Exy [(D(x,y) = 1] + 5By [(D(Gly.2).%)%]  (7.7)
1
Liscan_c(D.G) = 5By [(D(Gly,2).y) = 1)’] (7.8)
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where x is the feature map (in our case the FLM), y is the corresponding natural
image, and z is a noise vector. While in traditional conditional GANs the noise
is fed into the network as input, in our architecture the noise is injected by the
dropouts on multiple layers during training and testing time [Iso+17].

. Adversarial Loss (Discriminator Loss)

In our following study, this loss indicates that a discriminator evaluates the
generator’s output and is backpropagated. This can be either the traditional
binary cross entropy loss or the LSGAN loss. If there is no cross for LSGAN
in Tab. 7.1, but one for Adversarial Loss, then this means that the Binary Cross
Entropy Loss is used. In this case, it is comparable to the training of an autoencoder.

. Mean Absolute Error (MAE, more common: L1 Loss)

It is calculated between the real images from the training dataset and the syn-
thesized images.

Ly = |z —yl (7.9)

. Multiscale Discriminators

This technique uses multiple discriminators instead of a single one to calculate
the GAN loss. These discriminators operate at different resolutions of the input
images, allowing both local and global structures in the patch to be evaluated. The
method is typically applied to GAN loss and Feature Matching Loss [Wan+18b]:

i D D 1
o, B, Lo (@D 2 (G

Note that such a multi-resolution pipeline is a well-established method in computer
vision and is often used for image compression, generation, or analysis [BA83].

. Feature Matching Loss

This loss was introduced by Wang et al. [Wan+18b]. It improves image quality
and increases the stability of the training process for G by extracting features across
different layers of the discriminators and aligning the features of the real training
images with those of the generated images. The resulting structural difference is
penalized, ensuring that G produces images that induce identical features in the dis-
criminators as those found in the images of the training dataset. The computation
of this loss is described as follows:

Lrn(Dy,G) = zy)Z HD (aly) — DY (|G (x))[[1] (7.11)

where D,(f) is the feature of discriminator Dy in layer ¢, T' is the total number of
layers of Dy, and N; is the number of elements in layer i. || - || is the L1 loss.
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7. Learned Perceptual Image Patch Similarity Loss (LPIPS Loss)

The Learned Perceptual Image Patch Similarity (LPIPS) loss, introduced by
Zhang et al. [Zha+18], is computed using a pre-trained CNN. This loss differs from
traditional methods by using the deep features extracted from pre-trained CNNs to
assess the perceptual similarity between images.

Unlike traditional metrics that often rely on pixel-wise comparisons, LPIPS more
effectively captures the intricacies of the human visual system by considering high-
level features and patterns. As a result, it more closely aligns with human judgments
of visual similarity, providing a more nuanced and accurate measure for tasks such as
image compression, super-resolution, and synthesis quality assessment. Unlike the
previous losses, this loss is unique because it cannot be explicitly mathematically
formulated, but is instead implicitly learned by a neural network.

Please note that Pix2PixHD and other works of this time use the VGG-perceptual
loss of Johnson et al. [JAF16a] to increase the visual fidelity of the generated images.
We did not use the VGG loss because there is strong evidence that LPIPS leads to
better results in several deep learning vision tasks [JYK20; Gru+23].

8. Cycle Consistency Loss (Cycle-Loss)

Cycle loss was originally introduced by Zhu et al. [Zhu+17] with the Cycle GAN. It
realizes an unsupervised learning of a mapping between two distributions of images.
The goal of these tasks is to learn a mapping between two different domains without
having explicit paired examples showing how certain elements from one domain
should translate to the other.

There are two mappings: F': A — B and G : B — A, where A and B are two
different domains. The goal is to make F' and G learn to translate images from A
to B and from B to A, respectively, in such a way that an image translated from its
original domain to the target domain and back is as close as possible to the original
image. It can be expressed as the sum of two components: For an image x € A, the
cycle consistency loss ensures that the image translated to B by F' and then back to
A by G should be similar to the original image x. This is represented as

Ligde "4 =E |G(F(x)) = x[|1] (7.12)

cycle T~Ddata(T) [

Similarly, for an image y € B, the cycle consistency loss ensures that the image
translated to A by G and then back to B by F should be similar to the original
image y. This is represented as

Load P =E w [IF(G () =yl (7.13)

T Y~Pdata

where E denotes the expectation over the distribution of data samples (pgata). Com-
bining these, the total Cycle Consistency Loss is

ﬁcycle _ £A~>B—>A + EB—)A*)B. (7.14)

cycle cycle

7.6.2. Dataset

In the following, the same dataset was used for all experiments. It comprises 1500 pairs of
data, each including RGB-D images, feature maps, and a list of facial landmark positions.
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This dataset for the second prototype has more than twice as many data pairs as the
dataset used for the first prototype. The hypothesis was that more targeted losses would
shorten the training time, and thus there should be the potential to process more data with
acceptable training times. In general, in the field of neural networks and especially with
GANS, results tend to improve with more data [Kar+17; KLA18; Iso+17]. The images
in this dataset have a resolution of 512x512 pixel, which is four times higher than in the
previous prototype. All other preprocessing steps for the captured data explained above
remain unchanged, except that we have increased the margin around the face landmark
bounding box from 15% to 20%, as can be seen in Fig. 7.13.

Figure 7.13.: We increased the margin of the face landmark bounding box from 15% to
20% to better reconstruct expressive facial play. Aside from this change, the dataset pro-
cessing remained unchanged from the first prototype pipeline described above in section 7.5.
Images by René Ebertowski.

7.6.3. Mapping Networks

The idea of a mapping network is inspired by StyleGAN [KLA18|, Ganverse3D/ Style-
GANS3D [Zha+20] and Pi-GAN [Cha+21]. The basic idea is to transform input data (or
noise vectors) into a more structured and interpretable latent space. This transformation
allows for more nuanced control over the attributes and features of the generated images.
The goal is to " disentangle" the latent code. Essentially, the mapping network acts as
an intermediary, learning a complex function that maps random input vectors to a latent
space where different dimensions correspond to meaningful variations in the output data.

While the mapping networks of FilM [Per+18], StyleGAN[KLA18], and their
successors mainly interact with intermediate layers of the network, Gan-
verse3D /StyleGAN3D [Zha+20] used a mapping network before the generator network
to gain more control over the output and improve visual quality. Our idea is to use a
similar architecture to see if the visual quality improves. To verify our hypothesis, we test
three different mapping network architectures while keeping the generator architecture
unchanged. Our three architectures are:

1. Multilayer Perceptron (MLP)

In this method, a multilayer perceptron (MLP) accompanied by convolutional
layers is placed in front of the generator. It processes a list containing the positions
of all landmarks. The MLP consists of two fully-connected layers using the ReLLU ac-
tivation function. The output of these layers is transformed into a 1024-dimensional
vector. This vector is then converted into four 16x16 pixel feature maps. These
feature maps are further processed through five convolutional layers with a stride
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of 2, culminating in a resolution of 512x512 pixels and increasing the number of
feature maps to 64. Finally, these feature maps are passed through an additional
convolutional layer before being used as input to the generator.

2. Residual

The Residual Mapping Network uses Residual Blocks [He+16] to handle the FLMs
extracted from the dataset. First, each FLM is fed into a convolutional layer. Next,
two Residual Blocks are applied to the resulting output, and then it passes through
another convolutional layer to complete the processing. The 64 resulting feature
maps are then used as inputs to the generator.

3. Multilayer Perceptron (MLP) and Residual

This mapping network combines the two previous networks to generate 64 fea-
ture maps. It computes 32 feature maps from both the MLP and the Residual
Mapping Network, and then concatenates them. The aggregated feature maps are
then used as input to the generator.

7.6.4. Network Architecture

The network architecture remains the same as in the previous prototype shown, except
that we add two additional outermost conv layers to the generator. This allows us to
increase the resolution from 256 px x256 px to 512 px x512 px, which means that the T
and D from the equation 7.2 and 7.3 change to T € R?!12%512 and D € R?12*512. We also
add another skip connection between these two layers. The tensor size in the bottleneck
remains the same. The new architecture of the generator has 67 million parameters with
a file size of the generator of 260 MB.

One of our initial hypotheses was that the original generator probably has enough param-
eters, since it can generate relatively complex and versatile images, as can be seen from
various projects and demonstrations of the Pix2Pix framework [Iso+17]. Many application
examples are aimed at a high variation of certain objects, such as different house facades,
clothes or handbags. It is often only a matter of capturing "high level" structures. When
viewed from a distance, these images often look real to the viewer. However, a closer look
reveals errors, especially in high frequency areas of the image. In our use case of snythe-
sizing believable faces and conveying nonverbal information, fine structures such as facial
hair, blood vessels, and dimples are important. In our experiments, we therefore focused
on more sophisticated losses and a more complex architecture of the discriminator. Note
that we did not change the generator beyond adding two outermost layers, although there
are various recommendations in the literature. Wang et al. [Wan+18b] suggest using a
multiscale generator similar to the approach of the progressively growing GAN proposed
by Karras et al. [Kar+17] to improve quality, stability, and variation. However, we de-
liberately chose not to pursue this option in order to avoid developing an overly complex
generator and to maintain real-time frame rates.
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7.6.5. Evaluation Metrics

For evaluation, we use five quantitative metrics to assess the results of different experi-
ments. Similar to the training dataset, the evaluation dataset consists of RGB-D images,
feature maps, and an array of the locations of all landmarks. Each metric is applied to
an evaluation dataset containing 250 elements. The data from this evaluation set was
not used in the training process, so it can accurately demonstrate the performance of the
network during inference.

The following metrics have been used:

1. Time in milliseconds (ms)

This metric represents the time in milliseconds it takes for a network to per-
form a forward operation during inference. The data presented in this study was
obtained using a system equipped with an NVIDIA RTX 3090 GPU, an Intel Core
i9-9900K CPU, and 32 GB of RAM.

2. Peak Signal to Noise Ratio (PSNR)

PSNR is widely used as a measure of the quality of reconstruction of lossy compres-
sion codecs (e.g., for images, video, and audio) by comparing the original signal with
the compressed version. This metric quantifies the ratio of the maximum possible
power of a signal to the maximum possible power of the distorting noise within that
signal. Tt is calculated using the Mean Squared Error (MSE) as follows:

with
1 w—1h—1
MSE = w-h Z Z[Ir<m7y) - Is(xay)]Q (7'16)
=0 y=0

Here, M AX; is the maximum possible pixel value, w and h are the width and
height of an image, respectively, I, is the real image from the data set, and Iy is
the synthesized image from the network. The higher this metric is, the more similar
the two original images are. Due to the logarithmic nature of PSNR, this metric
is not proportional and can be misleading when comparing metrics directly. While
PSNR is often used for image compression, the human eye, for example, can clearly
distinguish between a compressed image with a PSNR of 31dB and 37dB, while
there is hardly any difference between 37dB and 45dB.

3. Structural Similarity Index Measure (SSIM)

The Structural Similarity Index Measure (SSIM)[Zho+04] metric measures the
perceived similarity between two images, taking into account that each pixel has a
structural dependence on its spatial neighbors. The metric is computed as follows:

(2:‘%"/% + Cl)(2ars + 02)

SSIM =
(17 + 13 + c1)(0F + 03 + c2)

(7.17)

where u, and us are the pixel sample means of the real and synthesized images, o,
and o, are the variances of the real and synthesized images, 0,5 is the covariance
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of the real and synthesized images, ¢; = (k1 - L)?, co = (ko - L)? where we use the
default values of k; = 0.01 and ko = 0.03, and L is the dynamic range of the pixel
values. Typically, L is set to (2"PiPX _ 1) where nbitpiz is the number of bits per
pixel value. The higher the value of the SSIM metric, the more similar the two
images are. The maximum value of SSIM is 1, which means that both images are
identical.

4. Fréchet Inception Distance (FID)

The FID is a metric that can be used to evaluate the quality of images gener-
ated by a GAN. It measures the similarity between the distribution of synthesized
images and the distribution of real images. Each set of images is modeled as a
multivariate Gaussian distribution with mean and covariance. If we denote the
mean and covariance of the real images as (u,,%,) and those of the synthesized
images as (us, Xs), the FID score is given by the formula:

1
FID = [|pr — psll5 + Te(Sr + o — 2(%,35)7) (7.18)

where [|jt, — ps||3 is the squared Euclidean distance between the means of the real
and synthesized distributions, and Tr denotes the trace of a matrix, capturing the
sum of its diagonal elements. The term Tr(X, +3; —2(3, % s)%) computes a measure
of similarity between the covariances of the two distributions. A lower FID score
indicates that the generated images are more similar to the real images, implying
better quality of the generated images.

5. Learned Perceptual Image Patch Similarity (LPIPS)

This metric has already been discussed in detail above under section7.6.1 "Losses as
Conditions of the Experiment". Please note that we did not consider PSNR, SSIM,
or FID as loss functions due to their unsuitability for these applications, stemming
from issues related to differentiability, perceptual quality, training stability and
computational efficiency. LPIPS is unique in this sense because it can be used not
only as a loss, but also as a quantitative and descriptive metric that can be read
by humans. Alternative losses such as the VGG perceptual loss of Johnson et al.
[JAF16a] or the feature matching loss described above work on neural layers and
latent codes, which is difficult to quantify as a human readable metric.

7.6.6. Results

Due to the large number of different test conditions, such as different losses or loss weights,
we would reach several thousand permutations, which would require a training time of sev-
eral months in total, with an average training time of about 10 hours per condition, which
is not feasible in practice. Therefore, we conducted preliminary experiments and tested
only the most promising combinations. For this purpose, we chose common weightings for
the following losses, which have been frequently used in related work.

The results of the experiments are shown in the table below:
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Losses ‘ Mapping Nets ‘ Evaluation Metrics

LSGAN L1 Advers. Mul.D FM LPIPS Cycle| MLP Res. Both|Time | PSNR 1 SSIM 1 FID | LPIPS |
1) - X - - - - - - - [3376 23885 0870 0.668 0.141
2) - X X - - - - - - | 3417 0.670 JONEON 0.421
3y X X X - - - - - - | 3411 [ 23912 0869 0.661 0.136
41 X X X - - - X - - | 4611 23690 0.865 0.658 0.134
51 X X X - - - - X - [ 4964 23810 0.869 0.661 0.136
6) X X X - - - - X |BBOE 23.658 0.867 0.657  0.136
X X X - X - - - - 3439 23576 0.857 [064370:100
8 | X X X - - X - - - | 3426 23828 0.869 0.664 0.136
9] X X X - - - - - - 3426 23820 0869 0.663 0.137
0] X X X X - - - - - | 3473 23631 0843 0.652 0.118
)| X - X X - - - - - | 3.554 | 22:236 0.683 052800
12 X - X X X X - - - | 3661 23358 0.815 0.668 0.226
)] X X X X X - - - - 3394 23547 0842 0.648 0.123
1| x - X X X - - - - 3394 23332 0821 0.663 0.207
) X X X X X X - - - | 3410 23541 0844 0.653 0.115
6] X X X X X X - - - | 3401 23629 0853 0.655 0.111

Table 7.1.: All experiments with their evaluation metrics.

The color descriptions are: worst,

)

, . The abbreviation "Mul.D" stands for Multiscale Discriminator, "FM" for Feature Matching and ”Both " for the combmatwn of an
MLP and a Residual network. Stable epochs denote the number of epochs with a constant learning rate. Decaying epochs denote the number
of epochs with a linearly decreasing learning rate. An X indicates that the loss function or mapping network was used in the experiment. The
three horizontal lines, separating the results in four groups, are inserted only for better readability. The average of a 250-pair evaluation data
set is shown, except for the FID metric, where the distribution of all evaluation data is compared to the distribution of all synthesized data.

San7) uolediuNWWwo?) |ee4 [eqidauop Suikanuor) 1oy Suuapuay |eandpN ")
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(a)  Ground Truth(b) Synthesized Color(c)  Ground  Truth(d) Synthesized Depth
Color Depth

Figure 7.14.: Images from experiments 1-5. The RGB and depth ground truth images
are shown next to the synthetic images for comparison with the images from the evaluation
dataset. The images of 2) show the results of adding two outermost layers to the vanilla
Piz2Pix network for upscaling. Images by René Ebertowsksi.
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10)

11)

(a)  Ground Truth(b) Synthesized Color(c)  Ground  Truth(d) Synthesized Depth
Color Depth

Figure 7.15.: Images from experiments 6-11. For comparison with the images from the
evaluation dataset, the RGB and depth ground truth images are shown next to the synthetic
images. Images by René Ebertowsk:.
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12)

13)

14)

15)

16)

17)

(a)  Ground Truth(b) Synthesized Color(c)  Ground  Truth(d) Synthesized Depth
Color Depth

Figure 7.16.: Images from experiments 12-17. The RGB and depth ground truth images
are shown next to the synthetic images for comparison with the images from the evaluation
dataset. Images by René Ebertowski.
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(a)  Ground Truth(b) Synthesized Color(c)  Ground  Truth(d) Synthesized Depth
Color Depth

Figure 7.17.: Images from Experiment 18: The RGB and depth ground truth images are
shown next to the synthetic images for comparison with the images from the evaluation
dataset. Images by René Ebertowsks.

7.6.7. Observations and Discussion

In Tab.7.1 the different losses, architectures and results of the evaluation metrics are
compared for each experiment. It’s evident that the four metrics (PSNR, SSIM, FID, and
LPIPS) differ in their evaluations. The PSNR and SSIM results are often similar, as are
the values for FID and LPIPS. When results are significantly poor, all metrics agree, but
this consensus does not always extend to the best results. This is evident in experiment 1,
for example, which performs well on PSNR and SSIM, but has a significantly more blurred
image than the other results. Notably, the introduction of LSGAN leads to sharper images,
as shown in table 7.1.

Experiment 2, which used only an L1 and an adversarial loss, produced the worst results.
The adversarial loss means that a binary cross entropy loss discriminator was used in this
experiment. Thus, this training structure is similar to the vanilla structure of the Pix2Pix
framework and shows the results of adding two outermost layers to the vanilla Pix2Pix
network for upscaling from 256 pixels to 512 pixels edge length.

All further experiments after experiment 2 use an LSGAN loss with a discriminator. An
early observation in our experiments was that the LSGAN loss is superior to the cross-
entropy loss. Experiments 1 and 2 using cross-entropy loss result in much more blurred
images, which cannot be observed with LSGAN loss. However, LSGAN loss alone is
not sufficient to reconstruct high-frequency image information. Although experiment 7
achieves the best results according to FID and LPIPS, its visual results are still too
blurred. There’s a slight shift in skin color towards a pinker tone, and the skin appears
more reflective. In general, we see that the use of a Multiscale Discriminator (MultiD)
seems to improve realism by better preserving high-frequency structures (compare Fig. 7
and 15). Note that PSNR and SSIM tend to rate blurred results higher than those that
preserve high-frequency image details, as mentioned above in experiment 1. In particular,
the activation of MultiD leads to a deterioration of the PSNR and SSIM results.

The proposed mapping networks lead to longer inference and training times, and the visual
results are satisfactory but not exceptional compared to the absence of a mapping network.
This does not justify the additional inference time of about 2ms. The size of the networks
in all other experiments remains the same, indicating that the variations are within the
measurement error of about 0.2ms and can be ignored. The different losses do not affect
the inference time of the generator network.
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Only a few experiments were able to accurately reconstruct facial hair. Experiment 7,
despite a good metric score, still produces surfaces that are too soft. Removing the L1
loss preserves details better, but introduces other artifacts. L1 loss appears to be essential.

Teeth remain a consistent problem across experiments. Related work has produced better
teeth reconstruction with a teeth proxy added to a 3DMM [Gar+15; Thi+15]. The problem
with a good oral cavity reconstruction is that this area of the face is very dynamic, and
facial landmarks that only track the lips but not the teeth or tongue can lead to ambiguous
results.

Although we did not record the training time, and therefore it is not shown in the table,
it was noticeable that the cycle loss doubled it from about 10 to 20 hours. Although the
results of experiment 16 are very good, they do not surpass those of experiment 15, which
was evaluated by an unstructured interview with 6 people from the local computer science
department. Therefore, we rejected experiment 16 (with cycle loss) as the experiment
with the best visual quality, because the long training time limits further hyperparameter
tuning and also the general applicability of the system.

We see experiment 15 as the experiment with the most potential for further hyperparam-
eter tuning with even better image quality, laying the groundwork for further insights into
our final network architecture and training procedure in the next chapter. Although the
PSNR and SSIM results for this experiment are not outstanding, experiment 15 is one
of the experiments that achieved the best FID and LPIPS values and was also rated by
humans as the most authentic result. Therefore, we decided to gain more insight into
experiment 15 because we saw in the training plots that a more targeted loss leads to
better results much earlier in the training process.

7.6.8. Improved Network Model Architecture

Based on our study, we choose experiment 15 as the experiment with the best visual quality,
acceptable training time, and potential for further improvement. Based on our findings,
we propose the following major changes to the Pix2Pix architecture of Isola et al. [Iso+17]
framework for our application domain, which was the basis for the first prototype:

1. Introduction of multi-scale discriminators that process three different resolutions of
the input image, coupled with an additional Feature Matching Loss as described in
Pix2PixHD [Wan+18b].

2. Replace the sigmoid cross entropy loss of the Pix2Pix discriminator (in Pytorch, the
BCEWithLogitsLoss loss) with the Least-Squares Loss from LSGAN [Mao+17] as the
L2 loss, following the recommendations of Wang et al. [Wan+18b].

3. Replacement of the Perceptual-VGG Loss [JAF16b] originally proposed by Wang et
al. [Wan+18b] with the more effective Learned Perceptual Image Patch Similarity
(LPIPS) developed by Zhang et al. [Zha+18].

We extended the discriminator side with three multiscale networks and obtained the fol-
lowing objective:

in V D) = L. D, G 7.19
pmin, can(D) k:lZQS LscaN_p(Dy, G) (7.19)

where Dy, Dy, and D3 represent the three resolutions of the input image. The objective
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function for the generator is defined as:
mén Voan (G) =

> [»CCLSGAN_G(DIC’ G) + ArmLEm ( Dy, G)] (7.20)
k=1,2,3

+ A01L01(G) + AprpsLrpips(y, G(x))

with the hyperparameters set as follows: AFM = 10, Ap; = 100, Arprps = 10. To
ensure faster inference times than Pix2PixHD, we chose not to apply the coarse-to-fine
strategy suggested for the generator by Wang et al. [Wan+18b]. This decision trades the
high-resolution image generation of Wang et al. for improved computational efficiency.

These improvements preserve high-frequency details such as facial hair, as shown in7.21,
thereby substantially improving quality and resolution. Our modifications focused primar-
ily on the loss function and discriminator, eliminating the need to modify the generator.
This allows maintaining high frame rates during test/inference time, which is critical for
telepresence or also live broadcast scenarios where only the generator is active. A draw-
back is the increased memory requirement for training, although the total training time is
significantly reduced by over 50% compared to the Pix2Pix-only method (from approxi-
mately 19 hours down to 8 hours). This efficiency gain is due to the newly introduced loss
term, which is more effective for our purposes and allows us to achieve better results in
less time. Due to the increased memory requirements for training, training can no longer
be performed on a GPU with only 11GB of VRAM (such as an Nvidia RTX 2080 Ti),
but must be performed on a GPU with more memory, such as an Nvidia RTX 3090 with
24 GB of VRAM.

7.6.9. Further Hyperparameter Tuning and Training

In the first experiments we tried to change the dropout rate. Since the variance of the gen-
erated images is very high in many application scenarios of Pix2Pix and also Pix2PixHD,
e.g. different house facades or images of streets from a moving car, our hypothesis was
that we are actually overfitting the network with a single face and its expressions. Condi-
tional GANs typically add a noise vector z to the network. In the Pix2Pix architecture,
the noise is substituted by drop-outs and is not given as input, but is generated at the
level between layers. In our tests, we tried to reduce the dropout rate to see if the results
were better. We found that inputting data that is very similar to the training data (in our
case, the FLMs) tends to produce better results, but the network’s ability to interpolate
and extrapolate facial landmarks decreases significantly. However, this is counterproduc-
tive for our specific use case with a face-tracking HMD, since the FT-HMD is not able to
provide reliable enough face landmark data to match the training data almost one-to-one.
Therefore, the neural network requires a certain error tolerance and thus a corresponding
dropout rate to compensate for tracking errors. In the end, we keep the initial dropout
rate of 50% as originally recommended by Isola et al. [Iso+17].
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Figure 7.18.: A training run over 100 epochs with the more goal-oriented losses from
equation 7.19 and 7.20. Number of the epochs is displayed on the x axis. It can be seen
that PSNR and SSIM reports good results already after the first epoch. While FID reaches
a plateau after 40 epochs, LPIPS seems to reach a plateau only after 60-80 epochs.

In the training protocols of the 18 experiments above, we found that good visual results
were achieved much faster with the more goal-oriented loss functions from equation 7.19
and 7.20. The original Pix2Pix, Pix2PixHD, and CycleGAN pipelines recommend 200
epochs, but this is highly dependent on the dataset. In our tests, we found that good
results can be obtained with less than 100 epochs, as shown in Fig.7.18. With this in
mind, we investigated a further hyperparameter tuning process: First, we adjust the
learning rate, which could lead to better results even faster, and second, we test different
combinations of different numbers of stable and decaying epochs, which could be useful
to further reduce the training time without affecting the visual results. The results of the
hyperparameter training are shown in the Tab. 7.2.
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Epoch Count Metrics Time
Stable Decaying | Learning Rate | PSNR 1+ SSIM 1+ FID | LPIPS | | Hours
100 100 24.8418 0.9013 0.5932  0.1273 10.22
30 70 0.0002 25.0188 0.9049 0.5933  0.1281 5.08
20 65 ' 25.0152  0.9046  0.5938  0.1265 4.75
15 60 25.0094 0.9045 0.5939  0.1284 3.61
100 100 24.8895 0.9021 0.5973  0.1251 9.83
30 70 0.0003 24.8993  0.9041 0.5986  0.1257 4.75
20 65 24.9664 0.9039 0.5926  0.1270 4.06
15 60 24.9742  0.9040 0.5953  0.1281 3.63
100 100 24.8233  0.9015 0.5908 0.1217 | 10.10
30 70 0.0004 24.9859  0.9043  0.5961 0.1262 5.15
20 65 ' 24.9932 0.9041 0.5935  0.1261 4.30
15 60 24.9819 0.9043 0.5955  0.1286 3.70

Table 7.2.: Results of experiments aimed at reducing the training time required. The
best values are in bold. The table shows different learning rates combined with different
numbers of stable and decaying epochs. Stable epochs are epochs during which the learning
rate remains constant at its initial value, while decaying epochs are epochs during which
the learning rate decreases linearly to zero. The quality of the images is represented by
four metrics. These metrics are averaged over an evaluation dataset consisting of 250
data pairs. The exception is the FID metric, where the distribution of all evaluation data
is compared to the distribution of all synthesized data. The time required for the training
process, measured in hours, is given in the last column. Measured on a PC with an Intel
19 9900K (4.68GHz) CPU, NVIDIA GeForce RTX 3090 GPU and 32GB DDR/ RAM at
4266 MHz.

Note that the preprocessing pipeline and the network architecture are the same as in
Tab. 7.1, but we choose a different dataset. The main difference is that the images have a
background behind the person’s head with less structure in the new dataset, and therefore
the metrics are slightly better because there is less noise in the background of the new
dataset.

As Tab. 7.2 shows, it is possible to reduce the training time from around 10 hours initially
to less than 4 hours without any significant difference in the metrics. The variations in
the metrics are so small that they are not visible to the naked eye. Furthermore, changing
the learning rate did not significantly change the final visual quality metrics. The learning
rate recommended by Isola et al.[Iso+17] is 0.0002. In summary, the generator was able
to maintain image quality despite a lower number of epochs.

7.6.10. Results

This iteration of the prototype has enhanced image quality and further reduced the amount
of the uncanny valley effect. All results and metrics shown in Fig.7.19 and 7.20 were
generated using FLMs from the test set without any backpropagation performed on these
datasets. Please note that these results are not directly comparable to the results in
Fig.7.11 because we have removed the face-tracking HMD and we take FLMs directly
from the test dataset that were generated on the ground truth images. These images are
more stable than the outputs of the face-tracking HMD.
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Figure 7.19.: Results 1/2 of the second prototype: Please zoom in for details. This
summary shows the FLMs in the first column from our test datasets and their results
compared to the ground truth. The FLMs in the third column are from images that the
neural network has never "seen” before. The second column shows the results of our trained
generator, which produced images in the second column after receiving the FLMs from
the first column. The fourth column illustrates the SSIM differences, with darker shades
representing greater discrepancies between the tmages in the second and third columms.
Column six shows the discrepancies between the GAN generated depth and the ground
truth depth. Columns seven and eight show the integration of the generated depth and
color data viewed at 30 and 90 degrees. Image from [Lad+25]
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Figure 7.20.: Results 2/2 of the second prototype: Please zoom in for details. Two further
subjects are shown. The last two samples of each person combine the best and the worst
images (measured by SSIM and LPIPS) and reflect the range of reconstruction quality.
Image from [Lad+25]
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The data splits for the participants were as follows: the first was split into 1238/207, the
second into 1500/250, the third into 1620/271, and the last into 2413/403. Notably, the
dataset for the last participant is about 1000 items larger than the others, yielding slightly
better quantitative results in terms of SSIM and LPIPS. This implies that larger datasets
improve image quality in our tests.

The primary concern with our earlier prototype was image sharpness, as shown in
Fig.7.21a. The updated architecture and loss functions improve the level of detail in the
images, even successfully reconstructing features such as skin pores, particularly notice-
able on the user’s forehead in Fig.7.19, rows E through H. In addition, there is improved
reconstruction of high-frequency areas such as facial hair, as shown in Fig.7.21b. The
system also shows enhanced temporal consistency. For more details, please refer to the
supplementary video: https://youtu.be/fBofqRfvoiM

-
-

Figure 7.21.: Our updated pipeline of our second prototype, including network design and
loss functions, has significantly enhanced the quality. Image a) shows an example from
the first prototype system, while image b) demonstrates the improved resolution (increased
from 2562256 to 512x512 pizels) and better preservation of fine details. In particular, high-
frequency local structures such as skin pores, scars, freckles, blood vessels, or facial hair
can be synthesized in greater detail. Image from [Lad+25].

The discrepancy between the actual and estimated depth values is typically less than
4mm, as shown in column 6. Notable deviations occur in the reconstruction results that
exhibit the worst SSIM and LPIPS values for each dataset of an individual, as shown in
Fig. 7.19, rows D and H, and in Fig. 7.20, rows E and J. In addition, anomalies are observed
in column 8. Please note that we are using the unprocessed depth image from the Kinect
and the direct output from our GAN, without applying any filtering or smoothing to the
images. Therefore, we hypothesize that the network has learned to replicate the depth
noise from the sensor, thus contributing to further depth inaccuracies.
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In order to analyze the face regions in the images from columns 2 and 3 without including
background changes, we segmented the face region using the depth data and rejected all
other pixels. There are significant discrepancies in the SSIM and depth variation visual-
ization at the intersection between the face and background regions. These discrepancies
result from slight misalignments between the cropped sections of the actual and synthe-
sized images due to small variations in the generated images. In addition, we implement
erosion on the face region to eliminate the background and convert it to black pixels, which
can cause these slight discrepancies.

Despite the improved results in our quantitative evaluations, our system still faces chal-
lenges in accurately reconstructing features such as the eyes, lips, and oral cavity. In
particular, teeth and tongue often exhibit noisy artifacts, as shown in Fig.7.19, row D,
column 2. These artifacts are even more pronounced when viewing the final video stream.
The reconstruction error tends to increase when the facial expression deviates significantly
from a neutral expression. The eyes show fewer artifacts than the mouth, but even mini-
mal image perturbations can trigger the uncanny valley effect, as shown in Fig. 7.19, row
B, column 2. Please enlarge the image to see more details.

In our experimental setup, we used PyTorch 1.8 and Python 3.7 on a Windows 10 system.
All recorded training and processing times were without any speed-enhancing techniques
such as half/mixed precision (Nvidia APEX or Pytorch’s AMP /autocast) or TorchScript’s
"traced models" for just-in-time compilation. The forward pass time of the generator
module for an image resolution of 512 x 512 pixels ranges from 3 to 4ms (333-250 fps)
on an Nvidia RTX3090 and from 6 to 7ms (167-143 fps) on an Nvidia RTX 2080. While
our earlier prototype was faster (between 1 and 3ms) and produced smaller images of
256 x 256,pixels, the current timings are still sufficient for VR applications, where typical
frame rates range from 75 to 120 fps. It’s worth noting, however, that many face tracking
systems are limited to 60 or even 30 fps, which can limit the pipeline’s frame rate.

7.7. Third Prototype: Data Set Capture Without Helmet Mount

The third iteration removes the cumbersome helmet mount from Fig.7.3 introduced in
Sec. 7.5 from the capture pipeline. Instead, several algorithms check the orientation and
distance of the face to the RGB-D sensor in real time. This makes the system more user
friendly, more hardware agnostic, our results are easier to reproduce, and the system is
potentially more usable in everyday contexts using off-the-shelf hardware, thus eliminating
the need for intermediate laboratory hardware. We use the Azure Kinect because the
programming interface is easily accessible and well documented, but the majority of high-
end smartphones today have a built-in RGB-D sensor that can be used instead of the
Azure Kinect to capture the data set.

7.7.1. Capture Pipeline

In this setup, the RGB-D sensor is stationary on a table in front of the user. The pipeline
is divided into 1.) a capture process with real-time user feedback using a graphical user
interface to ensure specific image parameters as well as quality, and 2.) an offline processing
step similar to Subsec. 7.5.1, where landmark detection is performed, but with additional
steps to improve image quality. The graphical user interface is built in the Motion Hub
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of Chap.4. A third-party library (pybind11) connects the Python side of neural network
training and processing to the C++-based MotionHub.

/|
\+ /

Azure Kinect Camera

1]

Figure 7.22.: We verify the position and rotation of the captured face with the SynergyNet
of Wu et al. [WXN21] in real time. If the head is rotated too much in one direction, these
images are not used for training. The same applies to the distance of the face to the sensor.
If the face is too close or too far away, the user will be informed and no further images
will be taken. Image by René Ebertowsk:.

The first part, the real-time user-assisted acquisition process, requires several image quality
and parameter checks, since the degrees of freedom and the possibilities for the user to
make mistakes during the acquisition process are much greater than in the helmet-mounted
approach. It is structured as follows: 1.) The SynergyNet by Wu et al. [WXN21] is used to
detect a face in the RGB image. If more than one face is detected, the user is warned and
the images are not used for training. 2.) The Azure Kinect has non-overlapping regions
in the border areas between the color and depth maps. We check whether the face is
inside or outside the area where RGB and D data overlap. If the face is outside, the frame
is rejected. 3.) A Laplace operator, applied to the face region, verifies that the image
is sharp and does not contain significant motion blur, as this would reduce the quality
of the reconstruction later. 4.) SynergyNet also provides a transformation and rotation
matrix for the roll, pitch, and yaw angles of the face. We apply a dot product between
the front-facing vector of the face and the inverted sensor’s 7 axis, as shown in Fig.7.22.
If the face is rotated further than a certain predefined threshold, we discard the image,
warn the user, and start processing the next image. This process is supported by a user
interface as shown in Fig.7.23 and 7.24. In our experiments, we limited the face rotation
to 10 degrees as a threshold, but we believe that a smaller value will further improve the
final image quality, as our study and final results show slightly worse visual reconstruction
quality compared to the wooden helmet mount of prototypes one and two. 5.) In the last
step, we check if the face is within a certain distance from the sensor. If the face is too far
away from the sensor, the resolution is not sufficient, the user is informed and the image
is also discarded.
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Figure 7.23.: If the user moves too far away from the sensor, the recording stops, the
user is notified, and the bounding box around the face turns red in the center image of

the graphical interface, indicating that the face is too small and falls below the specified
mintmum size. Images by René Ebertowsks.

Capture Data  Convert Data Training
Configuration Tasks
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Capture Data Pairs
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Figure 7.24.: If the user rotates the head too much, he/she will be warned. In this case,
the frame on the right side of the graphic interface, which shows the head rotation with an
RGB cross, turns from green to red. Images by René Ebertowski.

When the acquisition process reaches a certain number of images (1750 in our setup),
the user is notified, the acquisition process is stopped, and offline processing can begin.
The following section describes the same steps as in Subsec.7.5.1, but uses improved
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algorithms, adds more procedures, and provides a graphical user interface. The user
interface for setting up the processing is shown in Fig. 7.25 below:

Capture Data Convert Data Training

Configuration Tasks

General
Convert Data

Cancel

PCA Landmark Componen

Landmark Tracking

Face Tracking Algorithm: [FAN Eye Tracking Algorithm: |Gradient Based Eye Tracking Stride: 1 < Eye Tracking Threshold: 89

Depth Conversion
Face Depth in mm: 80 B Depth Padding in Pixel: 20

\ Filling Use Blur

Visualization
Visualize Convert Face Bounding Box Convert Landmarks Convert Depth Holes

Status Messages

Convert Data Pairs =
Detected training input data

Detected evaluation input data

Prepare train data: 3/1500 v

Figure 7.25.: The graphical user interface for the data preparation phase. The visual-
ization shows the axis-aligned bounding box (left), the 70 facial landmarks (center), and
the hole region of the depth filling algorithm that still needs to be filled (right). Images by
René Ebertowski.

1.) Facial Landmark Detection

The first and second prototypes used the Facial Alignment Network (FAN) by Bulat and
Tzimiropoulos [BT17]. The described pipeline was created back in 2020 and 2021 as the
FAN was the SOTA solution back then, but Google’s free MediaPipe landmark detection
pipeline [Gri+20] became the preferred solution today in 2024. It outperforms other
solutions, such as FAN, in speed and accuracy, and is used in many other SOTA projects
[DBB22; ZBT22a; Gra+22].

2.) Gaze Tracking

For our third prototype, it was no longer possible to work with an external eye tracker
because the sensor and head rotation and position were independent. Synchronizing and
spatially calibrating the Kinect and Tobii eye trackers proved to be difficult. Our solu-
tion was to implement a different eye tracking method based on a work by Timm and
Barth [TB11; Jonl8]. It uses a grayscale-converted RGB image as input to detect the
position of the pupil based on image gradients. This method has been shown to be more
robust under natural lighting conditions than techniques that use infrared images to locate
the center of the eye. To use this tracking algorithm, we must crop the eyes from the orig-
inal full-face RGB image using the bounding boxes of the facial landmarks for the eyes.
Using this crop and converting to a grayscale image, the iris center could then be deter-
mined in 2D pixel coordinates using the iris tracking method of Timm and Barth [TB11].
These determined pixel coordinates were transferred back to the original image using the
original section of the eye. This gave us two more landmarks to encode the gaze direction
for the GAN in the FLM. In practice, however, this approach had drawbacks and needed
further adaptation. When the subject blinked, there was a lot of tracking noise as the
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algorithm searched for an iris and temporarily switched between different local minima on
the closed eyelid. This problem could be minimized by freezing the last iris position when
the eye landmarks of the upper and lower eyelid fell below a certain distance threshold
indicating that the person was blinking. This resulted in better visual results for the GAN
reconstruction.

As mentioned above, we used Google’s Mediapipe for facial landmark tracking. Mediapipe
also added iris detection and gaze tracking during the development of our system, which
was not only faster than Timm and Barth’s approach [TB11; Jon18], but also gave better
results for blinking.

3.) Crop
The crop remains unchanged from the second prototype with an additional 20% of the
bounding box edge length around the landmarks.

4.) Depth filling

It has been shown that there are a few depth pixels in every image that can lead to errors
in depth measurement. These errors are often caused by reflections, e.g. from glasses or
parts of the eyeball, at edges where occlusion occurs due to the technical design of RGB
and D sensors, or by dark surfaces that are not sufficiently reflective. This is called depth
invalidation [Tes24] and will set the depth pixel to the distance of 0, resulting in holes in
the final depth maps, as shown in Fig.7.26a and b. In our experiments, we found that
our trained neural network also reconstructs these errors in the final images. In a three-
dimensional immersive MR environment, this can be disruptive and trigger the uncanny
valley effect. Therefore, we use a depth filling algorithm that is able to reduce these errors.

(a) Image crop of a 16-bit (b) 8-bit depth image without (c) Final 8-bit depth image
depth image after data acqui- depth filling. with depth filling.
sition.

Figure 7.26.: The depth images captured by the Azure Kinect may contain holes due to
errors during acquisition. a) A depth image of a face contains holes in both eyes and on
the chin after data acquisition. b) When the image is processed without depth filling and
used for training, the holes are transferred to the final depth image generated by the GAN.
c) With our depth filling algorithm, the holes are filled. Images by René Ebertowsks.

For this purpose, we used the algorithm of Nam et al. [Nam+16] for our system and adapted
it to our specific use case. The main difference from Nam et al’s implementation to ours
is that we reduced the number of source pixels to reduce the runtime of the algorithm by
80%. Reducing the number of source pixels is comparable to reducing the image resolution
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and comes at the cost of a lower final visual quality, which is acceptable for our application.
However, since the depth fill correction process was originally implemented on the CPU
and not on the GPU, it would have taken several days, or even weeks for large datasets
what implies, we needed to find a faster solution. With the source pixel reduction, the
depth fill steps take about 48 hours to compute the entire dataset of about 1750 images.
The result of the depth filling algorithm is shown in Fig.7.26¢c. Since the algorithm is
highly parallelizable, we expect a significant speedup using a CUDA implementation. An
additional depth filling time of 48 hr is a significant increase compared to the time for
dataset acquisition (15 min) and network training (4 hours), but may be a possible option
for datasets that require high quality reconstruction.

5.) Depth and Resolution Normalization

The next step is to determine the scaling factors necessary to normalize the depth and
final resolution of the face in the image. Since we allow the user to move freely in front of
the sensor, RGB-D images will be captured with the face at different distances from the
sensor and therefore at different RGB and D image resolutions. The depth scaling factor,
denoted as sgeph, is used to adjust for variations in the apparent size of faces due to their
different distances from the camera. This adjustment ensures that the face sizes in each
data pair are scaled appropriately. To achieve this, a target depth value, dgesired, is set
as the reference point for scaling all images. The goal is to find a scaling factor that can
geometrically change the position p of a pixel k in response to changes in depth. This
calculation is directly derived from the first intersection theorem, as shown in the formula
7.21. Since a face in an image appears smaller with increasing distance from the camera,
the scaling factor derived from the intercept theorem must be inverted. Consequently, if
d; > dgesired, then it follows that sgep, > 1.

ﬁ_i’c o dgesired
pr d;

- ﬁf _ pig . ddesired _ pk . 1 dz

= Sqepth = (7.21)

i
di Sdepth ddesired

Qdesived

Depth axis

Camera

Figure 7.27.: Visualization of the depth scaling factor. The inverse of the depth scaling
factor is shown in this illustration by the reciprocal values of the depth values. The calcu-
lation is based on the intercept theorem. Images by René Ebertowsks.

After normalization, we set all images to a uniform resolution of 512x512 pixels. Note
that during the capture process, SynergyNet checks in real time whether the face has a
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minimum resolution (i.e. a maximum distance to the sensor) when the data set is captured.
If this is not the case, the user is informed. This means that we ensure that all captured
and processed images have a higher resolution than the target resolution of the GAN. We
use bicubic interpolation to resize the images.

6.) Histogram normalization, mask and sort

Similar to step 4 of Sec. 7.5, the histogram is normalized, the background behind the user’s
head is rejected, and the data is randomly selected for 85% for the training set and 15%
for the test set. The training process can also be started from the GUI, as shown below:
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Figure 7.28.: The graphical user interface helps to create and monitor the training pro-
cess. Various parameters for the model and the training process can be specified in the
configuration area. The visualization area displays the inputs and outputs of the neural
network and the corresponding images from the data set for comparison. Images by René
Ebertowski.

7.7.2. Results

Fig. 7.29 shows the results of a training session using a dataset processed through the data
pipeline of our third iteration. Compared to the datasets from the previous prototype, the
image quality is inferior. Although the previous prototype achieves similar results in terms
of SSIM, LPIPS reports inferior values. While the best values of the current prototype are
around 0.120, the worst results of the previous prototype end up in this range. In terms of
quality, a more blurred and less detailed representation of the face can be seen, as shown
in Fig. 7.29. Please compare the results directly with Fig.7.19 and 7.20.

We believe this dataset underperforms because it contains a greater variety of pan and
tilt rotations compared to the images captured with the helmet mount. The helmet
mount of the previous prototype made it impossible to rotate the head relative to the
sensor. However, the new capture process allowed a maximum pan/tilt /yaw angle of 10°,
supervised by the SynergyNet. We suspect that this threshold was set too high, resulting
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in too much variance in the data set. This, in turn, leads to poorer final image quality
because the training set contains several minimally rotated faces that are associated with
very similar FLMs. This means that a presumably 1-to-1 relationship between an FLM
and an RGB-D image tends to become a 1-to-n relationship, degrading the final image
quality.

Color Depth Color and Depth
Results of me- Depth differences
RGB output RGB ground SSIM from  tricson columns  between ground truth Renderings of textured
FLM of our GAN truth columns 2 and 3 2and 3 and GAN depth depth map

5
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(lower is better)

Best result in
data set

SIM: 0.832
(higher is better)
LPIPS: 0.159

(lower is better)

Worst result in
data set

Figure 7.29.: Although the third prototype does not require a helmet mount (Fig. 7.3), it
produces a lower image quality. This is probably due to the fact that the dataset we capture
using a stationary RGB-D sensor allows minimal head rotation, which increases the vari-
ance in the dataset and reduces the resulting image quality. Images by René Ebertowski.

7.8. Discussion, Limitations and Future Work

The prototypes presented show solutions and some potential for transmitting NVC be-
tween physically separated individuals. Compared to video-based telephony, our GAN-
based solution is characterized by the fact that only a small amount of bandwidth is
required during operation. Once the generator module is transmitted to the remote side
(it always has a size of 202MB for the 512x512 pixel version, regardless of the shape or
expression of the face in the training set), the network bandwidth required to drive the
avatar is only 67 kbit/s. Video telephony typically requires bandwidths of 0.3 to 3 Mbit/s,
depending on the resolution, what is around 4 to 40 times less data to transmit. In addition
to the usual RGB information, we also provide a depth channel, which would increase the
required bandwidth by an additional 33%. The low bandwidth for our system is achieved
because we do not send raw image data, but only the image positions of 70 landmarks
as integers. Although compression is not the focus of our work, it is interesting to note
that the required bandwidth of an RGB-D stream is orders of magnitude higher. On the
receiver side, the FLM is reconstructed as an image again, which can be considered as a
drawback because the receiver system has to provide the computing power for the image
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synthesis inference for the GAN. In our experiments, the required computational power
is provided by a desktop computer with a powerful GPU. It is currently still difficult to
provide this performance on a standalone MR device.

Although we are able to create an almost photorealistic avatar of a person, there are three
areas where there is a lot of room for improvement: First, it is important to replace the
cumbersome helmet mount with a user-friendly algorithm so that no specialized hardware
is needed to create an avatar. Since 2022, sufficiently accurate (open source) face tracking
methods have been available, making it much easier to solve the tracking problem to create
an accurate training dataset.

The second important area is accurate face tracking under an HMD, which was discussed
previously in Chap.5. Although a solution has been presented in this thesis, it cannot
capture the full range of expressions with all the details of a human face, which is usually
required to reproduce the experience of a real face-to-face conversation.

The third area of future interest is improving the speed of execution. As described, our
system requires a desktop computer, and while the GAN achieves interactive frame rates,
this computing power is not yet available for mobile MR devices. The current trend in
academic research shows the potential of Implicit Neural Representations (INR) such as
NeRFs or alternatives, that does not even use a neural network such as Gaussian splatting.
In particular, the latter technique offers enormous potential in terms of execution speed, as
it applies the neural network training method (Stocastic Gradient Descent) to 3D scenes by
a lot of 3D points (Gaussians) and then uses only hardware-accelerated 3D visualization
during the subsequent execution time. Avatars rendered using Gaussian splatting and
similar methods may have great potential for display even on mobile devices.

7.9. Conclusion

In this chapter, we focussed on improvements of Generative Adversarial Networks (GAN)
to answer the 6th research question "How to transfer the face in a photorealistic appearance
with authentic movement in real time despite wearing an HMD?". We presented techniques
for conveying nonverbal facial communication cues in a VR environments and realized face
tracking with the face-tracking HMD introduced in the last chapter.

Through three iterative prototypes, we presented a pipeline that captures, processes, and
renders identity-preserving photorealistic facial avatars in real time. The first prototype
established a basic framework using the Pix2Pix GAN [Iso+17] architecture. We have
extended Pix2Pix with an additional channel for depth data and demonstrated the fea-
sibility of real-time facial avatar generation from RGB-D data with about 950 fps with a
resolution of 2562 pixel.

The second prototype incorporated advanced loss functions and architectural enhance-
ments, including multiscale discriminators and feature matching losses. These enhance-
ments increased the final resolution to 5122 pixel. In related work, GANs have shown that
higher resolutions can lead to poorer image quality, but we were able to successfully sta-
bilize the training process and even further increase the visual quality in regard to higher
image sharpness and more details compare to the first prototype. In order to maintain the
high frame rates, the generator was changed only to a minimal extent and still delivers
refresh rates of around 250-333 fps what is sufficient for telepresence. The training pipeline
and the discriminator module were changed significantly compared to the foundation code,
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the Pix2Pix [[so+17]. Moreover, we have also reduced the training time to a quarter of
the original time of the first prototype through hyperparameter tuning.

The third prototype aimed to improve usability by eliminating the need for a helmet
mount during data acquisition. By implementing real-time face orientation and distance
verification algorithms, we created a more user-friendly solution. Although this iteration
was more comfortable, it highlighted the challenges associated with maintaining image
quality, as the new capture process introduced more variability into the training data set,
which in turn led to slightly more blurred results compared to the second prototype.

In summary, our research contributes to the ongoing effort to create immersive telepresence
environments. By enhancing the realism and expressiveness of digital avatars, we move
closer to bridging the gap between virtual and real-world interactions. The next chapter
explores the same research question, but from a different technical perspective based on
Implicit Neural Representations (INR).

169






8. Face Rendering with Implicit Neural
Representations

Various researchers have already suspected that deep neural networks with ReLLU activa-
tion functions tend to learn low-frequency components of functions more easily than high-
frequency components. This was demonstrated and proved by Rahaman et al. [Rah+19]
and the authors called this phenomenon "spectral bias". This is an important finding for
reconstructing and generating data such as text, images, videos, audio, and 3D environ-
ments with neural networks.

Vaswani et al. [Vas+17] were already aware of the existence of spectral bias and presented
the Transformer architecture two years before Rahaman and his team. Vaswani et al. in-
troduced the simple but effective Positional Encoding, which allows Transformer to better
encode the order of data elements and, therefore, can reconstruct (or "know") the relative
position of a respective data element in its context much better compared without po-
sitional encoding. Positional encoding is a function that adds further dimensions to the
input data using Trigonometric functions. For example, a 1D position vector for a word
in a sentence (e.g. "the 5th word in a sentence") becomes a 10-dimensional vector, i.e.
a single value is encoded by 10 values. With this encoding, a ReLLU-based network can
reference and reproduce the positions of data elements relative to other elements much
better.

Positional encoding was applied three years later by Mildenhall et al. [Mil+21] to vol-
umetric data in combination with ray tracing and produced astonishingly good results,
which until then had not been achieved in the context of neural view synthesis (NVP).
Sitzmann et al. [Sit+20] achieved similarly good results for volumetric data, especially for
signed distance functions (SDF), a little earlier. However, instead of positional encod-
ing, the researchers used sinusoidal activation functions instead of ReLU within the entire
network. They were one of the first to successfully initialize and train a neural network
with sinusoidal activation functions. The success of positional encoding and sinusoidal
functions is based on similar circumstances and reasons why neural networks can better
store high-frequency data/functions with the help of circular functions [Tan+20].

Implicit Neural Representations (INR) or also called coordinate-based neural networks got
their name from the ability to use input encoding methods, such as positional encoding,
lookup or hash tables, to send precise multidimensional coordinate queries to the neural
network. The network can then respond with accurate data at those specific coordinates
that is implicitly stored in the weights of the network. To illustrate this, consider an RGB
image such as the image from the fox below (Fig.8.1). When a traditional fully-connected
MLP is trained on an image, such that it receives pixel coordinates in integer x and y,
and the network is supposed to output the corresponding RGB data at that location of
the image, it can be observed that the network only stores and reproduces low-frequency
signals, as seen in the middle of Fig. 8.1. However, when positional encoding is used at the
input, encoding the x and y data, the neural network is able to reproduce the individual
color information of the learned image with high precision (right in Fig. 8.1).
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Iteration 1000 It

o

Ground Truth Output of MLP w/o Fourier features MLP with Fourier feature such as
positional encoding

Figure 8.1.: To overcome the spectral bias of neural networks, Fourier features can be
used as a higher dimensional input signal. On the left, the supervision image can be seen,
which is the ground truth reference that an MLP is supposed to learn. In the middle,
the output of an MLP without Fourier features is shown. Although the network has more
parameters than pizels in the image, it is not able to reproduce the signal sharply. On
the right, the same MLP with Fourier feature as input is used, showing only a minimal
difference from the reference image in on the left. Images from Tancik et al. [Tan+20].

In the previous chapter, GANs were discussed in detail. The networks presented in the
previous chapter also use ReLLU activation functions, but are able to store high-frequency
data. This can be explained by the multi-layer architecture and the associated hierarchical
feature extraction of CNNs. This means that different layers are responsible for different
resolutions and therefore also image frequencies. Spectral bias will also be present in
these architectures, but it is circumvented by a kind of scaling of the low-frequency signals
stored by the ReLU functions due to storing features at different image resolutions. The
disadvantage of CNNs is that the layers have to be run through consecutively and the
calculations build on each other. However, if coordinate-based neural networks are used,
it is possible to reduce the amount of consecutive and sequential queries by making certain
adjustments and sorting input signals beforehand and can obtain image data much faster.

In this chapter, we explore the advantages of INRs, particularly coordinate-based neural
networks, and tailor them specifically for real-time face animation. Our contribution
is the reduction of execution time of an INR-based approach while keeping the visual
rendering quality of animated human faces in telepresence applications, thereby enhancing
the conveyance of nonverbal communication cues. This chapter presents another approach
that shows a real-time capable synthesis of facial animations. We show that, in contrast
to GANs, INRs have a lower generalization capability and thus a lower interpolation and
extrapolation capability between, for example, facial expressions. Therefore, our approach
does not manage to outperform GANs in quality and speed, but INRs still have some
open research areas and could have the potential to become significantly better in quality
and speed. The advantage of INRs lies in the potential to perform fewer consecutive
computational steps and thus significantly speed up the process of facial animation.
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8.1. Related Work

8.1.1. Implicit Neural Representations

Prior to the discovery of NeRFs, there was some preliminary work that attempted to
implicitly store signed distance fields or also called signed distance functions (in both
cases SDF) in neural networks. The first publications in the field of INR were Park et
al. [Par+19] and Mescheder et al. [Mes+19]. Both works successfully store SDFs in the
network and attempt to implicitly learn a three-dimensional decision boundary according
to the simple formulas o : R? — {0,1}. While Mescheder et al. [Mes-+19] still use encoder
architectures, Park et al. [Par+19] rely on fully-connected ReLU networks with a skip con-
nection, which will prevail in the later course of implicit neural representations. Mildenhall
et al. [Mil4-21] used an 8-layer, 1024-neuron fully-connected architecture for NeRFs. How-
ever, the special feature of NeRFs was not the architecture, but the positional encoding,
which, as mentioned above, adapts the input data in such a way that neural networks are
able to reproduce certain color values and the density at a certain coordinate in the volume
much more accurately. At the time, however, it was not known exactly why positional
encoding was effective. Sitzmann et al. achieved similar results with high precision using
the so-called SIREN [Sit+20]. Instead of positional encoding, Sitzmann et al. used sine
instead of ReLU as the activation function, and were able to outperform ReLLU networks
with positional encoding. Sitzmann et al. showed that SIRENs can store various media
with high quality, such as images, videos, audio, volumetric data, mathematical functions,
and other modalities. It should be noted that the size of the neural network was generally
larger than the media file. This means that the data was not compressed.

Building on NeRFs, the properties and storage potential of neural networks have been
further explored. Different positional, coordinate or parameter encoding approaches have
been investigated, for example to sample INRs with different spatial resolutions with less
anti-aliasing artifacts, as demonstrated by Barron et al. [Bar+21]. Martel et al. introduced
ACORN [Mar+21], which follows an adaptive spatial partitioning approach that samples
high-frequency portions of a medium at higher resolution and low-frequency portions at
lower resolution. The authors call their approach a hybrid implicit-explicit network archi-
tecture. ACORN allows the available capacity of the neural network to be focused on the
areas where information relevant to the user is stored. This saves training and inference
time and streamlines the network in a way that complex structures can be captured much
faster and more efficiently. A special feature of ACORN is that the adaptive ability to
subdivide the space independently and effectively is learned and optimized by backpropa-
gation. This means that the training process adapts automatically the sampling frequency
in areas with more details. Two ReLU MLPs with positional encoding are used, where
the first network acts as a coordinate encoder and the second MLP is much smaller and
acts as a feature decoder.

Miiller et al. presented a further improvement for INR with Instant-NGP [Miil422] and
achieved not only faster training and inference times than ACORN, but also required less
memory for the INR. While ACORN used an MLP with several million parameters as a
coordinate encoder, Miiller relied on a hash table. The advantage of hash tables is the
constant query time of O(1), which is much faster than the query by a multi-layer MLP,
which requires matrix multiplications and the execution of activation functions. Miiller
et al. retained the feature encoder as a small MLP of two fully-connected layers with 64
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neurons each. Surprisingly, hash collisions were automatically detected and eliminated by
training.

Subsequent research has shown that in the original architecture of NeRFs, a large part
of the capacity of the neural network was used for storing coordinates and only a small
part was used for storing features such as color or density. With DINER [Xie+23], Xie
et al. provide deeper insights into how exactly neural networks use positional encoding.
The following Fig. 8.2 below shows how an hash table before a 2x64 fully connected MLP
helps to learn a signal. The experiment includes three signals, as shown in column (a)
"Ground Truth (GT)". The original image of a baboon is shown at the top. In the middle,
the pixels are sorted by color from left to right, and in the bottom image, the pixel
positions of the original image are randomly chosen. In all three images, the histogram of
the images is identical, but the frequency greatly differs. Column (b) shows the Fourier
spectrum. Column (c) shows the reconstruction of a 2x64 fully connected MLP with
positional encoding and without a hash table. Column (d) shows the hash-mapped input,
which is automatically sorted by color from the training process and thus shows a low
frequency. Column (e) shows the same MLP as in column (c), but with a hash table and
without the positional encoding. The hash table consists of learnable parameters and is
trained jointly with the MLP. Note the very high reconstruction quality of the original
signal, independent of the frequencies present in the ground image of column (a). Column
(f) shows the output of the MLP when grid coordinates are fed directly into the MLP. Note
that the MLP learns a low frequency representation what is congruent with the theory of
the spectral bias. This means that the hash table stores the high-frequency position data
and the MLP stores the available features, which in this sense represent the colors.

Baboon

Sorted Baboon

Random Baboon

(a) GT (b) Spectrum of GT (c) Results by MLP (d) Hash-mapped Input  (e) Results by DINER  (f) Learned INR in DINER  (g) Spectrum of (f)

Figure 8.2.: This Fig. explains, why the combination of a jointly-optimized lookup table
with learnable parameters and an MLP successfully learns disorder-invariant INRs. The
lookup table "learns” high-frequency positional information, while the MLP stores a low-
frequency feature distribution. For a detailed explanation, see the text above. Image from
Xie et al. [Xie+23].

8.1.2. Face Animation with Implicit Neural Representations

A large number of different works have shown the potential for rendering and animating
photorealistic faces with INRs. With NeRFace, Gafni et al. [Gaf+21] was one of the first
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to use NeRFs for facial animation with INRs. Compared to the original NeRF work by
Mildenhall et al. [Mil+21], Gafni et al. only require a monocular RGB video sequence.
To realize this, the use of a 3DMM and corresponding face tracking is necessary, which
can accurately determine the rotation and position of the head. For this purpose, the
method of Thies et al. [Thi+18a] was used. By moving and tracking the rotation and
position of the head, the multi-view data set required for NeRF, is replaced by inversely
transferring the head movement to the camera position. This causes the camera to move
around the head and serves as an alternative form of an multi-view data set. Furthermore,
it allows creating a "canonical face space". This is essential to isolate the head position and
rotation parameters from the expression vectors, otherwise the INR would learn specific
expressions correlated to specific head positions or rotations. The results require several
hours of training, are not real-time capable and, therefore, cannot be used for telepresence
applications.

Zielonka et al. (INSTA) [ZBT22a| also use a canonical space compared to Gafni et al.,
but relies on the improved concept of Instant-NGP by Miiller et al. [Miil+22]. This way,
Zielonka et al. not only shorten the training times from hours (NeRFace) to only 10 minutes
but also enables real-time rendering, which makes the use in MR telepresence applications
theoretically possible, but was not explicitly demonstrated. Similar to Martel et al. with
ACORN [Mar+21], Zielonka et al. uses a hierarchical tree structure that splits the space
and can avoid calculations for ray computations, which further improves the speed of the
system. However, NeRFace and INSTA have the weakness that the systems generalize
poorly for unseen expressions.

Zheng et al. [Zhe+22] introduced "I M Avatar" and solves the problem of lack of generaliza-
tion of unseen expressions by an architecture of 3 large fully-connected coordinate-based
MLPs. This approach allows not only to interpolate expressions and poses based on the
blendshapes of the parametric face model FLAME [Li+17], but also to extrapolate them
further than NeRFace and INSTA. A major disadvantage, especially for the application of
real-time telepresence, is the lack of real-time capability and interactivity of the system.
The inference time is not reported, but based on the usual execution time for ray tracing
and based on the documented large neural architecture in the paper, we assume that the
system is computationally intensive and comparable with NeRFace [Gaf+21].

Grassal et al. [Gra+22] do not rely on ray tracing and instead use the classic rasterization
pipeline with their system called "Neural Head Avatars". This makes their approach
significantly faster than, for example, that of Zheng et al. (I M Avatar), but in this work, as
in many others, the focus is not on a short execution time. Current work rather focuses on
the visual quality of the results. The work of Grassal et al. has similarities to Zheng et al.
(I M Avatar) in that Grassal et al. also uses FLAME, adapts the head geometry including
hair with a coordinate-based MLP and uses another MLP for the texture. The special
feature, however, is the architecture of the MLPs, which is strongly oriented towards the
work of Sitzmann et al.[Sit+20]. Sitzmann et al. report on an experiment in which
they use a mapping network based on FiLM by Perez et al. [Per+18]. FiLM is similar to
the idea behind StyleGAN by Karras et al. [KLA18|, which uses Adaln to better control
different styles and structures. Grassal et al. uses FiLM to condition expression and pose
parameters of FLAME in the SIREN architecture. Compared to previous work, their
approach is interactive and fast, making it compatible with telepresence applications on
high-end hardware. In addition, it would be easy to integrate into existing applications
since the system is based on a rasterization pipeline instead of ray tracing.

Lombardi et al. [Lom+21] introduces "Mixture of Volumentric Primitives". It is a hybrid
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between polygonal mesh-based and volumetric-based approaches. Key contribution is an
optimized end-to-end learning system, that creates small volumes, that are ray marched,
along the mesh surface of the avatar. Creating small volume along the actual avatar
avoids sending rays through empty space. This system has some similarities with Gaus-
sian Splatting by Kerbl et al. [Ker+23]. Similar to Gaussian Splatting, Lombardi et al.
optimize their system for positions, rotation and scaling of the individual volume primi-
tives. A Variational Autoencoder (VAE) [KW19] generates the content, called payload, of
these volumes. Gaussian Splatting, on the other hand, uses simple primitives (Gaussians)
which are significantly smaller than the volumes of Lombardi et al. but can also occur
in significantly higher numbers in the scene, as the pipeline of a rasterizer is hardware
accelerated. Due to the VAE, however, Lombardi’s system may offer a better illumination
reconstruction than an approach based on Gaussian splatting.

8.2. System

This chapter describes our method for creating a controllable head model using a 3-5
minute monocular RGB video, e.g. created with a smartphone. By leveraging the FLAME
3D Morphable Model (3DMM) [Li+17], we extract and track facial identity and expression
parameters. The process involves dividing the video into "expressive" and "silent" segments
to evaluate the face synthesis independently from telepresence applications. We use a 2.5D
approach with so-called "rainbow encoding" to encode the face surface in RGB coordinates,
optimizing the neural network input for real-time, accurate rendering.

8.2.1. Capture Process and Training Dataset

Similar to our GAN-based approach, our goal is to build a controllable head model. For
this we need a 3-5min video of a person as in Chap. 7. Compared to Chap. 7, however, we
only need RGB instead of RGB-D data. Depth data is no longer necessary with the use of
a 3DMM in our use case. Although it would tend to speed up and stabilize face tracking,
as more data would be available and it would be easier to fit the SDMM using the Iterative
Closest Point algorithm (ICP), for example, RGB-based face tracking solutions are now
available that provide solid tracking results based on RGB data.

With the help of the work of Zielonka et al. [ZBT22b] we determine from a single still
image from the video, in which a neutral expression is shown, the identity parameters
B € R30 of the target person. We then use these identity parameters and track further
face parameters in the full training video, as shown in Fig.8.3. Of each image I; of this
monocular video, we determine the intrinsic camera parameters K € R3*3 as well as the
FLAME mesh M; € R%923 with corresponding facial expression coefficients ¥; € R?, eye
gaze parameters G; € R'? and jaw pose parameters J; € RS,
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a) b) c) d)

Figure 8.3.: We used "MICA" for determining the face identity parameters and the "Met-
rical Tracker” for estimating face expression parameters in each frame of our training, vali-
dation and silent video. MICA and Metrical Tracker are works by Zielonka et al. [ZBT22b].
Image a) shows the monocular video frame. In b) the fitted SDMM is shown as overlay
over the input frame. The texture is used for optimization and is based on the Basel face
model [BV99]. c¢) shows facial landmark detection of MediaPipe [Lug+19]. d) shows the
rendered FLAME model without texture.

In contrast to the pipeline we describe in Chap. 7, we divide the video into two parts. The
first part comprises a 3-4min recording while the person reads out a predefined text (a
2-pages long random story created by ChatGPT) and shows various expressions such as
laughing or raising eyebrows. We call the second part "silent video" and is 1-2 minutes
long. In this video, the person does not speak and only moves their head slightly. The
person nods from time to time, as if showing that they are listening to someone. In our
experiments, we decided to overlay the generated face in the silent video in order to be
able to better subjectively evaluate later how well the synthesis of the face harmonizes
with the rest of the head. Therefore, we skipped the direct integration into a telepresence
application, as we have learned from previous experiments that face tracking in the HMD
is a variable that can strongly influence the final visual result. Therefore, we decided to
decouple face reconstruction from face tracking in the HMD in this chapter.

8.2.2. Rainbow Encoding

One of the main goals of our work is real-time capability, so that this can be used in a telep-
resence context. Similar to Chap.7, we have therefore again opted for a 2.5D approach
and rely on hardware-accelerated processes of a rasterizer instead of computationally ex-
pensive ray casting, as used in NeRFs[Mil+21] and the follow-up work. Therefore, our
approach is to render a 3DMM in three dimensions, but only reconstruct a projected tex-
ture from the viewer’s point of view in screen space with an INR. We sacrifice a complete
3D reconstruction and higher quality for speed. While in NeRFs a ray is shot through the
3D volume for each pixel of a generated frame and the neural network is traversed several
hundred times along this ray, in our system the neural network is traversed much less.
This is because we only sample the visible pixels of the current face crop of the current
frame and use those pixels as input to the neural network. Thus, the network is only
iterated as often as there are pixels in the face. We do this using a kind of color coding,
which we will call "rainbow encoding".

Our idea is to encode the surface of the face in a similar way to the UV coordinates
commonly used in computer graphics, which serve as input for the INR. This means that
every point on the face is uniquely encoded. The idea of encoding using visualization based
on vertex positions comes from Doukas et al. [DZS21]. We use this encoding instead of
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the UV data in order to run the INR networks in screen space and not camera space. The
difference between screen space and camera space means that, for performance reasons, we
only have to generate the currently visible pixels in the final image using the INR networks,
instead of generating a texture in camera space on the entire 3D FLAME mesh, and we
also have to take the Nyquist-Shannon sampling theorem into account. This means that
we would ideally have to generate the texture in double resolution in camera space in order
to avoid image artifacts in screen space. Please note that our encoding also transforms
the input data in the range between -1 and 1, which is necessary before feeding the data
into the network for optimal learning.

The original FLAME template does not have any faces in the oral cavity. We have closed
this area manually and inserted faces, as otherwise there would be no rainbow encoding
inside the mouth. We generate the RGB "rainbow" data once in advance of the training
and leave it unchanged in later stages. To do this, we encode the 3D position of each vertex
in the face crop area on the neutral FLAME mesh (identity and expression parameters
are 0) as RGB data. This means that we pass the position data of each vertex from the
vertex shader through the fragment shader, where the XYZ data is converted to RGB and
rendered. The surface colors of the faces are interpolated between the colors of individual
vertices. This ensures that there is a continuous transition between the edges and faces in
such a way that each pixel in the final "rainbow image" has a unique color. The rainbow
images are used as input to our INR networks and have an alpha mask that allows the
INR networks to be executed only in the face area. This ensures that computing time is
only used for essential areas and that no unnecessary calculations take place, such as in
many NeRF papers where rays are sent through the empty space.

d) e) f)

Figure 8.4.: Combination of the tracking results of the Metrical Tracker (Zielonka et
al. [ZBT22b]) with our "rainbow encoding”. a) shows a frame from the "silent" video part.
b) shows the according rainbow encoding to this frame. c) is the alpha mask. d) is a
transparent and e) a non-transparent overlay. f) shows the applied alpha mask on the
original frame from a). Note, that our INR optimizes on this face texture.
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8.2.3. Render Pipeline

The rainbow images are the base for the rendering process for the photorealistic synthesis
and serve as input to the neural networks. The following image illustrates the role of the
rainbow images and the networks in the entire render process:

“Rainbow” For each non black pixe
Images
Y
DINER :
i lookup table S T
| ¥
. < DINER | :
FLAME Rasterizer i lookup table SIREN+FILM
¥
Vertex DINER |+ SIREN+FiLM
colors lookup table
Foreground
(combined)
Background \ Generated
frame frame
@ Data
@ Process

O Trainable parameters

Figure 8.5.: The render pipeline starts with the input of FLAME parameter. The FLAME
mesh is provided with the previously defined rainbow encoding colors for the vertices and
three variants are rendered by a rasterizer. These three rainbow images include a crop of
the eye area, the mouth and the entire face, as shown in Fig. 8.6.

As already mentioned in related work, Mescheder et al. [Mes+19] and Park et al. [Par+19]
as well as SIRENs [Sit+20] and especially NeRFs [Mil+21] for novel view synthesis were
the foundational work in the field of INRs. Follow-up papers have continuously developed
new optimization methods for INRs, which require less memory and less computational
effort. Xie et al. [Xie+23] has shown that a simple lookup table, which consists only of
learnable parameters and is placed in front of a comparatively small fully-connected MLP,
achieves very good results for INRs. Xie et al. [Xie+23] found the concept of disorder-
invariant implicit neural representation, DINER for short. Xie et al. showed that DINER
in combination with MLPs that use sinusoidal activation functions (SIRENS) [Sit+20]
achieve better results for image data than MLPs with ReLU activation.

In our approach, we therefore use the concept of Xie et al. [Xie+23] (DINER) for our
INR. We use a lookup table with 256° learnable parameters and instead of an ordinary
ReLU MLP as presented in Instant-NGP, a SIREN MLP [Sit+20]. In addition, we ex-
tend the SIREN network with a FiLM mapping network [Per+18], which was successfully
used for face rendering by Chan et al. (pi-GAN) [Cha+21] and Grassal et al. (Neural Head
Avatars) [Gra+22]. The mapping network receives expressions and pose parameters from
FLAME and is able to realize a kind of "pre-sorting" of the input signals. The mapping
network is trained jointly with the lookup table and the SIREN MLP.

Our experiments have shown that the visual quality increases if we train individual net-
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works for certain areas of the face. Instead of training the entire face with one network,
we therefore use three separate smaller networks. One network that reconstructs the eye
area, one for the mouth and one that represents the rest of the face. We superimpose the
three results for the final image, as shown in the following Fig.:

HAL]

DINER+SIiREN+FiLM DINER+SIiREN+FiLM DINER+SIiREN+FiLM

Figure 8.6.: We use three separate DINER+SIREN networks to generate specific areas
of the face. This approach delivers better results than o single DINER+SIREN network.

We obtain the crops of the individual areas through face tracking and alpha blending with
predefined FLAME face areas.

The blue rectangle at the top right in Fig. 8.5 shows the combination of three strands
of DINER+SIREN-+FIiLM networks. Each strand is specialized on eyes, mouth or the
background of the face and receives two data as input: first, a single pixel of the accord-
ing rainbow image generated by the rasterizer based on certain FLAME parameters and
second, the FiLM mapping network receives 68 FLAME parameters. Among them are
U, € R, eye gaze parameters G; € R'? and jaw pose parameters J; € RS. The following
Fig. 8.7 shows the architecture in detail.

The FiLM architecture is inspired by Sitzmann et al.[Sit4+20]. Please note that it is
important how the SIREN layers need to be initialized before training. We have also used
the initialization scheme of Sitzmann et al.. The size of the linear layer in the SIREN
part is inspired by the color MLP of Instant-NGP [Miil4-22] and DINER [Xie+23]. We use
Mean Squared Error (MSE) as the loss function and employ the Adam optimizer [KB17]
with a learning rate of 0.002. Our implementation utilizes PyTorch 2.0.1, Pytorch3D 0.7.4,
and Kornia 0.6.12 [Rib+20].
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Figure 8.7.: This illustration shows the blue rectangle from Fig. 8.5 in detail. The FLAME
parameters are the foundation. This data is passed to the rasterizer, which generates three
rainbow tmages for the eyes, mouth, and background. The FLAME parameters are also
passed to the mapping network, which injects data (latent code from the FiLM mapping
network) into the DINER+SIREN pipeline. This way, not only are the rasterizer images
used as input, but also the FLAME parameters are used directly.

8.2.4. Lib Sync

In 2024, off-the-shelf face tracking hardware for HMDs still struggle to authentically cap-
ture the mouth region when speaking. As an alternative to face tracking, we have inte-
grated an audio-to-lip movement pipeline. This way, the HMD’s microphone can be used
to control the avatar’s lip movements. To accomplish this, we use FaceFormer by Fan et
al. [Fan+22]. FaceFormer uses Wav2Vec2 [Bae+20] for the audio analysis and receives an
audio track with speech, analyzes it based on the MEL spectrograms with a CNN and
forwards the local features as latent space to a transformer network, which generates the
contextualized representations. The dataset of VOCA [Cud+19] is used to build a connec-
tion between audio and a vertex offset in the FLAME mesh, which is the core component of
FaceFormer. These vertex offsets move the mouth according to the audio. However, a chal-
lenge for using FaceFormer in our application is that we need blendshape parameters for
the expressions of the FLAME mesh for our pipeline in Sec. 8.2.3 instead of vertex offsets,
because the DINER+SIREN+FiLM render pipeline learns to generate the final texture
based on the blendshape parameters. For our case, we did not pursue a new training of
the FaceFormer pipeline, as the authors of FaceFormer had already stated in GitHub issue
(No.35) that the original data set of VOCA [Cud+19] for training does not contain any
blendshape information as information, but only vertex offsets. Thus, we have decided to
develop our own neural network, which we have named 'FafeFormer-2-Expressions-Net",
short "FF2EXP-Net". It accepts vertex offsets and returns 50 blendshape parameters and
one jaw pose parameter of FLAME. The following Fig. 8.8 shows the results:
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FaceFormer Learned FLAME Expression
Vertex Offset Parameters based on Offset

Figure 8.8.: Results of the FaceFormer-to-FExpression-Net (FF2EXP-Net) for driving the
mouth of final avatar over the microphone of an HMD. FF2EXP-Net takes as input the
generated FaceFormer [Fan+22] vertex offset data (left column) and infers 51 FLAME
expression parameters from it (right column). This way, we can drive the avatar face
with according FLAME parameters, and not only offsets. That is important, because
the DINER+SIREN+FiLM pipeline needs as input FLAME parameters. The renderings
do not show a generated avatar of our pipeline. They show the Basel Face Model tex-
tures [BV99] onto the FLAME geometry, only for supervision of the training.

The following Fig. 8.9 illustrate the relationship between the different processes and data
in our pipeline.
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Figure 8.9.: With MICA and the metrical tracker by Zielonka et al. [ZBT22b], we deter-
mine identity and expression parameters of the training video. With FaceFormer we drive
the avatar based on audio input and can also use our pipeline in context of an interactive
virtual assistant in a video call.

Our network takes 15069 vertex offset values, which is the output of FaceFormer. This is
followed by 8 fully-connected layers, each with 64 neurons. The input data is expanded to
16 bands using positional encoding. At the end of the network consists of 51 output values,
which correspond to 50 expression parameters and one jaw parameter. As activation
function we use LeakyReLU with 0.2. We train with a learning rate of 0.0001 with Adam
over four epochs. The data set is about 10 min of audio. As loss we use a combination
of 4 metrics. The first value is the accumulated L2 distance between the vertices of
FaceFormer and the vertex positions based on the predicted 51 blendshape parameters of
our FF2EXP-Net. The second loss is also a MSELoss, but only on two vertices of the
inside of the lips. This better backpropagates the error of the mouth opening into the
network. The third loss is a photometric MSELoss of the entire face and the fourth is
also a photometric MSELoss, but with a focus on the mouth area. As texture, we used
the Basel face model [BV99] texture with all PCA values set to zero. The weights of the
individual losses were set to the following values by hyper-parameter tuning in the order
in which they are mentioned above: 1, 1, 0.001 and 0.01. Also the architecture (number of
layers and neurons), learning rate and epochs are determined by a hyperparamter tuning
procedure using Ray Tune 2.0. A forward pass for a frame takes one millisecond on
an Nvidia GeForce RTX 3090 laptop version. FaceFormer is also real-time capable and
makes the entire audio-to-lip-movement pipeline interactively applicable in a telepresence
environment. Please note that we do not use any optimization strategies such as Pytorch’s
Autocast (formerly known as Nvidia APEX) or tracing the model with a TorchScript JIT
compiler.

8.3. Results

8.3.1. Self-driven Avatar

We show results of self driving the avatar, which is similar to a telepresence setting, and
we show that our system can also be used in other areas. Our system is capable of
authentically capture the identity of the target person. Below we show the visual results
of our pipeline in Fig. 8.10:
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1 2 3 4
Real Generated Real Generated

Figure 8.10.: Results of self-driven reenactment: Columns 1 and 3 are frames from the
"silent video" were the person did not speak and only moves and rotates the head. Columns
2 and 4 show generated results. We have taken tracking expression information from the
eval dataset and overlays it onto the frames from columns 1 and 3. Note that we have
used the head position and rotation from columns 1 and 3. Only the inner part of the
face has been replaced by our system in real time by transferring the expression parameters
of the eval set. The amount of the face (or face crop), what is rerenderen, is depicted
in Fig.8.6. The generated images have a edge length of 350 pizel. Results in motion:
https: //youtu. be/ aXGh6zuscko .


https://youtu.be/aXQh6xvscko
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8.3.2. Interactive Text-to-Speech Driven Avatar

We demonstrate that it is possible to combine our system with a chatbot and a text-to-
speech system to realize an interactive virtual assistant. A interactive virtual assistance
with a photorealistic face is actually not a goal of this dissertation, but it demonstrates
the broader impact of our invention. We use a simple text-to-speech synthesis to let an
avatar say given phrases through the described pipeline of this chapter. Current text-
to-video synthesis does also works in real time what maintains the interactivity of the
system. At the time of development, ChatGPT has also demonstrated its interactive
potential and offered an API. Therefore, we have combined ChatGPT with Microsoft
Azure’s text-to-speech system to test an interactive virtual assistant with a face. It is
similar to have a video-conference call with a chatbot. The following figures show the user
interface of the system as well as different individuals as avatars. For details in motion
see: https://youtu.be/yZQ5jmdExsE

Al generated

Made: (Cunversaliun with ChatGPT 9

What to say? :)

Example Sayings

(Whal‘s your name?) (Hello World, my name is Anibot.)

(Here 1'am! What are your other two wishes?) (Huw are you mday?)

v

L B Expression Control

Figure 8.11.: Broader impact and use cases of our pipeline: With the use of ChatGPTs
API and the combination with a Text-to-Speech service, our system is able to provide an

interactive virtual assistance with a face. The right side of the image shows the GUI of

our experiment in a web browser.

Mode: ( Read Aloud 9

What to say? :)

Example Sayings
(‘wnats your name? ) (Hello Woric. my name is Aninot. )

( Here 1 am! what are your other two wishes? ) ("How are you today? )

o—) ©\pression Controf

Figure 8.12.: As the avatar creation process is almost completely automatic, additional
avatars can easily be created and inserted into the GUI.
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Figure 8.13.: All images are generated by using the silent video as background and driver
for head position and rotation. With the Microsoft text-to-speech service, we create audio
that we feed into our lip-sync pipeline based on FaceFormer by Fan et al. [Fan+22]. The
entire face is reenacted such as Fig. 8.4 shows. The generated images have a edge length
of 350pizel. We can run two avatars on a Nvidia GeForce RTX3090 (desktop version).

8.3.3. Timings

Our system needs 24 ms to generate a frame of 350 px edge length which leds to 41.6 fps.
This was measured on a Lenovo Legion Notebook with AMD Ryzen 7 5800H and Nvidia
RTX 3090 (notebook version). The framerate is sufficient to realize a smooth rendering in
a video stream of 30 fps. The 24 ms per frame is measured on an average of 99 frames in
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a row and are divided as follows: 20 ms for the rasterization of the 3 rainbow images with
PyTorch3D, 2.3 ms for running through the DINER+SIREN+FiLM strands and the re-
maining 1.7 ms are used for combining the images with Kornia, which is GPU-accelerated.
We do not use any optimization strategies such as Pytorch’s Autocast (formerly known as
Nvidia APEX) or tracing the model with a TorchScript JIT compiler.

Please note, that implementing the DINER lookup table significantly accelerates the for-
ward passes for the neural network. Without DINER, we need a neural network with
a capacity comparable to that presented in NeRFs[Mil+21] or Neural Head Avatars by
Grassal et al. [Gra+22]. For example, Grassal et al. use 8 consecutive fully-connected
layers with 256 neurons and an additional last fully-connected layer with 128 neurons for
texture generation. In our experiments, a SIREN+FiLM architecture without DINER
takes about 10 to 20 times longer for a forward pass. With the help of DINER, we can
make our architecture much smaller and therefore faster, as shown in Fig. 8.7. This can be
explained by the fact that accessing a lookup table has only a constant time complexity
of O(1) while a neural network has a time complexity depending of the number of layers,
weights and biases. Compared to other volume-based INR systems, our image-based INR
approach is therefore much faster than other systems that use INRs for face reconstruc-
tion, such as NeRFace by Gafni et al. [Gaf+21], that requires minutes for generating a
single frame.

8.3.4. Ablation Study

The use of a mapping network in the context of face reconstruction has yielded good results
to disentangle input parameters and styles in several related works such as Sitzmann et
al. [Sit+20], Karras et al. [KLA18] or Chan et al. [Cha+21]. In our final architecture, we
use DINER with two SIREN+FiLM layers of 64 neurons each to speed up the generation
process, but we want to report the results of a study in a different architecture that may be
relevant to scientific discovery and later justify the decision with the DINER architecture.

The authors of Neural Head Avatars|Gra+22] have chosen an 8-layer 256 neuron
SIREN+FiLM architecture with an additional 9th layer of 128 neurons and a small ReLLU
mapping net. The mapping net receives the pose and expression parameters from FLAME
as input. Inspired by this work, we also chose a SIREN+FiLM architecture with a map-
ping net, but instead of one large net for the entire face, we use three smaller nets. These
nets generate the areas around the eyes, mouth, and the rest of the face. Our architecture
is 6 layers of 256 neurons each. In contrast to other works such as Sitzmann et al. [Sit+20]
or Grassal et al. [Gra+22|, we found during hyperparameter tuning that instead of initial-
izing the untrained network with w, = 30, the value w, = 40 leads to better results. The
following images show a direct comparison of an 8-layer SIREN with 256 neurons to our
approach with 3 separate networks with only 6 layers and 256 neurons each.

187



8. Face Rendering with Implicit Neural Representations

188

Only 1x SIREN Network for 3x SIREN+FiLM nets for eyes,
entire face. Without FiLM. mouth and face background.

Figure 8.14.: Comparison of a single large SIREN full face network with 8 layers of 256
neurons each (left) versus 8 smaller SIREN+FiLM networks for eyes, mouth, and facial
background with 6 layers of 256 neurons each (right). Please zoom in for details. The
networks right and left received the same driving parameters. Reconstruction of eyes and
mouth is much better with separate networks and FiLM on the right. Instead of w, = 30
for initialization, we use w, = 40.

In our final architecture, in combination with DINER, we therefore also used three separate
nets for eyes, mouth and background and used w, = 40 for initialization. However, our
nets are only 2 layers with 64 neurons each. In the following Sec. 8.4, the tradeoff between
a small network with DINER and a large network without DINER is discussed again in
more detail.
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8.3.5. Bottleneck, Failure Cases and Limitations

In Sec. 8.3.3, we have found that the time required for rasterization is much longer com-
pared to the network passes and the blending of the individual images. It was 20ms for
the rasterization, 2.3 ms for running through all three DINER+SIREN+FiLM strands and
1.7 ms for blending the final images together. The bottleneck in our case is the rasteriza-
tion. This is due to the fact that we use the PyTorch3D renderer, which is not optimized
for speed. The calculations do not take place in the hardware-accelerated rasterization
pipeline of the GPU, but are executed as differentiable steps in CUDA. Initial tests have
shown that we only need approximately 1ms to render the 3 rainbow images in a Vulkan
environment, which would represent an acceleration by a factor of 20. If we were to remove
this bottleneck and use a hardware-accelerated rasterizer, we would achieve a calculation
time of only 5ms per frame, which would correspond to 200 fps.

As described in the ablation study (Sec.8.3.4), we used a FiLM-based mapping network
and three smaller networks in order to improve visual quality. But in our experiments,
we saw that DINER seems to introduce a less dynamic texture. Please compare the oral
cavities of the results in Fig. 8.13 with the images of the ablation study, that does not use
DINER in Fig.8.14. Both avatars have either a rather dark oral cavity (Fig.8.13 column
1 and 2) or a rather light one (Fig.8.13 column 3 and 4).

In the avatar of Fig. 8.10 the teeth were captured in higher quality, however, the problem
occurs that a unrealistic morphing of the teeth became visible. This problem is hard to see
in still images. Please see the video for more details: https://youtu.be/aXQh6xvscko.
We do not use a geometric teeth proxy because we assumed that the neural architecture
would be able to reproduce the teeth and the oral cavity reliably. However, the rather
static texture that DINER seems to introduce makes the teeth look "soft".

As shown at the beginning of this section (8.3), we have seen in previous experiments that
a DINER lookup table can significantly reduce the calculation time between factor 10 to
20. However, we also noticed that this makes the texture much less dynamic. It seems
that our system with DINER tends to rather learn a static texture instead of reacting
dynamically to FLAME expression parameters. This significantly reduces the generation
of wrinkles, pits and corresponding shadows. We see similar problems in work such as
that of Zielonka et al. [ZBT22a].

Another problem, which rarely occurs, but severely impairs immersion, is the fact that
INRs react significantly worse to inputs that were not part of the training dataset compared
to GANs. We have not measured the influence of DINER, for this effect, but suspect that
it has a rather negative influence. GANs show a better graceful degradation than our
INR approach with DINER. The following Fig.8.15 and 8.16 show an error caused by a
FLAME parameter combination that the neural network did not see during training. This
suggests that the inputs of the mapping network are probably not completely ignored,
as the rainbow encoding does not show any anomalies with the parameter combination
shown. The problem could be solved by training on a broader dataset with more variations.

Furthermore, it can be seen in the following images that the results are slightly blurred
and specular points, for example in the eyes, are displayed less strongly than the reference
images (Columns 1 and 3 with title "real" in Fig. 8.10). In related work, this is often realized
by tracking the lighting parameters at texture level with a 9-value representation based
on spherical harmonics [ZBT22a; Gra+22|. The illumination is usually also feed into the
network. For reasons of performance, we have refrained from considering lighting and have
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recorded our training images without strong highlights. We used a diffuse illumination in
the recording room as well as facial skin powder.

Figure 8.15.: Limitation: A typical artifact of our system, when FLAME parameters

were not part of the training dataset, is image noise. This gaze direction of the avatar
face was not previously trained.

Figure 8.16.: Limitation: Left is ground truth. Our architecture does not show a graceful
degradation if input parameters were not part of the training (right). Network fails, when
specific expression parameters are not part of the training data set. On the right, you can
see that output of the face-background network is not only noisy, but also changes color.
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8.4. Discussion and Future Work

As already explained, the integration of DINER has significantly accelerated the whole
process between factor 10 and 20, but on the one hand we have the problem with a less
dynamic texture and also a lower generalization capability towards new input, as shown
in Fig.8.15 and 8.16. This has probably caused by DINER. The use of lookup tables
or hash tables seems to be a good inductive bias for ray tracing of static scenes and
thus for novel view syntheses, as demonstrated by Instant-NGP [Miil+22]. However, we
suspect that a new inductive bias needs to be found for dynamic scenes, such as human
faces. Similar to our approach, other systems that rely on INRs for face reconstruction
also struggle with low generalization ability. This can be seen in published work such
as Neural Head Avatars by Grassal et al. [Gra+22], NeRFace by Gafni et al. [Gaf+21] or
INSTA by Zielonka et al. [ZBT22a], where the quality remains high when staying within
the range of the training data, but drops off sharply when leaving it. A canonical space
that decouples head position and rotation from expression does not always seem to be
sufficient. While we did not perform a direct comparison between the GAN and INR
approach in this dissertation, GANs seem to degrade more gracefully. Conditional GANs
typically add a noise vector z to the network. In the Pix2Pix architecture, the noise is
substituted by dropouts and is feed into the network between layers. Current INRs lack
such stochastic variances and are therefore probably less able to find a solid generalization.
This would represent a possible future improvement and area of research.

Another explanation for the lack of generalization and in particular the often poor inter-
polation ability between facial expressions in our system (see Fig.8.15 and 8.16) could
be provided by the paper on DINER by Xie et al. [Xie+23] itself. As already mentioned
in Sec. 8.1, when combining INRs with lookup tables, the neural networks learn a low-
frequency feature distribution and the lookup or hash tables learn a high-frequency posi-
tion distribution of these features. The following Fig. 8.17 shows that interpolations in the
original signal between #; and ¢; in the learned feature distribution are not possible with-
out errors, at least in the sense of reconstructing the original image in an acceptable way
for a human eye. If the positions of the original color values are interpolated in the neural
network with M (Z;) and M (¥;), the result shows unacceptable quality to the human eye.
A comparable phenomenon can occur if we interpolate between expression parameters of
the FLAME 3DMM instead of between pixels in the output signal as in Fig. 8.17c.

Another option for our approach to further accelerate execution speed would be to use
a pure hash table instead of a lookup table with predefined dimensions. A hash table
would only allocate the memory that is necessary and would therefore be more memory-
optimized than our approach. The work of Miiller et al. [Miil422] shows the advantages of
the hash table. In many cases, hash tables are small enough that they fit into the L2 cache
of the GPU. Due to the size of our lookup table, for example in our proposed system, it
must remain in the VRAM, but the L2 cache is much faster with lower access latencies
than the VRAM.
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Figure 8.17.: Xie et al. [Xie+23] shows that INRs, especially in combination with a lookup
or hash tables, "sort" and store the signal in different way and order than the original.
Therefore, an interpolation between two points in the original signal does not necessarily
lead to the same intermediate results as if one would interpolate between these two equal
points in the neural feature distribution. Interpolating in the neural feature distribution
leads to "umpleasant” results for the human eye. Interpolation of face expressions in this
space could lead to the same problem and could be the reason, why interpolation fails in
many cases with our system. Fig. by Xie et al. [Xie+23].

8.5. Conclusion

In this chapter, we have explored the application of Implicit Neural Representations (INRs)
in real-time face rendering, specifically tailored for facial animation in telepresence applica-
tions. Our approach focused on leveraging coordinate-based neural networks to efficiently
synthesize high-quality facial animations, aiming to enhance the realism and expressiveness
of avatars in virtual environments.

We introduced the "rainbow encoding" to input positional data into the INR system in-
spired by Doukas et al. [DZS21]. This method allowed us to encode the surface of the face
in screen space. This way, we maintain interactive framerates, because we make sure that
we only generate the currently visible and necessary pixels in the image space through
the neural networks, instead of requiring many queries in the camera space or possibly
through many more queries through ray tracing with a NeRF-based volumetric approach.

Our system utilized a combination of the DINER (disorder-invariant INRs) [Xie+23],
SIREN (Sinusoidal Representation Networks) [Sit+20], and FiLM (Feature-wise Linear
Modulation) [Per+18] to achieve fast and detailed facial rendering. This architecture al-
lowed us to maintain high visual fidelity while significantly reducing computational over-
head, making real-time applications feasible.

Our implementation achieved real-time performance, rendering with over 40 frames per
second on an Nvidia GeForce 3090 laptop version GPU. This capability was crucial for
practical use in telepresence scenarios, where responsiveness and natural interaction are
paramount. Additionally, we showcased the potential of our system in broader applica-
tions, such as interactive virtual assistants driven by text-to-speech and chatbot technolo-
gies.

Despite these advancements, our system faced limitations in generalization and interpola-
tion capabilities. The reliance on specific training data led to artifacts when encountering
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new expressions or facial configurations, highlighting a common challenge in INR-based
face rendering systems. Future work could explore new inductive biases that enhance
generalization capabilities.
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This final chapter highlights our accomplishments in addressing key challenges in telep-
resence to convey nonverbal communication (NVC). In total, we have tested more than
200 different neural network architectures and spent more than 10,000 GPU hours train-
ing and tuning hyperparameters. We extensively explore deep learning architectures from
the areas of Convolutional Neural Networks (CNNs), Generative Adversarial Networks
(GANs), fully-connected MLPs, and various Implicit Neural Representations (INRs) with
and without input encoding. We have extensively tested and optimized these architectures
for the specific use case of face-to-face telepresence applications. In total, more than 15
different hardware prototypes for face capture and face tracking systems were developed.
Two user studies were conducted to further substantiate the basis and motivation of this
work. The following is a selection of the highlights of our findings and contributions:

1. Generating Photorealistic Avatar Faces with Real-Time Expressions
For decades, computer graphics researchers have been trying to render human faces
authentically. When computational time is not a constraint, this can be done with
considerable manual effort with 3D modeling, e.g. in Hollywood movies. We have
presented two end-to-end differentiable optimization pipelines, based on GANs and
INRs, respectively, that have not only proven to render photorealistic faces in real
time, but also to be fully automatic with no user intervention by also requiring only
a fraction of the creation time that manual 3D modeling would need. In combina-
tion with a face-tracking HMD, these novel systems enable conveying NVC through
authentic facial avatars within virtual environments. In Chap.7 and 8 we have
thus answered the research question: "How to transfer the face in a photorealistic
appearance with authentic movement in real time despite wearing an HMD?".

2. Face Tracking Head-Mounted Display

A major problem with immersive telepresence is that the face is obscured by the
HMD. In Chap.5 we have answered the research question RQ5: "How to track a
face beneath an HMD?". Therefore, we developed a face-tracking HMD system that
captures facial expressions in real time using deep learning approaches in a combina-
tion of our own lower face and eyebrow tracking modules. We merged the tracking
data with an off-the-shelf eye-tracking module into 70 facial landmarks. Our system
achieves high accuracy and minimal computational load through optimized CNNs,
providing a robust solution for real-time facial expression tracking and enabling to
drive the neural avatar faces presented in this thesis.

3. Standardizing Body Tracking
There are many different body tracking systems available. Many of the systems use
different basic technologies, such as IMU-, RGB-, RGB-D- or IR-sensor solutions.
The combination of several systems lends itself to transmitting expressive NVC, but
merging the data of these systems is difficult. Also the representation of movements
can differ between the systems. In Chap. 4, we answered the 4th research question:
"How can different body tracking systems and protocols be standardized to ensure
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that the representation of nonverbal communication in a telepresence application
looks as identical as possible, even with the use of different tracking systems?".
We introduced MotionHub, an open-source platform that integrates tracking data
from various body tracking systems into a unified skeleton structure, coordinate
space via calibration and a standarized network protocol. We created a game engine
plugin for the Unity game engine and demonstrated a simple integration. MotionHub
standardizes NVC cues across different systems, adding minimal delay and allowing
also seamless switching between tracking systems during runtime.

. Literature Review and Design Guidelines

In a literature review, we analyzed remote collaboration systems and concluded that
the transfer of more information generally leads to better collaboration in terms of
task effectiveness and efficiency. However, when designing such systems, researchers
face technical limitations such as hardware performance and difficulties in creating
believable avatar animations. We have derived requirements from the literature and
created six design guidelines that are important when creating remote collabora-
tion software. These guidelines also formed the foundation and motivation for this
dissertation and are presented in Chap. 2.

. Impact of Shared Virtual Task Spaces on Remote Collaboration

Immersive telepresence systems can transmit and display spatial information. This
makes it possible to transmit deictic gestures as NVC during telepresence. The
2nd research question was "How does the availability of a shared virtual task space,
and in particular a referencing tool, affect task efficiency and error rates in remote
collaboration?". Our study in Chap.3 showed that the availability of a shared task
space with a spatial referencing tool significantly improves task efficiency and reduces
error rates in remote collaboration. The availability of deictic gestures can save about
30% of task completion time and reduce errors by 90%.

. Personalized Face Avatars Increase Social Presence

Creating authentic avatars is time-consuming, and rendering them in real time is
technically challenging. Previous immersive collaboration applications often use
stylized, comic-like avatars. Is there a justification for researching the creation of
authentic personalized avatars and their use in telepresence applications? With the
third research question, "Does a personalized avatar increase copresence and social
presence compared to a non-personalized?", we try to better understand the influ-
ence of personalized avatars using questionnaires that measure copresence and social
presence. Our study in Chap. 6 found that personalized avatars increased the sense
of social presence in MR-based telepresence applications. While copresence did not
show a significant difference between the two groups of generic and personalized
avatar faces, social presence was significantly higher with personalized avatars, indi-
cating their value in remote collaboration.

Overall, this dissertation has addressed the broad research question (RQ1) "How to techni-
cally support the transmission of nonverbal communication in Mixed Reality-based telep-
resence systems?". It has presented several approaches to overcome these challenges and
contribute to the understanding and development of richer, more immersive telepresence
applications. We believe that our work has made an important contribution to the creation
of such applications, which could potentially serve as a viable substitute for face-to-face
interactions in the future, and help save resources and CO2 in the long term by reducing
physical travel.
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A. Source Code, Implementation Details
and Videos

A.1. Code and Videos for the MotionHub from Chap. 4

Code:
https://github.com/Mirevi/MotionHub

Oral presentation:
https://youtu.be/GRZgkAN6I9%k

Human Tetris Demo:
https://youtu.be/0_bhiweZQhE

A.2. Video of user study from Chap.6

Demo video user study:
https://youtu.be/_SIYunw6kVU

A.3. Code for the Face-Tracking HMD from Chap. 5.4

https://github.com/Mirevi/UCP-Framework/tree/main/Lower-Face-CNN

A.4. Code and Videos for First GAN Prototype from Chap. 7.5

Code:
https://github.com/Alpe6825/RGBD-Face-Avatar-GAN

Oral presentation:
https://youtu.be/iL4Z3tg6qFs

A.5. Code and Videos for Second GAN Prototype from
Chap. 7.6

Code and 3D print files:
https://github.com/Mirevi/UCP-Framework
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A. Source Code, Implementation Details and Videos

Oral presentation:
https://youtu.be/Wa95qDPV8vk

A.6. Code and Videos for Third GAN Prototype from Chap. 7.7

Code:
https://github.com/Mirevi/face-synthesizer-JVRB

Oral presentation:
https://youtu.be/fBofqRfvoiM

A.7. Videos for Implicit Neural Representation (INR) Approach
from Chap. 8

Video self-driven avatar (telepresence quality):
https://youtu.be/aXQh6xvscko

Interactive Virtual Assistance:
https://youtu.be/yZQ5jmdExsE
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Architecture of the GAN of chapter 7 for image

synthesis of 512px edge length

Layer (type:depth-idx) Output Shape Param #
}—UnetSkipConnectionBlock: 1-1 [-1, 4, 512, 512] -

| Lsequential: 2-1 [-1, 4, 512, 512] --

| | convad: 3-1 [-1, 64, 256, 256] 1,024

| | LUnetSkipConnectionBlock: 3-2 [-1, 128, 256, 256] -

| | | Lsequential: 4-1 [-1, 64, 256, 256] --

| | | | LLeakyReLU: 5-1 [-1, 64, 256, 256] -

| | | | Lconv2d: 5-2 [-1, 128, 128, 128] 131,072

| | | | LBatchNorm2d: 5-3 [-1, 128, 128, 128] 256

| | | | L-uUnetskipConnectionBlock: 5-4 [-1, 256, 128, 128] --

[ [ [ LSequential: 6-1 [-1, 128, 128, 128] --

| | | | | | LLeakyReLU: 7-1 [-1, 128, 128, 128] -

| | | | | | Lconvad: 7-2 [-1, 256, 64, 64] 524,288

| | | | | | LBatchNorm2d: 7-3 [-1, 256, 64, 64] 512

| | | | | | L-UnetskipConnectionBlock: 7-4 [-1, 512, 64, 64] --

| | | | | | | LSequential: 8-1 [-1, 256, 64, 64] .

[ | [ [ | | | | LLeakyReLU: 9-1 [-1, 256, 64, 64] -

| | | | | | | | Lconv2d: 9-2 [-1, 512, 32, 32] 2,097,152
| | | | | | | | LBatchNorm2d: 9-3 [-1, 512, 32, 32] 1,024

| | | | | | | | LunetskipConnectionBlock: 9-4 [-1, 1024, 32, 32] --

| | | | | | | | | Lsequential: 10-1 [-1, 512, 32, 32] --

[ | [ | | [ | LLeakyRelU: 11-1 [-1, 512, 32, 32] -

| | | | | | | | | | Lconvad: 11-2 [-1, 512, 16, 16] 4,194,304
It 1 1 1 0 I 1 | 1 ‘BatchNorm2d: 11-3 [-1, 512, 16, 16] 1,024

| | | | | | | | | | L-UnetskipConnectionBlock: 11-4 [-1, 1024, 16, 16] --

[ | [ | | [ | | LsSequential: 12-1 [-1, 512, 16, 16] -

| | | | | | | | | | | | LeakyReLU: 13-1 [-1, 512, 16, 16] --

| | | | | | | | | | | | Lconvad: 13-2 [-1, 512, 8, 8] 4,194,304
| | | | | | | | | | | | LBatchNorm2d: 13-3 [-1, 512, 8, 8] 1,024

| | | | | | | | | | | | L-UnetskipConnectionBlock: 13-4 [-1, 1024, 8, 8] --

| | | | | | | | | | | | | LSequential: 14-1 [-1, 512, 8, 8] --

| | | | | | | | | | | | | | LeakyReLU: 15-1 [-1, 512, 8, 8] --

| | | | | | | | | | | | | | Lconva2d: 15-2 [-1, 512, 4, 4] 4,194,304
| | | | | | | | | | | | | | LBatchNorm2d: 15-3 [-1, 512, 4, 4] 1,024
L | [ | | [ | [ | I L-UnetSkipConnectionBlock: 15-4 [-1, 1024, 4, 4] --

| | | | | | | | | | | | | | | LSequential: 16-1 [-1, 512, 4, 4] --

| | | | | | | | | | | | | | | | LLeakyRelU: 17-1 [-1, 512, 4, 4] -

| | | | | | | | | | | | | | | | Lconv2d: 17-2 [-1, 512, 2, 2] 4,194,304
| | | | | | | | | | | | | | | | LBatchNorm2d: 17-3 [-1, 512, 2, 2] 1,024

| | | | | | | | | | | | | | | | LUnetskipConnectionBlock: 17-4 [-1, 1024, 2, 2] --

| | | | | | | | | | | | | | | | | Lsequential: 18-1 [-1, 512, 2, 2] --

| | | | | | | | | | | | | | | | | | LLeakyReLU: 19-1 [-1, 512, 2, 2] --

| | | | | | | | | | | | | | | | | | Lconvad: 19-2 [-1, 512, 1, 1] 4,194,304
| | | | | | | | | | | | | | | | | | LReLU: 19-3 [-1, 512, 1, 1] --

| | | | | | | | | | | | | | | | | | LConvTranspose2d: 19-4 [-1, 512, 2, 2] 4,194,304
| | | | | | | | | | | | | | | | | | LBatchNorm2d: 19-5 [-1, 512, 2, 2] 1,024

| | | | | | | | | | | | | | | | LReLU: 17-5 [-1, 1024, 2, 2] --

| | | | | | | | | | | | | | | | LConvTranspose2d: 17-6 [-1, 512, 4, 4] 8,388,608
| | | | | | | | | | | | | | | | L-BatchNorm2d: 17-7 [-1, 512, 4, 4] 1,024

| | | | | | | | | | | | | | | | LDropout: 17-8 [-1, 512, 4, 4] -

| | | | | | | | | | | | | | LReLU: 15-5 [-1, 1024, 4, 4] --

| | | | | | | | | | | | | | LconvTranspose2d: 15-6 [-1, 512, 8, 8] 8,388,608
| | | | | | | | | | | | | | LBatchNorm2d: 15-7 [-1, 512, 8, 8] 1,024

| | | | | | | | | | | | | | “Dropout: 15-8 [-1, 512, 8, 8] --
e T e T B SITERRE B [-1, 1024, 8, 8] --

| | | | | | | | | | | | LconvTranspose2d: 13-6 [-1, 512, 16, 16] 8,388,608
| | | | | | | | | | | | LBatchNorm2d: 13-7 [-1, 512, 16, 16] 1,024

| | | | | | | | | | | Lbropout: 13-8 [-1, 512, 16, 16] -

| | [ | | | | | | | LReLU: 11-5 [-1, 1024, 16, 16] -

| | | | | | | | | | LConvTranspose2d: 11-6 [-1, 512, 32, 32] 8,388,608
| | | | | | | | | | L-BatchNorm2d: 11-7 [-1, 512, 32, 32] 1,024
[ I [ | [ [ I Dropout: 11-8 [-1, 512, 32, 32] --

| | | | | | | | LReLU: 9-5 [-1, 1024, 32, 32] -

| | | | | | | | LconvTranspose2d: 9-6 [-1, 256, 64, 64] 4,194,304
| | | | | | | | LBatchNorm2d: 9-7 [-1, 256, 64, 64] 512

| | | | | | LReLU: 7-5 [-1, 512, 64, 64] -

| | | | | | LconvTranspose2d: 7-6 [-1, 128, 128, 128] 1,048,576
| | | | | | L-BatchNorm2d: 7-7 [-1, 128, 128, 128] 256

| | [ | LReLU: 5-5 [-1, 256, 128, 128] -

| | | | LconvTranspose2d: 5-6 [-1, 64, 256, 256] 262,144

| | | | LBatchNorm2d: 5-7 [-1, 64, 256, 256] 128

| | LReLU: 3-3 [-1, 128, 256, 256] -

| | LConvTranspose2d: 3-4 [-1, 4, 512, 512] 8,196

I | LTanh: 3-5 [-1, 4, 512, 512] -

>

Total params: 66,998,916
Trainable params: 66,998,916
Non-trainable params: @
Total mult-adds (G): 73.92

Input size (MB): 1.00

Forward/backward pass size (MB): 221.32
Params size (MB): 255.58

Estimated Total Size (MB): 477.90
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B. Data of User Studies

The following pages report the raw study data that led to the scientific findings in the cor-
responding sections. The questionnaire is available at the following link: https://docs.
google.com/forms/d/e/1FATIpQLSeH1Lt6xNs3ER9GzXbNTCQVIPC39ROFBALCXCIMZEKFASZWSA/

viewform
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Session

VNV A WNR

el < =
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mit Zeigen
ohne Zeigen

Differenz

Data 1/2 for user study from Sec. 3.2

Gesamtzeit
0:07:31
0:04:45
0:15:19
0:10:04
0:08:54
0:16:20
0:08:42
0:04:17
0:10:01
0:09:35
0:12:02
0:20:26
0:09:46
0:14:31
0:13:48
0:12:37
0:16:09
0:12:00
1:21:45
2:05:02

0:43:17

ModuleLight

0:00:28

GameMode  ModuleDistance
mit Zeigen 0:00:56
mit Zeigen 0:00:04
ohne Zeigen 0:02:47
ohne Zeigen 0:01:24
mit Zeigen 0:01:53
ohne Zeigen 0:03:23
mit Zeigen 0:01:16
mit Zeigen 0:00:04
ohne Zeigen 0:01:07
ohne Zeigen 0:01:59
mit Zeigen 0:03:58
ohne Zeigen 0:05:41
mit Zeigen 0:00:58
ohne Zeigen 0:01:56
mit Zeigen 0:02:54
ohne Zeigen 0:03:32
ohne Zeigen 0:06:36
mit Zeigen 0:03:21
0:09:05 0:01:43
0:13:54 0:03:09
0:04:49 0:01:27
9x mit Zeigen
9x ohne Zeigen
Fehler (Poti + FlipSwitch)
mit ohne
2 4
10 6
1 15
0 6
0 4
2 4
0 3
0 6
0 1
Levene Test bestanden
Varianz Mit 11,98214286
Varianz Ohne 17,41071429
Teststatistik 1,453055142

kritischer Wert der F-vert
*1
*2

3,178893104

ModuleCablePin

Summen:

0:00:57
0:00:27
0:04:16
0:01:51
0:01:44
0:03:50
0:01:56
0:00:58
0:01:31
0:01:13
0:01:22
0:01:45
0:01:14
0:03:29
0:04:04
0:01:30
0:01:32
0:02:07

0:01:39
0:02:20

0:00:41

© 00N O UA WN

ModulePoti
0:04:14
0:01:
0:0:
0:0:
0:0.
0:0:
0:02:
0:01:07
0:02:07
0:01:52
0:01:13
0:04:06
0:04:
0:0:
0:0.
0:02:
0:0.
0:02:

0:02:17
0:02:35

0:00:18

Summe der Aufgaben -> nur mit Pointen <-

PotiFehler

OCOROWORORNOOOOUWWN

0,56
1,78

1,22

mit ohne
376 712
239 468
389 738
400 513
229 414
444 765
430 716
618 515
495 527
3620 5368
Levene Test bestanden
Varianz Mit 14399,94444
Varianz Ohne 18037,27778
Teststatistik 1,252593567

kritischer Wert der F-

3,178893104
*1
*2

ModuleFlipSwitch
0:00:37
0:02:02
0:03:36
0:01:31
0:00:54
0:05:00
0:01:38
0:01:01
0:02:33
0:02:31
0:03:14
0:04:47
0:01:11
0:03:05
0:02:00
0:03:38
0:03:02
0:01:46

0:01:36
0:03:18

0:01:42

*1 Test sagt, dass der kritische Wert gréBer als die Teststastik und damit kénnen wir die HO nicht verwerfen. HO sagt aus, dass eine Varianzen-Gleichheit vorliegt
*2 Heilkt, dass man einen t-test durchfiihren darf.

FlipSwitchFehler ModulelR Bold times
0 0:00:21 0:05:48 348
7 0:00:42 0:03:50 230
1 0:00:40 0:10:57 657
1 0:00:51 0:05:15 315
1 0:00:32 0:04:06 246
15 0:00:40 0:11:31 691
0 0:00:46 0:06:02 362
0 0:00:24 0:03:06 186
4 0:00:22 0:06:11 371
3 0:00:41 0:05:36 336
2 0:00:41 0:05:49 349
3 0:01:14 0:10:38 638
0 0:00:40 0:06:26 386
0 0:00:37 0:09:40 580
0 0:00:36 0:07:53 473
5 0:00:30 0:07:35 455
1 0:00:47 0:06:32 392
0 0:00:24 0:06:45 405
1,11 0:00:34
3,67 0:00:42
2,56 0:00:08
Ubrig geblieben Zeiten ->Tasks die kein Pointen
Gesamtzeit des Tests beinhalten, unabhangig von Condition)
mit ohne mit ohne
451 919 75 207
285 604 46 136
534 980 145 242
522 601 122 88
257 575 28 161
722 1181 278 416
586 757 156 41
828 871 210 356
720 969 225 442
4905 7457 1285 2089
Levene Test bestanden
Varianz Mit 7163,69444
Varianz Ohne 20691,3611
Teststatistik 2,88836455
kritischer Wert der ~ 3,1788931
*1
*2




Sess "
3 Teilnehmer
ion

A(VR)
B
A(VR)
B
A(VR)
B
A(VR)
B
A(VR)
B
A (VR)
B
A (VR)
B
A(VR)
B

A(VR)
B

10
A(VR)
B

11
A (VR)
B

12
A (VR)
B

13
A (VR)
B

14
A(VR)
B

15
A(VR)
B

16
A(VR)
B

17
A(VR)
B

18
A(VR)
B

Durchschnitt
Min
Max

gce

Data 2/2 for user study from Sec. 3.2

Ghels | Deiktische
chle Alter Ausdriicke
cht

6

m 22

m 29
11

m 24

m 23
5

m 36

m 26
2

m 28

m 37
4

m 27

m 27
6

w 29

w 57
7

w 36

w 30
6

m 31

m 34
3

m 24

w 30
6

m 24

m 34
14

m 39

m 29
10

w 65

m 67
2

w 34

w 41
1

m 25

w 33
1

w 25

w 22
1

w 29

m 43
1

w 64

w 59
4

m 37

w 36
34,89 5,00
67 14
22 1

21 Ménner (58,33%)
15 Frauen (41,67%)

Fragen

23

30

10,89
30
1

Explikative Kopplungsg

Aussagen

36

37

36

30

47

30

48

48

45

47

50

31

33,83
50
13

13x eng (72,22% )
5x lose (27,78% )

eng

eng

eng

eng

eng

lose

eng

eng

eng

lose

lose

eng

eng

eng

eng

lose

lose

eng

rad

Fiihrungsrolle

Experte-Experte-Rolle

Experte-Experte-Rolle

Lehrer-Schiler-Rolle (VR > AR)

Experte-Experte-Rolle

Experte-Experte-Rolle

Lehrer-Schiiler-Rolle (AR > VR)

Experte-Experte-Rolle

Experte-Experte-Rolle

Experte-Experte-Rolle

Lehrer-Schiler-Rolle (AR > VR)

Experte-Experte-Rolle

Experte-Experte-Rolle

Experte-Experte-Rolle

Experte-Experte-Rolle

Experte-Experte-Rolle

Lehrer-Schiler-Rolle (AR > VR)

Experte-Experte-Rolle

Experte-Experte-Rolle

14x Experte-Experte-Rolle (77,78%)
4x Lehrer-Schiiler-Rolle (22,22%)

davon in der Lehrer-Rolle immer der dltere Spieler

Bitte bewerten Sie,
wie viel Erfahrung Sie
im Bereich der
Virtuellen Realitat (VR)
haben

N

N

i

Bitte bewerten Sie, wie viel
Erfahrung Sie im Bereich der
Erweiterten Realitdt (AR)
haben

Bitte bewerten Sie, wie hoch ist der Anteil an LEDs
im Alltag der einen bewussten Einfluss auf Sie hat
(z.B. Statusinformationen, Benachrichtigungen,

tsanzeige von elektronischen Geraten)

Bitte bewerten Sie, in wie weit kann eine
LED-Anzeige der Bedienelemente am
Ratselkoffer die Kommunikation zwischen
beiden Spielern verbessern

Bitte bewerten Sie, ist lhnen

die Kommunikation wahrend
der Studie besonders leicht
oder eher schwer gefallen

[N}

-

Bitte bewerten Sie, unter
Berucksichtigung des
Ratselspieles: wie gut war
der Gesamtspielablauf



9¢¢

Scale

Data for user study of Chap. 6.4

Condition 1 (Personal Avatar)

Condition 2 (Generic Avatar)

L5

| did not want a deeper relationship
with my interaction partner.

L5

| wanted to maintain a sense of
distance between us.

L5

I was interested in talking to my
interaction partner.

L5

My interaction partner was intensely
involved in our interaction.

L5

My interaction partner seemed to find
our interaction stimulating.

L5

My interaction partner communicated
coldness rather than warmth.

L5

My interaction partner created a
sense of distance between us.

L5

My interaction partner seemed
detached during our interaction.

L5

My interaction partner acted bored by
our conversation.

L5

My interaction partner was interested
in talking to me.

ID Type

Q1 Co-P.
Q2 Co-P.
Q3 Co-P.
Q4 Co-P.
Q5 Co-P.
Q6 Co-P.
Q7 Co-P.
Q8 Co-P.
Q9 Co-P.
Q10 Co-P.
Q11 Co-P.

L5

My interaction partner showed
enthusiasm while talking to me.




LCG

Q12

SP.

L5

To what extent did you feel able to
assess your partner’s reactions to
what you said?—Able to assess
reactions, not able to assess
reactions.

Q13

SP.

L5

To what extent was this like a face-to-
face meeting?—A lot like face to face,
not like face to face at all.

Q14

SP.

L5

To what extent was this like you were
in the same room with your
partner?—A lot like being in the same
room, not like being in the same room
atall.

Q15

SP.

Sliding
0-10

To what extent did your partner seem
“real”?—Very real, not real at all.

Q16

SP.

Sliding
0-10

How likely is it that you would choose
to use this system of interaction for a
meeting in which you wanted to
persuade others of something?— Very
likely, not likely at all.

10

10

10

10

10

10

Q17

SP.

Sliding
0-10

To what extent did you feel you could
get to know someone that you met
only through this system?—Very well,
not at all.







C. Curriculum Vitae

Aus Griinden des Datenschutzes ist der Lebenslauf in der Online-Version nicht enthalten.
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