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Abstract

As a typical quantum many body problem, we consider the time evolution of density matrix
elements in the Bose-Hubbard model. For an arbitrary initial state, these quantities can be
obtained from an SDE or stochastic differential equation system. To this SDE system, a
Girsanov transformation can be applied. This has the effect that all the information from the
initial state moves into the drift part, into the mean field part, of the transformed system. In
the large N limit with g = U N fixed, the diffusive part of the transformed system vanishes
and as a result, the exact quantum dynamics is given by an ODE system which turns out
to be the time dependent discrete Gross Pitaevskii equation. For the two site Bose-Hubbard
model, the GP equation reduces to the mathematical pendulum and the difference of expected
number of particles at the two lattice sites is equal to the velocity of that pendulum which
is either oscillatory or it can have rollovers which then corresponds to the self trapping or
insulating phase. As a by-product, we also find an equivalence of the mathematical pendulum
with a quartic double well potential. Collapse and revivals are a more subtle phenomenom,
in order to see these the diffusive part of the SDE system or quantum corrections have to be
taken into account. This can be done with an approximation and collapse and revivals can be
reproduced, numerically and also through an analytic calculation. Since expectation values
of Fresnel or Wiener diffusion processes, we write the density matrix elements exactly in
this way, can be obtained from parabolic second order PDEs, we also obtain various exact
PDE representations. The paper has been written with the goal to come up with an efficient
calculation scheme for quantum many body systems and as such the formalism is generic and
applies to arbitrary dimension, arbitrary hopping matrices and, with suitable adjustments, to
fermionic models.
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1 General Setup and SDE Representation

We consider the d-dimensional Bose-Hubbard model with Hamiltonian

U
=- Ta+ — ‘ata.a;: a7t
H=—1) ot 32 a7aaia + 3 ejaja; (1.1)

with bosonic annihilation and creation operators a;;, af satisfying the commutation relations
[ai,a;-r] =4 (1.2)

As usual, (i, j) denotes the sum over nearest neighbors and to be specific, we choose a cubic
lattice I" given by

jo=Gtooohja) € {1,2,---, L) =T (1.3)

We find it convenient to work in the Bargmann-Segal representation [1] where the a, aj+ are
realized through the operators

3
al = z; (1.4)

a; = —
/ 0z; J

which act on the Hilbert space of analytic functions of |I'| = L¢ complex variables

F = [ f=rz}): cll= ¢ analytic ||f||2}-=(f, NF < oo] (1.5)

with scalar product

(f. 8)r I=/ f(2) 8(@) du(z) (1.6)
CITI=R2IT|
. I P dRez; dImz;
du(z) = || e — (L.7)

J

In the following, sums X; or X; ; orproducts IT; are always meant to be sums and products
over all lattice sites if not specified otherwise. That is, we use the notation

Zj...;: Zjer'” (1.8)

[T =11 (1.9)
j jer
and %; j := X; jer . Actually we can allow for a general hopping matrix which should be
real and symmetric,
e:=(g;) e RITXII (1.10)

with &;; = &;; . With that, the final Hamiltonian, we use a small 4 instead of a capital H,
reads

h = ho + hint (1.11)

with a quadratic part

a

h() = Zi,j Eij Zi a (1.12)

@ Springer



International Journal of Theoretical Physics (2024) 63:139 Page3of65 139

and a quartic part
) 87
hine = u E 75— 1.13
nt j ; ( )

where we substituted the capital U by a small u according to (the capital U’s we use later
for a unitary evolution matrix)

U= — (1.14)
For a nearest neighbor hopping J and trapping potentials €; as in (1.1) we have

—J if |i—j|=1
gij = t¢€; if i=j (1.15)
0 otherwise .

1.1 Time Evolution of States as Fresnel Expectation Values

The time evolution e~ = ¢=(hothin) we calculate through the Trotter formula. That is,
we discretize time
t = t = kdt (1.16)
and write
emith  — pmikdt (hothin) o (e—i dt hine ,~idt ho )k (1.17)

where the approximate equality becomes exact in the limit dt — 0 which we implicitely
assume from now on. The action of e~ 4/ /0 is given by

(efidthof)(z) :f(efidl‘é‘z) (118)
The action of e~ 9! tint we write as follows: First, on monomials I1; z’;j we have
. . . . 2 .
e~ dt hint I Z;/ _ etudt 2oinj e—tudt > n Z’;I (1.19)
j j

Recall the Fresnel integral

2 R
/ st it A9 _ i (1.20)
R 27

. B L .
with /i = €7 . We can write

. ) ) . ) K )
e—l dt hin I erj — I (emdt — i~/ 2udt ¢jZJ )nj I elTJ d¢/ . (121)
i RITT j

Thus, for any analytic f (by slight abuse of notation, we temporarily label the lattice sites
with natural numbers from 1 to |I'| in the middle of the next line)

oo
f@ = fUuh= > mpnp @il = D ey mEY (122)
NYyenns n|1"|=0 {”j} J
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we have

(e—idthimf)(z) — Z ) e—idth;m sz/
n)} /

—_
A
=
QL
=
|
S
=
:‘
=
S
<
K2l
~.
~
=
<
~=
R
o}

. . 9 A
— /Rm f({etudt—t«/ZudtquZj} ) 1;[6171 ¢/.

jer 2mi
: Gy
=: (e 1Poz) el T —L (1.23)
RIT| f J V2mi
with the |I'| x |I"| diagonal matrix
dDy := diag({~2udt ¢; — udt }jer) € CIF>IT (1.24)
Thus, a single Trotter step is given by
(e—i dthf)(z) — [e—i dt hing (e—i dth()f)](z)
/ ( 7idth0f)( —idDy ) nl idjTJZl d¢]
= e e z e ——
RITI | j V2mi
. . T dg;
— .f(efld[f:‘e*ldD¢Z) eleT l—[ J
RITI j 2mi
. . 02 dlg
. —idte ,~idDy i
= f(e e z) e'? 7(27[1.)'”/2 (1.25)
Iterating,
. . : . . ko9 dllg,
—ikdth — —idte ,—idDgy, . . ,—idte ,—idDy i
(e @ /ka f(e e 1...e e k z) [1;[13 2 G (1.26)
with the notations
¢ = ({¢j.e}jer) € RI
o =) ¢j. € R (1.27)
dlge == [1de;.e
J
That is, on the (real, scalar) integration variable ¢; ; € R, the firstindex j = (ji,--- , jg) is
a lattice site index and the second index ¢ € N is a time index. Furthermore
dDy, = diag( {V2udi ¢, — udr}, ;) € R (1.28)

Let us summarize the above formula in part (a) of the following
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Theorem 1 Let h = hg + hine : F — F be the Bose-Hubbard Hamiltonian given by (1.12)
and (1.13) and let € F be any initial state. Then:

a) In the limit dt — O witht =ty = kdt fixed, there is the formula

ey (@) = E[ ¢ (Urar2) ] (1.29)
with unitary evolution matrix
det = e—idtae—idD¢] . e—idtse—idD¢k c (C|F|><|F| (130)

and Fresnel expectation value
koo dTlg,
El - |:= -7 —— 1.31
L] /ka ¢ i (1.31)

b) The evolution matrix Uy, = Urqg; is a solution of the following stochastic differential
equation (SDE)

dUy, = U, —U, , =—iU,, (edt + V2udx,) (1.32)
where dx;, is the diagonal matrix of Fresnel Brownian motions given by (1.44) below.

Let’s consider part (b) of the theorem. Suppose we would have Gaussian densities, let’s say

1-dimensional, e /2 d¢y/~/2m instead of Fresnel kernels i 9t/ doy/~/2mi . Then the
combination of integration variables

Xy = \/Ezlgzlm (1.33)

would be a standard Brownian motion, the product (with x;, := 0)

k #? doe k g =ty ) dx; k
dW = Tl e 7 ~ = MMe — =  —f = | X;,, X dx,, (1.34
A «/27 s m —_ D ( te I[_l) t[,( )

would be standard Wiener measure and in the limit dt — 0 there would be the standard
Brownian motion calculation rule (Appendix A.1 has a quick reminder)

(dx))* = dt (1.35)

and dx,dt = dtdt = 0. In the presence of Fresnel kernels, we can make the same
definitons. That is, the combination of integration variables

Xy = @ZLW (1.36)

we call a one-dimensional Fresnel Brownian motion if the ¢,’s are to be integrated against
the product of one-dimensional Fresnel kernels (again with x;, :=0)

ko9 dey koo G dx, k
dF == [l '™ = MMe— T -1 Xz, X, dx,, (1.37
=1 2 =1 V2ridt =1 Gar (e X1e-,) dxy (1.37)

which we then refer to as Fresnel measure. Observe that for both Fresnel and Gaussian kernels
we have the equations

fR k(e 9) ks (3 2) dy = iy (5, 2) (138)

/kt(x,y) dy =1 (1.39)
R
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with k; € {p;, ¢:}. Now, what we can use is the fact that in the limit dt — 0 there are analog
calculation rules for Fresnel Brownian motions. That is, there are the following formulae
(see Appendices A.1 and A.4 for more background)

(dx)* = idt (1.40)

and dx,;dt = dtdt = 0.

Now let’s return to the time evolution formula (1.29) of Theorem 1. Instead of 1-
dimensional Fresnel kernels we have |I'|-dimensional Fresnel kernels and accordingly
|T"|-dimensional Fresnel Brownian motions

Xjg = Xjkdi = @ZLW (141)
where j € I' again denotes some lattice site. With
dXj gt = Xjkdt — Xj.k—ar = Ndtdjx (1.42)
we can write

dDgy, = diag( {~V2udxjka — udt}jer )
= 2udxpy — udtld (1.43)

where we introduced the diagonal matrix of Fresnel Brownian motions
dxiar = diag({dx;gar }jer) € CTXIT (1.44)

and Id is the |I'| x |T"| identity matrix. From the calculation rule (1.40) we get the matrix
equation

(dxgan)’ = diag({ @xjka)’};op ) = idild (1.45)
Thus, up to terms O (d13/?),
. 1
e Py =1 — idDy, — E(dDd)k)z
1
=1 — iVudxa + iudild = 5 (V2udza — wdi )’

1
=1 — iV2udua + iudild = 5 (V2udxa)’
=1 — iNV2udxpg; (1.46)

and we arrive at the following SDE for the evolution matrix U;:

Uy = e @1ee=idDsy .« p—idte ,~idDy_,  —idie,~idDg,
= Ug_nar X p—idte ,~idDy
(1.46) . .
= U(kfl)dt (1 — ldté‘) (1 — iV2u dxkd,)
= Ug-nar (1 — idte — iv2u dxpar) (1.47)
or, with #;, = kdt,
dU, = U, — Uy, =—iU,_ (dte + V2udx;) (1.48)
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which completes the derivation of part (b) of Theorem 1. More compactly, this could be
written as

AU, = —i U, (edt + ~2u dx;) (1.49)

but we want to remind at this place that when discretizing stochastic differential equations
or stochastic integrals it is usually crucial whether a particular time index is a #; or a fx_j.
Throughout this paper, we use the Ito definition which is as follows: If some quantity Q;
satisfies the stochastic differential equation

th = Al d[ + Bl dxt (150)
then this is equivalent to the following discrete time update rule

OQu(dr.-- . 1) = (1.51)
Ou_ (@1, dx—1) + Ay_ (D1, ,dk—1)dt + By_ (¢1,---, Pr—1) Vdt ¢
That is, the new random number or integration variable ¢ which enters when going from
time #;_ to f enters in an explicitely given way, namely through the explicit ¢ on the very

right of (1.51). There are no ¢’s in the A, B or Q;,_, on the right hand side of (1.51). This
then for example has the immediate consequence that

E[Qn1=E[Qy_ ] + E[Ay_, ]dr (1.52)

since the diffusive part does not contribute to the expectation value because of E[¢r] = 0.
Thus, quantities Q; which have a vanishing drift part A = 0 are of special importance
since their expectation value does not change over time and they are called martingales.
Appendix A.2 has a quick reminder on Ito and Stratonovich integrals and why there are
different definitions at all.

1.2 Density Matrix Elements from Stochastic Differential Equations

We consider the following normalized initial state with A = {1} € (olly

N 122
Vo) = Yo({zj)) =7 e T = re T (1.53)
J
This is a product of coherent states. The expected number of particles at site j is
(Yo, afajyo)r = Il (1.54)

which means that [A;| = ,/N; would be a natural choice if we want to have N; particles
at site j. The total number of particles N is given by

N = Zij=Zj|kj|2 = ] (1.55)

Let’s consider the time evolution of this 1. According to Theorem 1, we have

Vi@ = (€ ""Y0)(2) = E[Yo(Ui2)] (1.56)
where the evolution matrix U, is given by the SDE

AU, = —i U, (dte + v2u dx;) (1.57)
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with initial condition Ug = Id and x, being a Fresnel Brownian motion. We want to calculate
the time evolution of the density matrix elements

(Vi ataj vo)r = (Y laja — 8 j1¥)r
= (a Y. a V)F — 8i; (Vi V) F

=/ SE WO — 8 (158)
il

From Theorem 1 we have the representations (with t = t; = kdt)

Vi (z) = E[Yo(Ur2)] = /wo(Ux,zz) dF({x}) (1.59)

Vi (z) = E[Yo(U;2)] = / Vo(Uy.2) dF ({y})

with
k A¢@2 qubz k A(-W*Xte,lﬂ d‘r‘x;
dF = i T iy Tt 1.60
Ao gnmz = Je " Qridnn2 (1.60)
B 02 IT| Oty =vip_)? IT|
dF = fe-i% 40 _ kit 4y
=1 [27 (—i)]IT1/2 =1 [27(—i)dr]IT1/2

- WG —iz . . . .
where v/—i := /i = ¢~ % andx,, and y,, are |'|-dimensional Fresnel Brownian motions
given by

o =NAY b (1.61)
v =VATY O
With that, we can write
/ 27 1Y (@) du(z) (1.62)
cITI
:/Cm ZjZi /I/fo(Ux,tz) dF({x:}) /mdp({yt}) du(z)
- // { / o L Y0(Ux.12) Yo(Uy.12) du(2) } dF({x;}) dF ({y:})

cirl

and in the same way
il = [E W @Fdu (1.63)

- f / { /@n YoWUr,i2) Yo(Uy,2) dn@) | dF (i) dF (i)

The wavy brackets above are the expectations over the bosonic Fock space, written in the
Bargmann-Segal representation, and can be calculated. Since

= _ 2
Yo(Ux.2) Yo(Uy2) = exp{ Ul a2} exp{ U] %z} e (1.64)
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with UT denoting the transpose of U, and because of the formulae

/ ohitiz du(z) = R
cirl

f Zj Z; eAZ+AZ d/vL(Z) _
oIl

AR Y AR
= = MXj+6i 1.65
00 9 ¢ i+ %) € (1.6

we obtain the following representations: The norm of v is given by
_ P 2
I l% = ExEy[ exp{ UL 1 U] 3 ] e (1.66)

and density matrix elements can be written as

= — - — - 2
(V1. ataj v )F = ExEy[ [WI AL (07,31 expl UF 2077} ] e (1.67)

where we used the notation

ExEy["']Z// - dF({x,}) dF ({y1}) (1.68)

for the Fresnel expectations.
Now recall that

dUy; = —iUysy (dte + V2udx,) (1.69)

or, since &;; = &j; or el =g,

duf, = —i(dte + V2udx ) U], (1.70)
Thus,
dW! ) =—i(die + V2udx ) UL (1.71)
and in the same way
dUI3) =+i(dte + V2udy ) U2 (1.72)

Thus, if we abbreviate the quantities (where the v at this stage is not the complex conjugate
of v since it has different integration variables)

v =, =00 e C (1.73)
v o= ﬁy’[ = U;:l‘)_\' € (Clrl
we obtain the SDE system

dv= —i(dte + V2udx, )v (1.74)
dv = +i(dte + V2udy )

with initial conditions

v = A (1.75)
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In coordinates, this reads
dvj = —idt(ev); — ivV2uv;jdx; (1.76)
dvj = +idt(ev); + ivV2uv;dy;

or even more explicitely, making also the times and the Fresnel integration variables x and
y explicit at the v, v,

dvje= —idt)  ejivies — iV2uvjxsdaj, (1.77)
dVjys = +idiy  eiviye + iV dyj.
Then, from (1.67) we obtain the density matrix elements as
(Vi alajv)r = EEy [ viv; e ] e (1.78)
if we use the notation
VD = Z, vio; = v'o (1.79)
Finally, the norm of i, has the representation
AT NN P (1.80)
We summarize the results in the following

Theorem 2 Let g be the initial state

2 i
121 I
2

Yo2) = Yolz;H =[] e = e (1.81)
J

andlet Yr; = e~ ith Yo be the time evolved state with Bose-Hubbard Hamiltonian h = ho+hin
given by (1.12) and (1.13). Then there are the following representations:

= — = _ 2
(Vevafaj ¥i)r = EBy[ Vi D)y €00 ] e (1.82)
1% = ELEy[ Ve e M (1.83)

with Fresnel expectations Ey I_Ey[ - ] given by (1.68) and (1.60) above, and the v, v € (olly
are given by the SDE system

dvj: —idt(sv)j -1 2uvjdxj
dij = +idt(ev); + i~ 2uv;dy; (1.84)

with initial conditions vy o = A, Uy = A.

Now, in the next chapter we will see that the combination v, ; vy, is a martingale and as a
consequence, the exponential e’ %> can be absorbed into the Fresnel integration measure.
This has the effect that the density matrix elements are then simply given by

(Vr.aaj ¥i)r = ExEz[ vig, 050 |
where the v;,, v5, are given by the transformed SDE system
dv‘,- = —idt (ev)‘,- — i 2udt vjl_)j v, — ivV2u v d)E(,-

dl_)j = +idt (81_))]' + i 2udt vjl_)j l_)j + ivV2u ﬁjd)?j
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with transformed Fresnel Brownian motions

dxjs, =dxjs, — ~2udt (vjvj),_,
dij,,[ = dyj’,{, — 2udt (vjﬁj)tzfl

So, let’s look at the details.

2 Martingale Property and Girsanov Transformation
2.1 Unitary Time Evolution as a Martingale

Recall from Theorem 1 that the time evolution v, = e/t of some initial state
Yo = Yo(z) can be written as a Fresnel expectation value

Vi(2) = E[Yo(Ui2)] = E[¥oUx,2)] = f Vo(Ux,2) dF ({xs}o<s<) (2.1)
where the unitary evolution matrix is given by the SDE
dUy; = =i Uy, (dte + ~2udx,) 2.2)
with initial value Uy ¢ = Id. The norm of v is given by

lellF = W v)r = /(Cm Vi (2) ¥ (2) dn(2) (2.3)

with du(z) given by (1.7). For the complex conjugated ¥, we use integration variables or
Fresnel Brownian motions {ys}o<s<; and write

Y (z) = E)‘[WO(UyJZ)] = / Wo(Uy,tZ)dF({ys}kssr) (2.4)
such that, as in (1.63) of the last chapter,
115 = f Vi (2) ¥ (2) dpu(2)
cIrl
= /@FI Ex[wO(Ux,tZ)] Ey[l/fO(Uy,tZ)] dpu(z)
—eb[ [ VU W05 du) | 2.5)
cIrl
Now we have

duUz) = dp(z) (2.6)

for any unitary U. Thus, with the substitution z = U;f . w with UT = UT being the adjoint
matrix, and renaming the w back to z, we obtain

i = B[ [ 0V T duc) | @7
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This quantity has to be independent of ¢, we have to have
il = EEy| fc VU U2 o) i) |

= /«: L W@V du@ = ol 2:8)
How can this be understood from a stochastic calculus point of view? We have

AUy, = —i Uy, (dte + ~2udx,)

dUJ, = +i(dte + V2udy, ) U}, (2.9)
Since dx; dy; =0, we also have dU, ; dU?f, = 0 such that

+ Uy, dUS

d(Uyx, U, ) =dUy, Uf o

A + dU,,dU;,

=—iUy,(dte + V2udx, )US, + iU, (dte + V2udy, )US, + 0
= —ivV2u Uy, (dx; —dy) U,
= —ivu Uy, d& U, (2.10)
if we put (the eta’s will be used later, not now)
d.xt - d)’t d-xt + dyl
dé = ——— dny, = ——— (2.11)
& 7 ' 7

Equation (2.10) means that the matrix UX,,U;C, is a martingale, its d(Ux,tU;f,) has no drift
part, no dt part, but only a diffusive part, a dx; or dy; part. And since

Eldx;] = E[dy;] = 0 (2.12)
one then has
EE[d(U,.U))] =0 (2.13)
which results in
EE[ U, U, ] = Uso Uy = Md (2.14)

However, in (2.8) we have not directly an expectation of the matrix U, ; U;L , itself, but we
have an arbitrary function of it, so we have to consider an expectation of the form

EE[ £(UUS) ] 2.15)

where f : C'IXITl — C is an arbitrary function. These quantities should also be time
independent, how can we understand that? Let’s abbreviate for the moment

M; = Ux,tU;:t = (M;j)i jer (2.16)
Then, with the Ito formula (Appendix A.2 has a quick reminder),

of
df(Mt):Zz ,jer 8M Mij + Zz jeFZk ter BM,/BMM a0, 00y, < M AMie (217)

In the equation above, also the k, ¢ are temporarily used as lattice site indices, they are no
time indices here. The first sum is purely diffusive since

dMij = —iN4u[ Uy, d& U, )i j (2.18)
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has no dt part. And the second sum actually vanishes since

dM;; d My, = —4u Uy, d& U;f, 1i,j [Uxr d&; U;f, Ik.e
= —4u Y (Uxilim @& 1UImj Weidkn dén s LU 10
m,nel’
d m n,t =
S =0 (2.19)
Namely,
1
dgm,t dgn,t = 2 (dxm t dym,z) (dxn,t —dyn,)
1
= 5 (dxm,t dxn: + dymidynt — dxmdyn; — dym,td-xn,t)
1

=3 (dxm,idxns + dymidyn; — 0 — 0) (2.20)

For m = n, this becomes

1
A1 i = 5 ((dxn)® + (@dyn.)?)
1
=§(idt—idt) =0 (2.21)
And for m # n, this is simply
1
dér dbne = 5 (0+0) =0 (2.22)
Thus we end up with
df (My) = —i~/4u Z” oty Ve 46 Ui (2.23)
which is purely diffusive and this results in
ExEy[df (M) ] =0 (2.24)
and accordingly
t
EcEy[ f(M)] = f(Mo) + / EcEy[df (Ms)] = f(Mo) (2.25)
0

for arbitrary f. Let’s summarize these observations in the following

Theorem 3 Let U, ; be the unitary evolution matrix of Theorem 1 such that the time evolution
of an arbitrary state € F can be written as

(e My (2) = B[ ¥ (Ux kar2) ] (2.26)

with Fresnel expectation E[ - | given by (1.60) and (1.68). Then, for arbitrary f : CTIXITl —
C, the quantity f(Uy, U;f,) is a martingale, its df(Ux,thft) has no dt-part, and we have
the following identity:

EE [ F(UUS) | = 1(U0UF) = f(1d) (2.27)
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In particular, for any time evolved state Y, = e~ "y,

el % = [E L EE[V0U0 U9 W@ ] di)

= [Cm Yo(z) Yo(z) du(z) = ||WO||%.- ) (2.28)

2.2 Girsanov Transformed SDE System for the Density Matrix Elements

Recall the representations of Theorem 2, for the initial state ¥(z) = e 2 the density
matrix elements can be written as

= _ = 2
(Vr.afaj ) = ExEy[ vi Dy €20 J e (2.29)

with vector valued functions v = vy ; € C'l and 7 = Uy € C''l" which are given by the
SDE system

dv = —i(dts + @dx,)v
dv= +i(dte + V2udy,)v (2.30)

with initial conditions vy o = A, Uy 0 = X . Since dxj,dyj; =0, we obtain
dw'?) =dv'o + vTdo + dvTdv
—ivl(dte + V2udx, )o + iv'(dte + V2udy,)v + 0
— iv2u v (dx; —dy)v
— iv2u Zjv,-ﬁj (dx;, —dyj,) (2.31)

That is, the quantity v’ v = Z,’ vjv; = vv, we omit the transpose sign in the following, is
a martingale. Now we write

k
(VV)kar = (V)9 + Z[(Uﬁ)m — (W) (e-1)ar |

=1

k
— i) + 3 d@d)uar

=1
k
= (vv)o — ivV2u ;Zj(vjﬁj)(f—l)dt (dx; ear — dyj ear)
k
=M = iV2udi 3% 55 @0 = 0.0) (2.32)
=1

such that

k
WDk o= = DD exp{ — iv/2udt Z Z(Ujﬁj)(éfl)df (bje —0j.0) }(2-33)

=1 j
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with integration variables

dx;j ear = \/cﬁfi’j,z (2.34)
dyjear = Ndt6;

In terms of the ¢; ¢, 6; ¢ variables, the Fresnel measure reads

k > g2y dWp,dMg
. 55,07, 4 Ped” 00 5
/ka /ka l;[ ¢ Q)T (2.35)

Consider the £’th term on the right hand side of (2.33),

> i) e-nar @0 — 0j.0) (2.36)

J

The ¢¢ and 6; show up in an explicit linear form, since the quantities

Wjvj)e—nar = (Ujﬁj)(éfl)dt({‘f’ma Qm}m 1) (2.37)

depend only on ¢’s and 6’s at earlier times 71, - - - , fy—1. Thus, we can absorb them into
the integration measure simply by completing the square. In the mathematics literature, the
corresponding change of variables then is called a Girsanov transformation. Thus, this is a
very elementary calculation, but, since this is a key step, let us be very explicit and proceed
line by line. The result is summarized in Theorem 4 below.

We have at time 1 = t; = kdt

(Vi afajy)r = EE[viv;e]e (2.38)
k
= /ka Vi kdt U} kdt HGXP{ — iV 2udt Z(Ujl_)j)(ifl)dt (@Dje—0¢) } X
R =1 F

k
d'”(j)@d'”@g
Hexp{ Z(%z 07 ) }4(271)'”

=1
Consider the ¢-th factor. The exponentials with the ¢, variables combine to
. _ i
exp{ — iv2udt Y (0 5) - 1yar .0 } x exp{ 5 > 67, } (2.39)
J J
i _
= CXP{ 3 Z[%z-,g — 232udt (vj ;) (¢—1)ds d’j,e] }
J

i _ 2 i _
= exp{ 52[4)]'7[ — ~2udt (vjvj)(g_l)dr] } X exp{ —EZ 2udt (Ujvj)%lfl)dt }

J J
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The exponentials with the 6, variables combine to

_ i
exp{ ~+ i/ 2udt Z(vjvj)(gfl)d, 0. } X exp{ -3 2912»5 } (2.40)
J J

=exp{ —LZ[ 0%, — 2v2udt (v; ;) - 1yar ]z]}

2 &
j
i _ i _
= exp{ — E Z[ej’( — N2udt (Ujvj)(g,|)d, ]2 } X exp{ + 5 Z 2udt (vjvj)%gfl)dt }
J J
Observe that the last exponentials in (2.39) and (2.40)

exp —72 2udt (v;9)y_1yq, } % exp{+ Z 2udt (v 9))y_1yg, } =1 (2.41)

cancel each other.
Now we make the substitution of variables

b= — m(vjﬁj)(é—l)dz (2.42)
0.0 = 0j.0 — ~2udt (V;V;) - 1)ar
or equivalently
d%jy, i=dxjs, — N2udt (00 e—1yar (2.43)
d5j4, = dyj, — N2udt (v;0;) - 1yar

Then we can write

(Vi aia; y)r = EcEyLuidj e e P
= E; y[viﬁj] (2.44)

where in terms of the transformed variables x, y the v; and v; are given by the transformed
SDE system

dvj = —idt(ev); — iv2uvjdx;
= —idi(ev); — ivV2uv;[dX;j + V2udtv;v;]
= —idt(ev); — i2udtvjvjv; — ivV2uv;dx; (2.45)

and

dv; = +idi(e0); + iv2uv;dy,

= +idt(e0); + ivV2ub;[dy; + V2udtv;v;]
= +idl‘(81_))j + i2udtv_,ﬁj 1_Jj + l'\/zul_)jdj/j (2.46)

with initial conditions

vjo = )»j

Dj0=Aj (2.47)
Recall that

A2 =N (2.48)
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has the meaning of total number of particles. Thus, if we devide (2.45) and (2.46) through
|A] = +/N and put

wj:=v; /|l

Wi = 0; /Al (2.49)
we obtain
dwj = —idt(sw); — i2uNdtwjw;w; — ivV2uw;dx;
dvj = +idt (ew); + i2uNdtw;w; w; + iv2uw;dy; (2.50)
or, with
g:=uN (2.51)
dwj = —idt(ew); — i2gdtw;w;w; — iy/2g/N w;d5,
dvj = +idt(ew); + i2gdtw;w;w; + iy/2g/N w;dy, (2.52)

Thus, in the limit N — oo with g = uN fixed, the diffusive part vanishes, the SDE reduces
to a deterministic ODE system and the exact density matrix elements are given by

(Vi afajy)r = EzE5[vi0;] = N x wi(t) w;(r) (2.53)

with the w, w given by the ODE system

u')j = —i(ew)j — i2gwjlbj wj
wj = +i(ew); + i2gwle)le)j (2.54)
with initial conditions
w;(0) = Aj / |Al
w;(0) =4; / |A] (2.55)

Observe that now the w; are the true complex conjugates of the w ;. Before we proceed to
the analog calculation for number states in the next section, let’s summarize the results in the
following

Theorem 4 Recall the SDE representation of Theorem 2 above,

= — o _ 2
(Vroafaj ) r = ExEy[ vix Dy €™ [ e (2.56)
with
dvj = —idt(ev); — iv2uvjdx;
dvj = +idt(ed); + iv2uv;dy; (2.57)

Then, with the Girsanov transformation

d%j g, = dxj,, — ~N2udt (V;0)) -1y
dyji =dyj, — V2u dt (VjVj)e=1)ar (2.58)
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. 5 — a2 ) —(vb . . .
the exponential ¢@Pi=M" = W= cqn be absorbed into the Fresnel integration mea-
sure, there is the identity

(Ve aaj ¥o)r = ExE5[ vz, )50 ] (2.59)
with
dvj = —idt(sv); — i2udtvjvjv; — ivV2uv;dx;
dvj = +idt(ed); + i2udtv;v;v; + iN2ub;dy, (2.60)

In the limit N — oo with g = uN fixed, we have the exact representation
(Wi aFagv)r =N x wit) ;) 2.61)
with w ; now being the true complex conjugate of w ; and the w ; are given by the ODE system
w; = —i(ew); — i2gwjw;w; (2.62)

with initial conditions w;(0) = A; /|A|. Equation (2.62) is the time dependent discrete
Gross Pitaevskii equation, here with a general hopping matrix € = (&;}); jer which may
also include some on-diagonal trapping potentials € ; = ¢ ; from the Hamiltonian (1.1).

2.3 Number States

Let’s consider the dynamics of number states which are used to describe the dynamics of
Bose-Einstein condensates. They are given by the following initial state

_ N 1 N )N
vo@) = voliz}h) = VNN (2 iz)" = NN (269
with
2 2
[A]F = § j|x]| = N (2.64)

There are the following formulae which are standard expectations over the bosonic Fock
space, here written again in the Bargmann-Segal representation:

1 _
— f )V DY duz) = (IAHY (2.65)
N! Joir|

1 = 3= T —

N Jo @Y 0N AN du(z) = 8 MDY + N ()N (2.66)
Thus, with the condition (2.64), we have the following time zero expectations:
2 |A[2Y
W0, Yo)F = Vo7 du(z) = —x (2.67)
cIrl N

_ ik _
(Wo,afaﬂ/fo)fZ/OHZjZi o2 duz) — 8i,j = N I?»Izj = Aikj (2.68)

Now, let’s consider the time ¢ formulae. From (1.58) and (1.62) we have for an arbitrary
initial state ¥

(Vi.a]aj¥)F = /ijZi (@17 du) — & (2.69)

cIrl

-/ /C o E VWD) P02 dp(@) | dF () dF () = 81
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The wavy bracket we can evaluate with the formulae from above. We obtain

/(Cm 252 YoUx.i2) Yo(Uy.12) du(2) (2.70)
1 ) N - L
:W/(C\T\ ZjZ,'(UxTJ)\-Z) ( yT,t)“'Z) du(z)
1 A 7 N - —
= VN { 8ij (A-Ue UFON + NIUL A [O],20; (& Uy, UM }
Thus,
(Vo.afajyo)r = @2.71)
l E 7 r Y - -
NN ExEy[ Sij (A~ Ux,[U;,f,}\)N + N[U;,)»]i [UI,A]j (A- Ux,zny[)»)Nfl ] — b

= &E,[ WL 1003 (Ul U )] /6 Y

since
1
NN
because of Theorem 3 of Section 2.1. Now we can proceed as in the preceeding Section 2.2.
We introduce the variables

ExEy[ai,j (- Ux,,ny,X)N] =5 2.72)

vj = Ux,t,j = [U;tk]j
U = by, =011 (2.73)
and from the matrix equations

dul, = —i(dte + V2udx, ) U,

dU[, = +i(dte + 2udy, ) U], (2.74)
we obtain
dvj = —idt(ev); + \/ﬂdxj,, vj
dvj = +idt (ev); + «/ﬂdyj,t vj (2.75)
Furthermore,
(Ul uf i)V = (Zjv(,-ﬁj)N_l = V! (2.76)

Thus, for the density matrix elements we obtain the following representation:
(Ve ataj ¥o)r = EE[viv; @DN'] / V! 2.77)

As in the last section, we can make a Girsanov transformation and absorb the quantity
(vB)N~! into the Fresnel measure. Since the v, ¥ obey exactly the same SDEs as in the last
section with the same initial conditions

o = A (2.78)
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Equation (2.31) remains unchanged:

d(vv) = — iv2u Zjvjl_)j (dxj;—dyj) 2.79)
Now we abbreviate
P (D) := (vo)V ! (2.80)
pv) := P'(vv)/P(wd) = [log P]'(vd) = (N — 1)/(vd) (2.81)
Then, since (v0)y = A and, more importantly, [d (vD)]? = 0, we can write
~ \N—1
W)™ log Py —log Pofo) i p(vsiy) d(vi), (2.82)
()\A)N_l

With the discrete time variables of Section 2.2, the exponent reads as follows:

173 k
fo psB) W)y = Y plOD)e-narl dD)eas
k
= — i\/ﬂzlzlp[(vﬁ)(zq)dz] Zj(vjﬁj)(z—l)dx (dxj ear — dyj edr)
k 2D
= —iv2udt(N — 1) ZZ:IZ],(%)@_W, (Bj.e—0j.0) (2.83)

Thus, now we have to make the following substitution of variables:
). =)0 — V2udi(N — 1) (00} /v0) (- 1yar
0.0 :=0;0 — N2udt(N — 1) (v;0;/v0)(¢—1)ar (2.84)
or equivalently
dij = dxj — V2N = 1)dt (00} /00)e-1ar
dyj, =dyj, — V2u(N — 1) dt Vv /v0)(e—1)ar (2.85)
Then we can write
(Yr.afaj y)r = EEy[vio; @)V '/ 0N = E:Eilviv; ] (2.86)

where in terms of the transformed variables X, y the v; and v; are given by the transformed
SDE system

dvj = —idt(ev); — ivV2uv;dx;
= —idt(ev); — i2u(N—1)dtv£—?vj — iv2uv;dx; (2.87)
and
dvj = +idt(ev); + iv2uv;dy;

SNG4+ i dy; (2.88)
Vv

= +idt(ev); + i2u(N —1)dt

with initial conditions (v, ¥)g = (A, 1) Dividing the system through |A| = +/N and introdu-
cing again the normalized quantities

w:=1v/I|A|
w:=1v/|A| (2.89)
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we obtain the following ODE system in the limit N — oo with g = UN fixed:

W = —i(ew); — i2g Wy
j= J § o W
= . - . wju_)j _
w; = +i(ew); + i2¢g — W, (2.90)
ww
In particular, for a symmetric hopping matrix & = &7
d _ A .
(i) = Zj{w,- Wj + wjw; |
wiw; wiw;
_ D — wi(ed): ) — 2 Wi Wiy
sz{(sw),wJ wj(sw)j} i gzj{ s wjw; w; s w]}
=0 2.91)

Thus we have (ww); = 1 for all # and the ODE system (2.90) reduces again to the time
dependent discrete Gross-Pitaevskii equation. We summarize in the following

Theorem 5 Consider the following normalized initial number state,

()N

1 N
= i}) = — AiZj = — 2.92
0@ = Yollz)) = oy (22 %5%) NG (2.92)

with |A|2 = N. Then the time t density matrix elements can be written as
(Y1, ataj ¥ )F = EE[vi1; ] (2.93)

where the v, v are given by the SDE system

dvj = —i(ev);dit — i2u(N — 1) "L vjdr — iv/2uv;dx;
Vv

dij = +i(eD)jdt + i2u(N —1) 2L 5, dr + iv2uv;dy; (2.94)
Vv

with initial conditions (v, v)g = (7, 1). In the lage N limit with g = uN fixed, this reduces
again, as in Theorem 4 where the initial state was a coherent state, to the time dependent
discrete Gross-Pitaevskii equation

wj = —iew); — i2gw;w;w;
Wi = +i(ew); + i2gw;w;w, (2.95)
with normalized quantities (w, w) := (v, v)/|A|, initial conditions (w, w)o = (A, X)/I)»I

and density matrix elements given by (¥ afaaj Y)Fr = Nwjwj,.

The results of Theorems 4 and 5 are in line with rigorous results in the continuous case in the
large N limit. In [2], Benedikter, Porta and Schlein give an overview on rigorous derivations
of effective evolution equations and results concerning the continuous time dependent Gross-
Pitaevskii equation are summarized in chapter 5. The article [3] focusses solely on the GP
equation. Pickl [4, 5] and more recently Jeblick, Leopold and Pickl [6] also gave rigorous
derivations of the continuous time dependent GP equation. The issue has a longer history
with more people involved, more background can be found in [2]. The fact that the coherent
states and the number states of Theorem 4 and 5 show similar dynamics in the large N limit
has also been observed by Schachenmayer, Daley and Zoller in [7].
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3 PDE Representations
3.1 Untransformed Case, before Girsanov Transformation

In the untransformed case, the SDE representation for the density matrix elements is given
by Theorem 2 of Section 1.2. We have

(Vi aita; ¥)r = EELv;0; €] e 3.1
with

dvj = —idt(ev); — iv2uv;jdx; (3.2)

dvj = +idt(ev); + ivV2uv;dy;
According to the Fresnel version of Kolmogorov’s backward equation, a one dimensional
version is given in formula (A.81) with Fresnel expectation (A.74) in Appendix A.4, the
quantity (3.1) has a PDE representation. In order to write it down, we need the operator

A which is associated with the SDE system (3.2). To this end, we consider some arbitrary
complex-valued function f of 2|I"| arguments,

= flv)oh '~ cC (3.3)
Because of
(dv.,')2 = {— idt(ev); — iv2uvjdx; }2
= {—i 2uvjdx; }2
= —2u vf (clxj)2
= —i2udtv] (3.4)
and
(do))? = {+idi(eD); + iv2up;dy; )
= {+iv2ui;dy; }*
— 2uv5 (dy;)°
= +i2udt?; (3.5)

and, fori # j,
dvidv; = dv;dv; = dv;dv; = dv;dv; = 0 3.6)

we obtain with the Fresnel version of the Ito lemma

of of I Ff o f
af = YA L v+ L)+ Y (P a2 + B )
! Zj au; % * a0, " * 221‘ 31)?( v 3'7?( v
. of _9f
9% f a2f
—iudt {vz— — 2 ] + diffusive
Z J 31)5 J 81_)12
=: Af + diffusive 3.7
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Thus, the expectation
Fi o= EE[ £ ((0jnah (T | (3:8)
considered as a function of its initial values (vo, vo) = ({v; 0}, {vj,0}) = (A, ),

Fr = F({vj o}, {9j.0}) (3.9

can be obtained as the solution of the parabolic second order PDE (the zero subscripts on the
v’s are then usually omitted in the notation, vj o — v; in the following PDE)

aF ) aF _dF _ , F  _, 8°F
E = AF——ZZI{(EU)jE — (Sv)jail_)j} — IMZI{UJW — U]Tﬁ? }(310)

with initial condition

Fo = f({v;}. {v;}) (3.11)
If we introduce the differential operators
L =1Ly + Lin (3.12)
with
d d
Lo { L ey 2 } 3.13
0= { (ev); ;i g (3.13)
9’ 32
S 2 =2
Lint ._uzj{vjﬁ —vjﬁ] (3.14)
J J
the solution may be written as
F, =e¢ "C R (3.15)

which one could try to evaluate through small or approximate large Trotter steps according
to

F, = o iCotlin) fy ~ (e—iitﬁo e—l%l:im)k Fo (3.16)

For the density matrix elements, we have to calculate the expectation (3.1) and hence the
initial condition Fp = f is given by

Fo({vj} {Dj}) = v; 0j €'~ F (3.17)
The time evolution is then obtained through

i . - o 2
(Vi afajp)F = e "E0FTEm Lo 5, eV T Y| L (3.18)

v=A,0=

In particular, the solution of the PDE (3.10) is not needed in the whole (v, v) - space, but only
at one specific point

(ol 491 = () ) (3.19)
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3.2 Transformed Case, after Girsanov Transformation
After Girsanov transformation, we have the SDE representation which is given by Theorem 4
of Section 2.2,
(Vr.ataj ¥ )r = EE[viD; ] (3.20)

with

dvj = —idt(ev); — i2udtvjvjv; — i~v2uvjdx; (3.2

dvj = +idt(e0); + i2udtv;v;v; + iv2uv;dy;
We still have

(dvj)* = —i2udtv; (3.22)
dv))* = +i2udtv;
and, fori # j,
dvidv; = dv;dv; = dv;dv; = dv;dv; = 0 (3.23)
Thus, again with the Ito lemma, for some arbitrary f = f({v;}, {v;}),
B af af 3 f T P
4 =2 5+ 5 d-’}+§Z{a2( D+ o @
d _ d __ 0
= —tdtz {(sv)j— — (Ev)ja—l_{j} — i 2udt Zj{vjvj vja—j; — vjvjvja—l_{j}
a2f 92
; 2 ) .
—iudt ZJ{ V5 Pl F @} + diffusive (3.24)
such that the expectation
Fr = BE[ £ ({0,000 8 | (3.25)

considered again as a function of its initial values (vo, vg) = ({vj 0}, {vj0}) = (A, X,
F; = F({vj.0}. {7).0}) (3.26)

and omitting the subscripts O on the v, v in the following, can be obtained as the solution of
the second order PDE
oF oF }

oF . oF oF ) _ _
W:—IZ I(sv)]— — (ev )Ja—l_)j} — zZquvjvj[vja—vj - vja—l_)j

2 I*F 2 9?
—iu - v —= 3.27
Z { / av J al—)? } ( )
with initial condition

Fo = f({vj}. {v;}) (3.28)

We write £ = Ly + Lin as in the untransformed case and abbreviate the additional term,
which is due to the exponential e”” which in turn comes from the initial state 1o which was
chosen to be a product of coherent states, as

0 0 } (3.29)
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Then the solution of the PDE (3.27) can be written as
F, = e 1+ Ly) By (3.30)

For the density matrix elements, we now have to calculate the expectation (3.20) instead of
(3.1) and hence the initial condition Fy is simply given by

Fo({v;}, {v;}) = vi v; 3.31)

. - B 2 . . .
instead of the v; v; "V~ I*I* which we had in the untransformed case. Thus, the time evolved
density matrix elements are obtained through

(Y, aaj ) F = e "FoTLimtLog) (4, 5, ) | (3.32)

v=A, =M
Again, the solution of the PDE (3.27) is not needed in the whole (v, v) - space, but only at
one specific point (v, V) = (A, 1).

3.3 The PDE Version of the Girsanov Transformation Formula

By comparison of (3.18) and (3.32), apparently there has to be the identity
e~ i1(Lo+Lin) { f(v, ) evﬁ—lkl2 } } - = 1Lt Lin+Lyy) {(f(v, D)} |v:k,ﬁ:i (3.33)

v=A,0=A

for arbitrary functions f (v, v). This identity has the following generalization which can be
obtained by redoing the calculations of chapter 1 and 2 for an arbitrary initial state, not
necessarily for a coherent state: Let P = P (vv) be some (usually positive when restricted to
real values, since it come from a || ]|%) arbitrary function of one real or complex variable.
Then

e i1(Lo+Lint) { f(v, D) P(vv) - e—”(ﬁ“+£i"‘+£1’){f(v, )} |U:)\ . (3.34)

P()»)_») } |v:)\,17:k

or equivalently
e ML) { P(yD) f(v, D) } = P(vd) x e EOTEMTLP) £y )} (3.35)
with
P’ (vv) d d
Lpim 2w S vy = 3.36
F " P(vv) Zjv]v] K v K v ( )
and P'(x) =dP/dx.

Since (3.35) is completely independent of any stochastics, just some algebraic statement
concerning derivatives, let us also give an independent proof, thereby confirming the validity
of the stochastic formalism' which has been used so far: First, one calculates that for any
P =P(vv) = P(Zj v;v;), one has, using &;; = ¢j; for the Ly equation,

LoP =0 (3.37)
LinnP =0 (3.38)

Since Ly is a first order operator, one has for arbitrary f = f({v;}, {v;})

Lo(Pf) = Lo(P) x [ + P xLo(f) = P xLo(f) (339

! recall that we are using the stochastic calculus formalism with respect to Fresnel measure, not with Wiener

measure, which is not part of standard rigorous textbook mathematics
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Furthermore,
5 92
P =" { v} e 7 5 ~en
AP df , 0P Of
= Lw(P) xS+ Px L) + 2 30 {0 5 50 - 5 5 o |
of 5., Of
=P X Line(f) + ZMZ {v P’ Ujale — v?P vja—l_)i}
of  _af
:Pxﬂlnt(f)+2uPZvjvJ[vja—vj— i 55, }
=P x [Lin(f) + Lp(f)] (3.40)
Thus,
(Lo + Lin)(Pf) = P x (Lo + Lint + Lp)(f) (3.41)

and by induction

(Lo + Lin)" T (PS)

(Lo + Lind) { (Lo + Lin)" (Pf) }
(Lo+ Lin) { P x (Lo~ Lin +Lp)" ()}

P X (Lo Lin+ L) | (Lo + L+ L2)" (/) |
= P x (Lo+ Lini+ L)' (f) (3.42)

(341

This proves (3.35). Let us summarize the results of this chapter in the following

Theorem 6 For an arbitrary real symmetric hopping matrix ¢ = (g;;) = (&j;), define the
differential operators

P _ 9 d d
Eo:=Zj{(8v)jT—(8v)jaTj} = Zi,jaij{”iaTj_v’ 3, }(343)

2
Lm:uZJza #iﬂ (3.44)

J J
Bv 8vj

Furthermore, for some arbitrary function of one variable P = P(vv) = P(Zj v; ﬁj), put

P’ (vD) _ 0 _ 0
Lp=2 v - .{ 2 -Aff} 3.45
p u D) Zjv/v_, v; 50, vj 9%, (3.45)

Then:

a) The density matrix elements of Theorem 2 can be calculated through the following
formula, this is the untransformed case before Girsanov transformation:

(Vi .afaj Y )r = e 1EHEm) [y 5 00—y | (3.46)

v=A,0=A
b) The density matrix elements of Theorem 2 can be calculated through the following

equivalent formula, obtained from the SDE representation (2.59),(2.60) after Girsanov

transformation:
(Vi afajp)F = e EOTEMTED) {55 | (3.47)

with P(x) = e*.

v=A,0=A
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¢) For an arbitrary function P = P(x) of one variable, there is the following general
identity:

e Mt L) { P(yD) f (v, D) } = P(vd) x e TEOTEMTLER) [ £y 5)} (3.48)

with f = f(v,v) = f({v;}, {v;}) being an arbitrary function of 2|T'| variables.

4 An Explicit Solvable Test Case: The 0D Bose-Hubbard Model

Since stochastic calculus with Fresnel Brownian motions instead of standard Brownian
motions is not part of rigorous textbook mathematics, let’s make an additional check of
the formalism by applying it to an explicit solvable test case, the 0D Bose-Hubbard model.
The term 0D Bose-Hubbard model we borrowed from the paper [8] of Ray, Ostmann, Simon,
Grossmann and Strunz, where the model also had to serve as a test example. Besides of just
being a test case, the purpose of this chapter is also to give some intuition for the appro-
ximation which will be used in Section 5.3 to take the diffusive part of the SDE system into
account.

In the Bargmann-Segal representation (1.4), the Hamiltonian of the OD Bose-Hubbard
model is simply

. d , d?
h = ho + hint ':gzd? + uz P 4.1)
We choose the initial state
Yo(z) 1= e e N2 4.2)
with A € C and consider the time evolution
T 43)
We want to calculate the quantity, with a = d/dz, a* =z,
W a v F = @ g, Y F = /C dp (@) 2 Y@
dRezdlmz _ 2
- /R REEE R o (4.4)
Since
he" ={en+unin—1}" = h,7" (4.5)
we have
o A - 2
HEEDY — e ithn gn =M/ (4.6)
n=0 "
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such that
oo 7 2
Wayr= Y emitnhn) A / 42 P iz -
= nlm! Jp2 w
0 T+l 2
N ity M / B2kl o)) P
= nln+1)! Jpo 7 '
o0 by +]
= Zeﬂ'l(hnﬂ*hn) AT e*l)hl2 4.7)
= n!
Since
hpy1 —hp=e—u+u@n+1) = e+4+2un 4.8)
we end up with
o _
Wr.av)F = X Ze+it(8+2u”) LLA)” efm2
= n!
=2 e exp{ —(1— ") a7} (4.9)

This quantity has already collapse and revivals, if we plot Re(yy,a ¥)F for ¢ = 2,
u=g/N with g =0.5 and N = |A|> =20, we get

Let’s apply Theorem 2. We get the following representation:

(Ve a ) F = EEy[ By et ] o7 (4.10)
where the v, v; € C are given by the SDEs
dvt:_idtgvt—i 2uv,dx,
dl_)[: +ldt8'l_)[ +lv2ul_),dy, (411)

with initial conditions vo = A, Uy = A . If we would have Wiener measure instead of Fresnel
measure, this would be a geometric Brownian motion. Here we have Fresnel measure with
calculation rules

(dx;)> = +idt
dy)? = —idt (4.12)

@ Springer



International Journal of Theoretical Physics (2024) 63:139 Page29of 65 139

and obtain the solutions

v, = Vo e—i(s—u)t—i«/2ux,

- 17() e+i(s—u)t+i«/ﬂyt (4_13)

Namely, the Ito formula applied to v; = vg e—ile—wr —iv2ux _ v(x, t) gives

v 1 9%v
dv, = —d -
v ox Mt 2 9x2

1
= —iN2uvdx, + 5(—1‘«/2@21}, (dx)* — i(e —u) v dt

Jv
(dx)? + 5

1
—iN2uv dx + 5 (—iv2u)? v (+i)dt — i (e —u) v, dt
= —iN2uvidx; — iedtv (4.14)
For some integrand which depends on x; only and not on earlier {x,/},7, , Fresnel or Wiener

expectations reduce to 1-dimensional integrals (Appendix A.4 has a general formula in
(A.84)). We have

- -t dx, d
ExEy[f(x,,yt)]=/sz<x,,yt)e’ Epeted

2t
22 dxd
=/ F(ix, iyyel 7 22 (4.15)
R2 21
Now we substitute
X—-Y Xty
= , = (4.16)
3 7 U 7
which gives
242 )
T dxdy = ¢i¢" ds dn (4.17)
2 2
The quantities in the integrand in (4.15) are given by (4.10),
et = exp[ AP e "IV L = expf a2 e VRIS ) (4.18)
and
Byt eVrtln — 3 e+i(£—u)t+im)’t % exp{ |M2€_ims }
= J et g IV oxpl |32 e T IVAUIE ) (4.19)
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Thus we have to evaluate
(Yr,ay)r = ExEy[ ﬁy,t evx,,ﬁ)-_, ] 6‘_|M2

:f XE_H(S_M)t e+i«/ﬁ(ﬂ—§:) X CXp{ |)"|2 (e—img _ 1)}ei$'7 @
R2 =

zie+i(sfu)t/d€efiﬁ€/e+i(§+«/1;)n ;ﬁ x exp{ WP (e~ VHE 1)
R R T

=Xe+i<8—">’/ ds e~ VE (& + Jur) x exp{ 1] (e~ VAIE 1))
R

X e+i(s—u)t e+iut x exp{ |)»|2 (e+i2ut _ 1)}

= e x expl AP (e TR — 1)} (4.20)

and this coincides with the exact result (4.9). Now let’s apply Theorem 4. After Girsanov
transformation, we have the following representation (we omit the tilde on the transformed
Fresnel BMs in the following):

(Ve av)r = EEy[ 0 ] 4.21)
with v, v given by
dv, = —idtevy — i 2udtvivs vy — i NV2u v dxg
dv, = +idted; + i2udtvd; o + iv2uv;dy, (4.22)

This SDE system can still be solved in closed form. First we calculate
d(wv) =dvv + vdv + dvdv
= —idtevv — i2udtvvvy — i vV2uvvdx;
+idtevv 4+ i2udtvove + i V2uvvdy, + 0

= —iN2uvv(dx; —dy) = —iv4uvvd§ (4.23)
Since
&) = (dXt}zdyt P - (dx)* — 2d);tdyz+(dyt)2 _ tidi —20 —idi 4.24)
the solution to (4.23) is
(WD), = (vi)g e~ VHE = o2 e iVAUE (4.25)

Thus, the equation for v becomes
div =] +i(e + 2ubP eV ) dr + i Vaudy o (4.26)

This is a geometric Fresnel BM with a time dependent and stochastic drift. To solve it, we
have to take into account that (d y,)2 = —i dt and obtain
B = T e+if(§(s+2u|x|2e*fmfs ) ds +iv/2u y, —iut
— 7 eFile—wr y+i2ul? [ emIVHES gs 4 i2uy,
— 7 etile—wr ,+i2ulh? [ e~ VHES g5 i Ju (0 —E) (427
Since v; is not just a function of the Fresnel BMs at time ¢, but it depends also through the
ds-integral in the exponent on the Fresnel BMs & at earlier times s < ¢, we can’t no longer
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make a large step evaluation of the expectation value through a one or two dimensional
integral, but we have to write down the full small step path integral. Recall the notations

k
th = MZE:IQSZ

k
i =Wty 6 (4.28)
and the Fresnel measure
_ k9% dey dO
AFdF = 11 ¢i - 49rdo (4.29)
=1 2
Let us write
_ Xty — Vi _ k ¢Z - 9[ . k
&, = v, vy 5= vy o
_ Xty +ytk _ k ¢€ +95 . k
mo= T = Jdt Z[:l 5= Vdt Zzzl Be (4.30)
such that the Fresnel measure becomes
_ k. doygd
AFdF = [ eieupe 92LdP 431)
=1 2

Then in discrete time t = t; = kdt the v is given by

_ . k . k
B, = & etiemnn exp{+i2u|x|226_le*’¢mte di + iNudty", (B —Otg)} (4.32)

We have to calculate

dog dfy

. (4.33)

_ ko
ravrr=E8[5,] = [ w@p) ol
R2k =1
The B-integrals produce §-functions,
k ko d k
/ exp{ +ivudty B} 1 el P _ f s(udi+a0)  (@34)
Rk =1 =1 2 =1
Thus we have ap = —+/udt for all £ and the &;, in (4.32) becomes

¢
&, = Vdt Zm:lam = —Vudtt = —Jut (4.35)
We end up with
_ _ . k . k
EXEy[ Uy, ] = XetiEwik exp{ —i—i2u|)»|22£71e+“/‘m‘/ﬁ“Z dt + ivudt Zz—1 Vudt }
_ . k .
= Jetiewn eXp{+i2u|A|ZZ€_le+’2“’” dr + iudtk}
dt;O)‘Lethet exp{+i2u|k|2/ e+12us ds }
0

= X et exp{ A2t 2 1y } (4.36)

and this again coincides with the original result (4.9).
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Finally, let us check the PDE representations of chapter 3 which are summarized in
Theorem 6. There we have the operators Lo, Line and Lp with P(x) = e* which for the
current 0D case reduce to

Lo = ¢ 95 i}
L R
, 97 9?
Ling = u | v? e — 9 — 95 } 4.37)
a
Lp=2 —
p=2u vv{ ™ v — Y }
Theorem 6 makes the following statements:
a) Untransformed Representation:
(Vi ay)p = e HETEm) (G o=y (4.38)
b) Transformed Representation:
L —it(Lo+Lim+Lp) [ 5
(Vi ayy)p = THEFEREED ()] (4:39)
In case (b), we have to show that the function
F(v,0) := v e exp{vv(et ' — 1)} (4.40)

this is the original result (4.9) with the (A, x) replaced by (vg, v9) — (v, v), is a solution of
the PDE

0
i 3 Fr= Lo+ Line + Lp) F; (4.41)
with initial condition Fy = v . The initial condition is obvious, so let’s check the derivatives.
We have

9 .
i o F,= —¢F, — 2uet™yy F, (4.42)
and one calculates
ﬁ() F[ = — €& Fl
Lit Fr = —2u (e — i F, (4.43)
LpF, = —2uvv F;

which validates (4.41) or (4.39).
In case (a), we have to show that the function

Gi(v, D) := Fi(v,0) e ™ = e explove™ 2!} (4.44)
is a solution of the PDE
9
i == Gi = (Lo+ Lin) Gr (4.45)

with initial condition Gy = v €"? . The initial condition is obvious, so let’s check the deriva-
tives. We have

K] .
i§ G, = —¢G, — 2ue®y5 G, (4.46)
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and one calculates

E() G[ = —& G[
Lin G; = —2uet?y5 G, (4.47)

which verifies (4.38) of the untransformed representation (a).

5 The Two Site Bose-Hubbard Model

In this chapter we consider Bose-Hubbard model with just two lattice sites, 1 and 2. Because
of its numerical simplicity, everything can be calculated easily with exact diagonalization,
but its highly nontrivial physics, the model exhibits collapse and revivals and has a phase
transition between an oscillatory and a self trapping regime, it provides an extremely beautiful
test case for any calculation scheme which aims at an efficient and reasonable description of
quantum many body systems. In fact, about 80 to 90 percent of the research time has been
spent within that model, the generalization to arbitrary dimensions in the end then being
more or less straightforward.
The Hamiltonian in the Bargmann-Segal representation is

2 2
h:Z siiata; u E ataTaia;
i j=1 LY e + j=11"J 7%

3 3 , 9? , 9?
=¢ 21— t2—) +tulzii—= +2
(1822 2811) ( laz% 282%

) (5.1)

Thus, the connection to the standard notation with hopping J and interaction strength U is
made through
e=—J (5.2)
u="U/2 (5.3)
and we ignore any on-diagonal trapping potentials, that is, we put ¢;; = €; = 0. Then

Theorem 4 of Section 2.2 for coherent states and Theorem 5 of Section 2.3 for number states
can be summarized by the following SDE system

dvy = —iedtvy — i2udt p(vv)vivy vy — ivV2uvdx
dvy = —iedtvy — i2udt p(vv) V02V — iIV2uvrdxy
dvy = +iedtvy + i2udt p(vv) v1v] V1 + ivV2u v dy
dvy = +iedtvy 4+ i2udt p(vv) V02 V2 + iV2u vy dy) (5.4)

with vv = vjv] + Vo0 and

p(x) = P'(x)/P(x) = [log P]'(x) (5.5
with
P(x) = e)jv 1 ?f the %n?t?al state %s a coherent state (5.6)
x™ 7~ if the initial state is a number state
such that

if the initial state is a coherent state

px) = . . . (5.7
(N — 1)/x if the initial state is a number state
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Recall that the initial coherent and number states were given by

Mzithaz - il e 2
eHETit e 2 = e e~ 2 coherent state
Yo(z1,22) = | N oo (5.8)
ININN Rz +r2z22)" = N number state
with
AP = P+l =N (5.9)

being the total number of particles. The density matrix elements are then given by
(r.a;aj ) F = EE[ ;1) ] (5.10)
with the vy, v2 and vy, v given by (5.4) with initial conditions
V1,0 Al . 1,0 A
vy = ’ = , v = |- = |- 5.11
() =) e @) =@ e

Let’s introduce the quadratic quantities

np = v
ny = vy
q = v
q = v (5.12)

where the g, as long as no expectation values are taken, is not necessarily the complex
conjugate of the g. Then, because of dv;dv; = 0, these quantities satisfy the following SDE
system. The on-diagonal elements are given by

dny = +iedt(q—¢q) — iN2uny(dx; —dyr)
dny = —iedt(q—q) — iN2uny(dxy —dyy) (5.13)
and for the off-diagonal elements one obtains, with n = n| + ny = vv1 + vV2v2 = VY,
dg= +iedt(ny —ny) — i2udt p(n)(n;y —n2)qg — iv2uq (dxy —dyr)
dg= —iedt(ng—n2) + i2udt p(n)(ng —n2)q — iv2ug(dxy —dyy) (5.14)
since for example,

dq = dvi vy + v1dvy + dvpdv (5.15)
={—iedtvy — i2udt pwd)vivivi — iv2uvidx}
+or{iedtt + i2udt pd) vty + iN2uirdy,} + 0
= 4 iedt(v1v] —v02) — i2udt p(vv) (Viv] — VaV2) VIV — ix/Evlﬁz (dx1 —dy»)

Let’s introduce again, now for j € {1, 2},

dxj —dy;j
dx;j+dy;j
dnj = 7)”}2 Y (5.16)
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and let’s also put

dviy = ~2(dx) —dyy) = d&| +d& +dny —dnp
dvai = ~2(dxy —dy)) = d& +d& —dn +dm (5.17)

Then, with the abbreviations

nip i=np—np
n:=ny+n (5.18)

the system (5.13) and (5.14) looks as follows:

dn = — iv4u (ny d&; + ny dé)
dniy = +i2edt(q—§) — iv4u(nyd&§ —nydér)
dg= +iedtny — i2udt p(n)ning — iugdvis
dg = —iedtnyp + i2udt p(m)ning — ivJugdvy (5.19)

from which we immediately get EE[dn, 1 =0 or
(n;) = EE[n,1=no = nig+no = N Vt (5.20)

Furthermore we have the following exact equations:

d . _
() = +i2e({g) — (an)

dt
d . .
E@t) = +ie(ng) — i2u(p)naig)
d _ . ) _
E@’) = —ig(np:) +1 2”<P(nr)n12,t 6It> (5.21)

Here we reencounter the typical feature of quantum many body systems, namely, the system
is non closed and when trying to close it by deriving SDEs for quantities like n12 ; g; or
p(ng)nia, qr , we generate higher and higher products which basically corresponds to an
expansion of the exponential which generates the collapse and revivals.

5.1 Large N Limit

If we introduce the normalized quantities (so the w’s used in this section are different from
the w’s used in chapter 2)

pr:=ni/N, p» = n/N
w:=gqg/N, w = q/N (5.22)
g = uN
and
P12 1= p1 — P2
p=p1+p (5.23)
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the system (5.19) is equivalent to (with p(n) = p(Np), we write p(n) for brevity)

dp = —i+/4g/N (p1dé + p2d&)
dpip = +i2edt(w—w) — i+/4g/N (p1d§1 — prd&)

dw= +iedtpyp — i2gdtpn)ppw — i/g/Nwdvy

dw= —iedtpp + i2gdt p(n) pow — i+/g/Nwdvy (5.24)
In the limit N — oo with ¢ = uN held fixed, the diffusive part vanishes and we obtain the
ODE system
=0
P12 = +i2e(w—w)

.

.

= +iepnn — i2gppw
= —iepp +i2gpnpw (5.25)

-

Here we can ignore the p(n;) = p(Np;) also for number states since we have p(Np;) =
(N—1)/(Np;) =(N—1)/N — 1 because of p, =1 forall z. Now let’s put all N particles
on lattice site 1, that is, we choose the initial conditions

(p1, p2, w, w)p = (1,0,0,0) (5.26)

The quantity w; is now the true complex conjugate of w;. We are left with the two equations

P2 = —4delmw (5.27)
W= +ieppn — i2gpnw (5.28)
Equation (5.28) is solved by
_ £ _ &\ 2ig fi prads
wy 2 + (wo 2g) e
wo=0 £ _ & efzigf(; p12,sds (5.29)
2¢ 28
We obtain
e t
Imw, = + — sin[Zg/ p12,5ds | (5.30)
28 0
Putting this into (5.27) gives
262 !
pray = —delmw, = —— sin[2g/ p12,5ds | (5.31)
8 0
Thus, the quantity
t
@ = ng p12,5ds (5.32)
0

is the solution of the second order equation

G + 4e’sing, =0 (5.33)
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which is just the equation of motion for the mathematical pendulum. We have the following
initial conditions:

w0 =0
o =2gp120 = 28(1-0) = 2¢ (5.34)
with total energy
o7 2 % 2 2 2
E = 5T 4e“cosg; = 5 4e“cosgpy = 2g° — 4e (5.35)

The potential energy at ¢ = 7 is Epo = +4¢% . We have rollovers if the total energy is
bigger than that, that is, if 2g2 — 482 > +4&?% or

g > (). (5.36)

Numerical Test
Let’s make a numerical check. We choose the following values: ¢ = 1 and

N e {2500, 5000, 10000, 20000 } (5.37)
g<{05,10,18,22,3.0, 6.0} (5.38)

and calculate the quantity

pri = ni/N = aiary)r /N (5-39)

in two different ways: First, by exact diagonalization. There we have to use the different values
for N given by (5.37). Second, by simulating the ODE system 5.33 for the mathematical
pendulum and calculating p;; through

1 Pt
P = 2(1 + 2g) (5.40)
This is the large N limit and accordingly no N enters the calculation, but only a value for g.
We obtain the following results as displayed in Figs. 1 and 2 below. The red line is the ODE
solution and the dots come from exact diagonalization.

The closer the value of g approaches 2, the larger N has to be chosen in order to numer-
ically reach the true N = +oo limit. The different colors of the dots represent the different
values of N, with the obvious ordering of orange, green, light blue and dark blue for increas-
ing values of N. The fact that g = 2¢ = 2 marks the transition point is also visualized
through the following picture,

g=1.99 (black) and g = 2.01 (red) from ODE system

N

which shows the quantity (5.40) for g = 1.99 in black and for g = 2.01 in red. The fact that
the mathematical pendulum shows up in the dynamics of the two site Bose-Hubbard model
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Fig. 1 Exact diagonalization results vs. ODE solution for the quantity (n1 ;)/N

has been observed by several authors, for example in refs [9-12]. The very beautiful thesis
of Lena Simon [13] also provides a detailed discussion of the dynamics.

Equivalence to Quartic Double Well Potential
Actually we can obtain n13 ¢ or p12 ; also as a solution of a classical particle moving in a
quartic double well potential. Recall the ODE system (5.27),(5.28),

P12 = —4deImw
W= +icpp — i2gppw (5.41)
We have
P12 = —4eImw
= —4%p1, + 8gepaRew (5.42)
and
Rew = +2gpppImw (5.43)
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Fig.2 Exact diagonalization results vs. ODE solution for the quantity (n1 ;)/N
or
4eRew = — 2g p12 P12 (5.44)
which gives, with initial conditions wg = 0 and p12,0 = 1,
4sRew; = g(phro— pir) = &(1—ph,) (5.45)
Thus,
Prog + 4e%pray = +2g pio, deRew,
= +2¢% pios (1= pi) (5.46)
or
5 462 —2g? 2¢% 03, =0 5.47
P12 + (e g)p1ar + 287 piay = (5.47)

with initial conditions p12,0 = 1 and p12,0 = 0. Let’s summarize in the following
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Theorem 7 The mathematical pendulum

G + 4% sing, =0 (5.48)
with o = 0 and ¢o = 2g is equivalent to the cubic equation
X+ (4e? —2¢)x + 2¢%x) =0 (5.49)
with xo = 1 and xo = 0 through the transformation
! 1
o = Zg/ Xg ds & Xy = — ¢ (5.50)
0 28

Proof Since this is a stand-alone result independent of the rest of the paper, let us also write
down a stand-alone proof independent of the earlier derivations. We have

. d . i
2e[ % + (7 =2¢0x + 28°x7 | = 1+ (G467 =280 +

dr. 2 . % 2 2 2
:E[% + 4e”sing, | + (p,[7 — 4e”cosq — (287 —4e”) ]

di. . T d gy
= E[% + 4e’sing, | + w,/o a[i — 4e? cos gy | ds

d t
= E[% + 4e’sing, | + gb,/o [@5 + 4e?sing; | ¢y ds

Thus, if (5.48) holds, then also (5.49) is fulfilled. On the other hand, if (5.49) holds, then the
quantity F, := @ + 4e%sing, satisfies the equation
t
F, + 4g2x,/ Foxgds =0
0
or
Xt Ft — )'Ct F[ + 4g2xt3 F[ =0

which is a linear homogeneous second order equation. Since we have the initial conditions
Fy = 0 and, using (5.49) again, also Fy = 0, F; has to vanish identically. O

The transition between the oscillatory and the self trapping regime is intuitive for the mathe-
matical pendulum, let’s try to understand this also by using the cubic equation. The total
energy for (5.49) is

52 2 2 2
Pio 4 4e* — g

8
E=—"+ Q8 =gphy + 5oy = —5 (5.51)
The potential energy is
2.2 2 g 4
Epot(p12) = 26 — g7)pin, + > P (5.52)
and has stationary points at pj» = 0 and
4e2 — 2¢% + 2¢%pH,, =0 (5.53)
or
262
2
Piay =1 — el 1 (5.54)
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Thus, for g2 > 2&? we have a double well potential which, for E < 0 or g2 > 4¢2, is
sufficiently deep such that p12 ; cannot escape the right well when starting at p12,0 = 1 with
p12.0 = 0. Since, p2, starts at 1 with a negative energy and the potential energy at pj2 =0
is zero such that the energy required to cross this point is ,0'122’t /2 > 0 which is not available.

Obviously, the mathematical pendulum has no collapse and revivals, so in order to see
these, we have to take the diffusive part of the SDE system into account. Before we do this,
let’s have a look at PDE representations.

5.2 PDE Representations

In chapter 3, we used the v}, v; as the basic variables to obtain PDE representations for the
density matrix elements. Now, it is very instructive to see the corresponding PDE represen-
tations if the quadratic quantities

(n1,n2,q,q) = (101, V202, V1 V2, V2V1) (5.55)

are used directly as variables. To this end recall the SDE system (5.13) and (5.14) for the
quadratic quantities from the last section,

dny = +ie(qg—q)dt — iv4unid§

dny, = —ie(q—q)dt — iN4unydé
dg= +ienpdt — i2upn)nppqgdt — iﬁqd\)lz
dj = —ienpdt + i2upm)ningdt — iJugdv (5.56)
withn = ny +ny = vv, nip =ny —ny and
p(x) = P'(x)/P(x) = [log P]'(x) (5.57)
with
P() = e);v 1 ?f the ?n?t?al state ?s a coherent state (5.58)
x™ 7~ if the initial state is a number state
such that

if the initial state is a coherent state
px) = . L . (5.59)
(N — 1)/x if the initial state is a number state
Recall the abbreviations
d& = (dx) —dy)/V2
dgr = (dxz — dy2) /Y2
dviy = V2 (dx) — dy2)
dvai = V2 (dxs — dyy) (5.60)
To write down a PDE representation which is again obtained as a Kolmogorov backward
equation, recall the logic of Appendices A.3 and A.4, we need to determine the differential

operator A which is associated to the SDE system (5.56). To do this, we need the following
identities which determine the second order part of A:

@d&1)? = d&)* = (dvin)* = (dva)? = d&ide, = dvipdvy = 0 (5.61)
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and

déidvir = (dx1)? = +idt

d&idvy) = (dy))* = —idt

d&rdviy = (dy))* = —idt

d&dvy) = (dxy)? = +idt (5.62)
Now let

F=F@n,n,q,q)

by any function. We plug in the ny;, na ; and g;, g; from the SDE system above and calculate
the d F with the Ito lemma:

IF IF IF OF _
dF = Zan + dny + Lag + ag (5.63)
any any aq aq
2 2 2 82
dnd dn1dg dnad dnadG
amag M T G M T e T G

) __dF , __dF
= +iedt(q—q) — — iedt(q—q) —
ony ony

. . oF . ) _,dF
+ {zdtsnlz,, — idt2u p(n)nlz,,q,}@ — {zdtsnlg,t — idt2u p(n)nlz,tq,}a—é
92 F 32
2 { dend 7 dtd
u omdq niqd§ dviy + o107 niq d&idvay
?F ?F
+ 20 gddvis + ——— g dérdva } + diffusive
onydq onzdq
or, using (5.62),
oF oF oF oF
dF = j —q) (— — —)dt j — — — —)dt 5.64
+ie(q 61)(8n1 anz) + ie(m "2)(aq acj) (5.64)
oF oF
—i2u p(n)(ng —n2) (q% - éﬁ)dt
u I*F ?’F _  9*F N 3’ F J)dr + diffusi
— 12U n — ——n - n n 11rusive
omag T amag M T amaog " T dnpag
=: AFdt + diffusive (5.65)

Thus, any expectation
F:=EE)[ f(n1,n24,91,G)] = Fi(n1,0,n20,490.Go) (5.66)

considered as a function of its initial values, has to be a solution of (again, we drop the zero
subscripts on the right hand side of (5.66))

oF oF oF aF aF

OF o p oo (BFAF o OFOF
ot tiel@ = (50— 5 0) +ielm "2)(aq aq)
IF _9F
—i2up(n)(n —nz)(qa - 6?@)
2u 32F 2F 32F N 9%F )
— 1 ZU n — —n — n n
amog T an0g " T mpag 1T Bngag
= —i(Le + Lu)F (5.67)
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with initial condition Fp = f and differential operators

_ a a ad d
Lo = _e{(q—q)(%—%)+(n1—n2)(£—£)} (5.68)
ad ad ad _ 0 d _ 0

This proves part (a) of the following

Theorem 8 Consider the two site Bose-Hubbard model with Hamiltonian

h = s(afraz + a;al) + u(afafalal + a;a;azaz)

( o 4 8)+(282+282) (5.70)
=¢(z1— + 22— u(zy — + 25 — )
1azz 2821 ! 82% 2 81%
and initial state
etz o= \)\1|242r\?»2|2 if coherent is chosen
Yo(z1,22) = (5.71)

\/ﬁ (Mz1 + Az2)Y  if number is chosen

with a total number of N = |\{|? + |A2|? particles. Let P be the function of one variable
given by

5.72
xN=1if number is chosen (5.72)

er if coherent is chosen
P(x) =
and let p(x) = P'(x)/P(x). Then the following statements hold:

a) The expected number of particles (ny ;) = EI_E[nl,,] = (Y, afrall//,)]: at lattice site
1 can be written as

— ,it(Le+Ly) .
(o) =e P o) = (P a2, Az Ars) (5.73)
with the differential operators L, and L,, given by (5.68) and (5.69) above.
b) The actions of e "¢ and e=!'*u are as follows: For e~'%¢ we obtain
—itl. - T
(e F)(n1,n2,q.9) = F(Ri (n1.n2,4.9") (5.74)
where F = F(n1,na, q, q) is an arbitrary function and R; is the 4 x 4 matrix
cos? et sin? et ~+i sin &t cos et —i sin £t cos £t
R — sin? ef cos? et —i 8in &f cos &t +i sin &t cos &t (5.75)
"7 | +isinercoset —i sin &t cos et cos? et sin? er ’
—i sin gt cos &t i sin &t cos &t sin? et cos? st
For e~ *£u we find:
e Gy ) g g" ) = (5.76)
) _ ) _ P (e—i2ut (b#;)n] 4 eti2ut (1%)715),12 r
G(e—z2m (b=, gHi2ut (b—b)nz) % ( ) x q"g"

P(ny + ny)

where G = G(ny, np) is an arbitrary function and b, b are arbitrary natural numbers.
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Proof 1t remains to prove part (b). If we make the Ansatz

(e " F)ny,n2,q.q) = F(e " (n,n2,¢. ") (5.77)

and take the time derivative, we find

_ (00 4x4
A= 8(0 0) e R (5.78)
with
[+l -1 2x2
o= (_1+1> e R (5.79)
Since

o2k 0 0 g2kt
A% = (—8)2"(0 02k>, AR g2kt <sz+1 0 ) (5.80)

and because of ¢" = 2""1g =2 % for n > 1, we obtain

emitA — (—|—21t8)2k 1 ° (+2zt£)2"+1 l 0o

k=0
Id 0 cos(Ret) —1 (o 0 . sin(2et) o
= <O Id) + — s (O 0) + 2 (0 0) (5.81)

which coincides wit_h R, since cos? ef = (1 + cos 2¢et)/2 and sinZ et = (1 — cos 2et)/2.
The action of ¢~/ we calculate by evaluating the Fresnel expectation directly. That is,
we write down the ¢ = 0 SDE system

~

dny = — iv4un; d&
dny = — ivdunyd&
dg= —i2udtp(n)ning — iﬁqdulz
dg = +i2udt p(n)ning — ivugdvy (5.82)
which is solved by
nig = ny e VAo dss
ny; = nge_imfg 625 (5.83)
and
g = qe—i2uf(; p(ng) nizs ds—i\/ﬁfotdvlz"\-

qt — é€+i2uf(; png)nizg ds—iﬁfotdvzm (584)
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We have to evaluate
e (G " G" ) = EE[ Gisnan gl ) ]
_ EI_E[G(nl,,, n2.0) efi2u(hfl§) Jo p(rg)nia,s ds o~ ivi fg[bdulz,ﬁéduﬂ,s]]qbél}
= EE[ G(e1, &) e VIRt bdd T gh g0 (5.85)
where we abbreviated the quantity

G, &) =[G, nay) e 2O=D o pennsds (g ) (5.86)

which depends only on the &-variables, but is independent of the n-variables which only
show up in the last exponential in (5.85). This means that as in chapter 4 the n-integrals
can be performed and give §-functions for the &£-variables. With Fresnel BMs given by, for
je{l,2}and t =ty = kdt,

k
Xju =AYy b
k
Vi =Ndiy O (5.87)

the Fresnel measure is

ok v2 e @2¢yd?o
dFdF = 11 ¢' Zi=1 2" Lze (5.88)
=1 (2m7)
We write again
X~ Yim _ ko ¢je—bje ke
Eiy = 5 = Ny 5 Viry© aje
o Xt Vim ko ¢je+b6ie kg
Nin = 7 = Jdt ZH 5 Vdt lelﬁ,,@ (5.89)
such that the Fresnel measure becomes
2 2
dFdF(O[, B) = ﬁ el @ieBretarefe) d ey d”py (5.90)
=1 (2m)?
We have to calculate
EE[ G(e1, &) e~V lolbdva kb ] (5.91)

t t
/ G(&1, &) exp{—iﬁb/ dviy — iﬁE/ dva } dFdF (o, B)
R% 0 0
with the discrete time expressions

t t k
/OdV12=/0(d$1+d$2+dm*dn2) = JaTtZl=l(a1.z+a2,e+ﬂ1,z*,32,15)

VA Y (anetans — ot Pae) (5.92)

t t
/del =/(d$|+d$z*dm+dr/z)
0 0

The B-integrals can be performed and produce §-functions:

. k - ko By AB1edPBre
— i § _ _ i(or1,eB1,et02,eB2,0) : ]
_/Rzk exp{ ivudt ), (b =b)Brm = Fom] } 4121 ¢ (2m)?

- 1 a(al,g - E]M) 8(0{2_@ b —5]@) (5.93)
=1
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Thus,

a1 = + (b —b)Vudt
— (b — b)Vudt (5.94)

a2 ¢

such that n; ; and np ; become, with t = #, = kdt,

. k . _
ni = ny e*’\/mzl:ﬂll,z n 6712u(h7h)t

. k . _
ny, = nze_’\/mZkl“M — n2e+’2”(b_b)t (5.95)

and therefore

1
—i2u(b — 5)/ p(ng)nizsds
0

t _ _ _ _
—i2u(b _ b)/ p(nl e712u(b7b)s +ny €+12u(b7b)5) (nl e*lZU(b*b)s _ n26+12u(b7b)3') ds
0

t _ - - —
+ / p(nl e*i2u(h7b)x + n26+i2u(h7h)S) di(”l e*iZu(hfh)s +nze+i2u(b7b)3)ds
0 N

t d X - . -
— +/ di[logp(nleftZu(hfh)s+n26+12u(h7b)s)]ds
0 N

= log P(n; e~ i2ub=b)t +nze+i2”(b_5)’) — log P(ny + ny) (5.96)

Hence we arrive at
EE[ G(ny . nyy) e 2O=0) fg pnsnizsds =it [jlbdvizs +bdvas] ] — (5.97)

P(nle—i2u(b—5)t + nze+i2u(b—5)z)
P(ny +ny)

G( pi2ut (1;—13)n1 oHi2ut (b—z;)n2 ) «
and this proves part (b) of the theorem. O

5.3 Collapse and Revivals

For small u, the two site Bose-Hubbard model shows the intriguing phenomenom of collapse
and revivals. In two very beautiful papers, Fishman and Veksler [14] and Bakman, Fishman
and Veksler [15] gave a very precise quantitative description of this phenomenom not only
for the two site Bose-Hubbard model, but also, to emphasize the general mechanism, for
a quantum mechanical oscillator with a small anharmonic perturbation. The main technical
tool there was a careful semiclassical analysis of the energy spectrum. Lena Simon and Walter
Strunz also used semiclassical methods in their article [16].

Here in our setting we have SDEs and ODEs and of course we want to use them in order to
demonstrate the phenomenom. In this paper, we do not aim at the most sophisticated version
of doing that, solving this problem would basically mean to solve the quantum mechanical
many body problem, but here we just want to give a ‘proof of concept’, namely, to show that
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the formalism is able to do that at all. To this end, recall the exact equations (5.20) and (5.21)
which in the coherent state case read as follows:

(ny) =N Vt
d — .2 -
E(”lZ,t) = +1i 8((%) - (%))
d
E(Qt) = +ie(ny) — i2u{np;:qr)
d
E(ét) = —ie(npy) + i2u{n;:qr) (5.98)

If we would simply factorize (nj2q) ~ (ni2){¢g), we would recover the mathematical
pendulum which does not have collapse and revivals. From part (b) of Theorem 8 of the
previous section, we have

P(eiizml’l] + e+i2utn2)

n = e itlury e TR
(11,0 G )u {niq} 1 Pl )
. ) P(e—i2utnl + e+i2utn2)
(g = e "Finag}) = et ny x q (5.99)
P(ny +n2)

or, since we are considering the coherent state case with P(x) = e*,

(g )u= e ny x exp{ (e — Dny + (€ — Dy} x ¢

(n2:qr)u = e ny x exp{ (e — Dny + (™ — Dna} x ¢ (5.100)

We also have

L

i)y = e uny =

o)y = ey =my (5.101)

and
(@ = e g =exp{ (e —Dny + ("M — Dy} x ¢ (5.102)

Thus, for the dynamics under ¢ = 0, we can write

Mg i
(100w {qedu
Am@de o idu (5.103)

(n2,t>u (qt>u

Now consider the dynamics under u = 0. Since ¢~*

applied to an arbitrary function F,

¢ simply rotates the argument when

(Fnisn2i. @), = (" F)(n1.n2.q.§) = F(R (n1.n2.q.9)") (5.104)

—itL,

the action of e factorizes when applied to an arbitrary product,

e—itﬁg (FG) = e—itl:s F x e—itﬁs G (5105)
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Thus, under u = 0,

(n1rqr)e _
(n1,)e{qr)e
(n2:qr)e

—_— = 5.106
(n2,1)e {qr)e ( )

Then, for the full dynamics with both ¢ and u being nonzero, one may try the approximation
(nieqe) 1(1_'_6—1'214[)
(n1,e) (qr) 2

{naegr) 1 +i2ut
(n2.0) (qr) ) (1 te ) (5.107)

and this in fact generates collapse and revivals. That is, we modify the exact system (5.98)
to the following approximate system (recall the abbreviation niy :=n; —ny)

(n)) =N V¥t (5.108)
d( )= +i2e({g) — (q))
—(n = +i2¢ —
di 12,¢ gt gt
d . , » ‘
E<qt> N o tielnng) —iu { (1 +e7"2) (ni.){ge) — (1 + etiut (n2,0){q:) }
d .. : . i2u ~ —i2u ~
@)~ —iemag) 4 iu {4 e ) G@) = (e (2,00 )
which then reduces to the following two equations (since (n;) = (n1, +n2;) = N)
d
E(mz,z) = —4¢ Im{g,) (5.109)
d

gl > el —iud + cos 2ut) (n12,1)(q:) — uN sin2ut (q;)

Before we look at the numerical results, let’s make some quick analytical considerations.
Since from now on we are purely in the ODE framework, let’s omit the angular brackets and
summarize the system as follows:

np; = —4elmg,
Gr = +ienyp; — iu(l+cos2ut)nia,qr — uN sin2ut g, (5.110)
Here the # on the right hand side of (5.110) is actually a u, we put this in since for & = 0
this reduces to the system (5.27),(5.28) of Section 5.1 where we have shown that this is
actually the mathematical pendulum. Thus, by switching the & from 0 to # we can interpolate

between the mathematical pendulum without collapse and revivals and the actual case under
consideration. We write

i’ilz’, = —4¢ Imq,
= — 4£2n12,, + 4eu (1 +cos2ut)niz;Req, + 4euN sin2utImg,
= —4821’112’[ + 4eu (1l +cos2ut)nipReq, — uNsin2utnypp, (5.111)

or

fi12, + uNsin2utng,; + 48211127; = +4eu(l+cos2ut)nipReq, (5.112)

@ Springer



International Journal of Theoretical Physics (2024) 63:139 Page 49 of 65 139

For i = 0, the case without collapse and revivals, this reduces to
fing 4+ 0 4 4e’nip, = +4eu(l+)np,Req (5.113)

That is, the right hand side of (5.112) is basically responsible for the difference between
a harmonic pendulum and the mathematical pendulum and it generates the effect of self
trapping or rollovers for g > 2e¢. Since collapse and revivals do already show up for very
small g where surely the harmonic approximation should be valid, we should be able to see
them already in the following equation

fita, 4+ uNsin2itny, + 42nj, =0 (5.114)
This is simply a harmonic oscillator with a time dependent friction
yr == uN sin2iit (5.115)
which can be transformed away with the Ansatz
iy = e 2hrdsy, (5.116)

which then produces the following equation for y;,

¥+ 0fy =0 (5.117)
with a time dependent frequency
2 ; 2205
N 2ut
w2 = 462 — VT’ = g = 487 — (“)% — fuN cos2iit  (5.118)

For small g = uN, one may put this roughly to 4e% such that y; is identical to the exact
u = 0 solution which is

y; &~ N cos2¢et (5.119)

Thus, collapse and revivals arise from the damping factor

0

t

= N
sin2isds } "=" exp{— 7 (1= cos2un) }(5.120)
and we arrive at the approximate small g solution
N

ni, %exp{—z(l —cos2ut) } x N cos2et (5.121)
In the following Fig. 3 and 4, the quantity n12,,/N obtained from exact diagonalization, in
black, is plotted together with the analytical collapse factor (5.120), in red. We chose N = 50,
& = 1 and g as displayed on the plots and all 50 particles were put onto lattice site 1 at time

t=0:

However, now we have to remark that the exact diagonalization numbers were produced with
anumber state, not with a coherent state. While in the large N limit the dynamics of coherent
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Fig.3 Exact diagonalization vs. analytical collapse factor exp{ - % (1 — cos2ut) }

states and number states are identical, this no longer holds in the revival region after the first
collapse has occured. In the large N limit, this region moves to infinity and hence is not
visible there. For example, if we put g = 0.02 and choose a time horizon of 7 = 10000
instead of 7 = 1000 v as above, a comparison of number state and coherent state dynamics
looks as displayed in Fig. 5.

This clearly demonstrates that the problem is subtle and a more careful analysis is required.
For example, in the approximation (5.107) we could have equally well have said, we use
e~124! instead of an average (1 4+ ¢~72“")/2, and then this would have had the effect that
the analytical collapse factor in (5.120) would have come with an N /2 in the exponent
instead of an N /4 and the revival blobs were too small. So, this really should be consid-
ered as some kind of a ‘teaser’, some kind of a motivational argument, but nothing more.
A proper and systematic treatment of the diffusive part is basically equivalent to solving
the quantum mechanical many body problem and this still needs to be developed. But
to do so, we believe indeed that the formalism presented in this paper is a very useful
tool.

Let us remark that the qualitative behaviour seen in Fig. 5 below, number states have twice
the number of revivals than coherent states, actually can be made plausible by comparing
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Fig.4 Exact diagonalization vs. analytical collapse factor exp{— %(l — cos 2ut)}, other g’s

Fig.5 Coherent state vs. number
state dynamics
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their respective collapse factors: for coherent states, there is basically a factor of exp{—N[1—
cos(2ut)]} (ignoring the width of the revival blobs for the moment) while for number states
there is a factor [cos(2ut)]V . In the first case, we have revivals at cos(2uf) = +1 while in
the second case, we have revivals at cos(2ut) = +1 but also for cos(2ut) = —1, so just
twice as much, as seen in the numerical simulation.

We also implemented the full approximate ODE system (5.109) and compared with exact
diagonalization numbers, again using a number state, not a coherent state. We used a fourth
order Runge-Kutta method and separated off the collapse factor to obtain a stable imple-
mentation (N = 50 and ¢ = 1 as above, g fixed to 0.1 and zoomed in on different time
windows), the exact diagonalization numbers are in black and the ODE solution is in red in
the following Figs. 6:

ODE solution vs. exact diagonalization on [0,1000*pi]

05

n12N
05 00

10

0 500 1000 1500 2000 2500 3000

time

ODE solution vs. exact diagonalization on [0,250]

0 50 100 150 200 250

time

ODE solution vs. exact diagonalization on [1550,1800]

d T
1550 1600 1650 1700 1750 1800

time

'ODE solution vs. exact diagonalization on [2900,3150]

T T T T T
2900 2950 3000 3050 3100 3150

time

Fig.6 Exact diagonalization (black) and ODE solution (red) on different time windows
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6 Summary

The paper has demonstrated that the formalism of stochastic calculus is very useful to address
the dynamics of the Bose-Hubbard model. The fact that in the large N limit the exact quantum
dynamics can be obtained from an ODE system, the time dependent discrete GP equation,
has been derived in a conceptually very pure and clean and transparent way. For finite N, the
dynamics is given by the SDE systems of Theorems 4 and 5 of chapter 2 and the diffusive parts
of those systems vanish in the large N limit. More generally, the paper provides a technique to
obtain GP-like mean field equations for an arbitrary given initial state, in arbitrary dimension
and for an arbitrary hopping matrix. For the two site Bose-Hubbard model, the diffusive
part has been taken into account with an approximation and collapse and revivals could
be reproduced, numerically and also through an analytic calculation. A proper systematic
treatment of the diffusive part is still missing and needs to be developed. It has also been
shown that density matrix elements can be obtained from various exact parabolic second
order PDEs.

7 Additional Remarks

By the end of 2016, the mathematics department of Hochschule RheinMain joined the Fa-
culty of Engineering and the author was asked by Klaus Michael Indlekofer from Electrical
Engineering whether there would be some interest in joining a project on quantum dyna-
mics. After 9 years as a financial engineer at a bank, the author found that this would be
a good opportunity to reenter the field and it didn’t took long until it was realized that the
Hubbard model is more relevant than ever due to some major experimental breakthroughs in
the ultracold atoms area [17-21]. Working purely on the theoretical side, we can only humbly
take notice of what is doable there [22].

First attention then was drawn to phase space methods and the truncated Wigner approxi-
mation because of the very attractive idea to get the quantum dynamics from suitably weighted
ODE trajectories. In particular, the beautiful papers of Polkovnikov [23-25], Polkovnikov,
Sachdev and Girvin [26] and Davidson, Sels and Polkovnikov [27] served as a major moti-
vation and inspiration for the current work.

With a theoretical and practical background in stochastic calculus from 9 years of option
pricing, then it was natural to take a closer look to the long history of stochastic methods
applied to the quantum many body problem [28, 29]. In particular, the formalism of the
Husimi Q-Function and the Positve P-Representation [30-34] was considered more closely
and this, combined with the background of the author [35, 36], then lead to the approach
which is taken in this paper.

Nowadays nearly taken for granted, but the almost unlimited and instantaneous access to
the science knowledge of the planet and the people who provide it also has been critical for
the completion of this work. There have been numerous papers, the majority of them probably
not being cited here, where just a particular item was looked up and then the conclusion was,
okay, for our purposes this does not lead in the right direction. Those references may not
seem directly relevant to the now final version of this paper, but they have been critical in
order to get there. In this class fall for example references for BCH like formulas and time
ordered exponentials [37—40] ([39] derives very interesting formulae which are in the same
spirit but more general than a formula derived by the author in chapter 10 of [36]), Carleman
Linearization Technique and Kroenecker products of matrices (Kowalski and Steeb [41]
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wrote a very beautiful book on that) or references which relate to the author’s attempt to
evaluate the Fresnel integrals directly.

With the presented formalism, the paper opens up the possibility to address a range of
very interesting topics like fermionic models or thermodynamic quantities with an e=##
in it instead of an e "' and the author looks very much forward to consider these issues,
but with a teaching load of 18 hours per week at a German University of Applied Sciences,
research basically has to be restricted to the off-term periods which are March and August
and September each year.

Appendix: Compact Summary Stochastic Calculus

A.1 Standard Brownian Motion and Wiener Measure

A standard Brownian motion x; = x;, in discretized time ¢ = #; = kAt is the combination
of integration variables

x, = VAL Zzzlm (A.1)

where the ¢, are to be integrated against Wiener measure which is simply a product of
independent standard Gaussian distributions,

N9 dey NGy )y,
dW = Tle 2 — = TIle ~ 2& — (A.2)
(=1 N2 (=1 2 At

where T = N At is a fixed time horizon. Basic to stochastic calculus, in particular for the Ito
formula in the next section, is the Brownian motion calculation rule

(dx;)? = dt (A.3)

which can be motivated in several ways. Consider the discretized version of the quantity
Jo @) (dx)> which is

() =30 ) Gy~ =AY F(0) (A4)

where f is an arbitrary function of one variable. Its expectation value and variance are given
by

Nt At—0 r
ElIa(H] =AY Fla) M5 fo £ty de (AS)

At—0

T
V[[Az(f)]:Z(Af)zzliv;lf(fk)z A~ 2At /0 f@®*dt "S5 0 (A6)

Thus, with Chebyshev’s inequality we get for any ¢ > 0

T
AltiEOProb“IA,(f) - /0 fyde| > e] -0 (A7)

or more intuitively

T T
/0 FO@x? = gim S ) =) = /O fde (A8
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for arbitrary f. The validity of this equation is usually more compactly written as
(dx)? = dt (A.9)
although the last equation on its own is not correct, in discretized form we have
(Axy)? = (i —x ) = (VArg ) = Mg # At (A.10)

and only after applying the operation

T . v
[ o= im S s - (A1D)

to the left and right hand side of (A.10) we get a valid equation. Since we cannot use
Chebyshev’s inequality in the complex Fresnel case, let us motivate the basic Brownian
motion calculation rule (A.3) in a different way which directly generalizes to the Fresnel
case:

Theorem A1 Let In:(f) be defined as in (A.4) and let E[ -] denote the expectation with
respect to the Wiener measure (A.2). Then

. . T
AI}EOE[ el 1a:i(f) ] — (1 Jo f(n)dt (A.12)

such that for any F(x) = f]R F(q) €9* dq/(2m) we obtain

T
li E[FI ]:F(/ tdt) A13
Jim (1a:(f)) ; f() (A.13)
Proof We have
E[ D] = / N t(1-2igara)ep A%
RN k=1 V2
N |

& T 2qs
1
exp| =3 32 log[ 1 = 2igarfan)] |

- exp[ +% Z;L 2igAtf () + O(At)}

At—0 T
— " exp| —I—iq/ fyde} (A.14)
0
which coincides with (A.12). ]

Let us close this section by recalling that the calculation rule (dx;)> = dt is accompanied
by the rules

dx;dt = dtdt = 0 (A.15)

which also will be used in the next section.
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A.2 Ito Formula and Stochastic Integrals

For some arbitrary function f = f(x) and x; a Brownian motion we can write

FOr) = o) = Y0 fn) — Fou ) )
= Zivzl{ FGy, +dxy) — flxg )} (A.16)
with
dxy = Xy — X, (A.17)
Using a standard Taylor expansion,
fx) =[xy, +dxy) (A.18)
= fOu ) + fOu ) dxy + %f”(xtk,n (dxy)” + %f’”(x,k,,)(dxtm + o
and the calculation rules of a Brownian motion,
(dx,)* = dt (A.19)
and (dx;)® = (dx,)?dx, = dtdx, = 0, we obtain in the limit Az — 0:
fq) = fly ) + ) dxy, + %f”(xtk_l)dt + %.f”’(xtk_,) x 0 (A.20)
or
df (xg) = fl) = fOuy) = fxq ) dxy + %f”(xzk,l)dt (A.21)

which is the differential version of the Ito formula. If we sum this up,

f&xr) — f(xo0)

N
Zk:l{ f(xtk) - f(xl‘kfl) }
N 1
Do ey o+ 5 "Gt )

A1=0

T 1 T
/ f(x)dx, + 3 / £ (x)dt (A.22)
0 0

where the first integral is refered to as an Ito integral. Thus, its definition is, we replace the
f'byan f,

T _ N

/O fOaydx = Jim Do SO dy, (A.23)

What on a first sight looks a bit odd is the fact that if we replace the x;,_, on the right hand
side of (A.23) in the f by, say, (x;_, + x;)/2, we actually get a different limit. This is a

consequence of the fact that (dx;)? is nonzero. The following definition is refered to as a
Stratonovich integral:

T . N Xy X
/0 f(x) odx; := Algozkzl f(%)dx,k (A.24)
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Then there is the following relation:

T T 1 (T
f f(x)odx, = / fG)dx, + = / f(x) dt (A.25)
0 0 2 Jo
Namely, because of
Xy X Xt — Xpy_ dx;,
X 12 K _ Xy, + % = x4, + Tk (A.26)

Xy + Xpy

r(e

)dxy, = f(xg, + —=%)dx, (A27)

dx,k
2
dt 1
= f(xtk,l)dxtk + f/(xtk71)7 + = f”(xtk,l) x 0
2 2

1 dx
+ 5 G (52 dx

= {f(xlk_1) + f/(xtk_l)
and (A.25) follows. We summarize in the following

Theorem A2 Let f = f(x) be an arbitrary function and {x;};>0 be a Brownian motion.
Then:

T T 1 T
f&r) = fxo) = /O defO [l dxe + 5/0 ffGnde (A28)

T
=/ f'(x;) odx, (A.29)
0

where the first integral in (A.28) is a stochastic Ito integral and the integral in (A.29) is a
Stratonovich integral. Equation (A.28) is refered to as Ito formula or the Ito lemma.

Finally we want to recall a very practical property of Ito integrals, namely, that their
expectation value always vanishes,

T
E[ / f(x,)dx,] -0 (A.30)
0
for arbitrary f. This follows from the fact that
dxy = Xy — Xy = ‘/E(bk (A.31)
while
k=1
fao) = f(Vdiy ], ge) (A32)

does not depend on ¢. Thus, f(x;_,) and dx;, are independent quantities and we obtain

E[ f(xy_)dxy | =E[ f(xy ) ] x Vdt Elgx] = 0 (A.33)

It is exactly this property which makes Ito integrals a preferable choice over Stratonovich
integrals, at least in the context of this paper, although just concerning the optics one may
consider the Ito formula (A.28) as more complicated than the Stratonovich formula (A.29)
which looks more like the standard calculus formula.
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A.3 Kolmogorov Backward Equation and Feynman-Kac Formula

A, let’s say, one dimensional Ito diffusion X; is a stochastic quantity which is given by the
recursion

Xy =Xy, + a(Xy_, ti_1)dt + b(X,_,, tx_1) Vi ¢ (A.34)

where the {¢r } 11(\1:1 are to be integrated against standard Wiener measure. In continuous time,
this reads

dX, = a(X,, t)dt + b(X;,1)dx, (A.35)

with x; a Brownian motion. To each Ito diffusion we can assign a second order differential
operator A defined by the following equation: Let f = f(x, t) be an arbitrary function of
two variables. Then, using (dx)? = dt and dx, dt = (dt)? = 0 in the fourth line,

df (X:, 1) = f(Xe, 1) — f(Xt dt> t —dt)
of 9 f 3f

_ 9 2 9]
= 3det+282(dXt) + dt

2
= i[adt+bd ]+ 3 8§[adl‘+bd 12+ ld;

2
= ii[am-+bdm]+-§~gidt+.4£dt
o af b2 o%f af af
= {a a+787+—}dt+b—d,
:mﬁw%m+mmm (A.36)

That is,
2 2

(Af)(x,t) :==a(x,t) f(x 1) + b ()26 D d f(x 1) (A.37)

Now let ¢ = g(x) be another arbitrary function of one variable. We fix a start time ¢ and an
end time 7 > ¢ and consider the expectation (the f below also depends on end time 7', but
this dependency we do not make explicit in the notation)

fO 0 = E [g(X7H)] (A38)
which in discrete time t = ty = kdt and T = ty = Ndt is given by
_ T, x R t]< X N _dl ¢
re = B Ls = [ e(Xi o) ) e F A a9)

Here we used the notation X ;X with superscripts (¢, x) to indicate that the diffusion X starts
at time ¢ with initial value x,

X0 =x (A.40)

In particular, there is the identity

(A41)
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for arbitrary times f; < #; < ty . Thus, if we define for some fixed initial values (o, xo) the
stochastic quantity

1, X100
My = f(Xf;’*X",rk):E,i[g(X,N ' )] = E[s(xi)] a4

then this quantity is a martingale since we have for arbitrary time #; < f

Eg[M,,(]:Eg[Eg[g(Xiﬁ;’“’)]] = e[s(x™)] = M, A

T

In particular, we have Etk, '

[ M, 1= M,,_, which means that we have to have

0 = E [My]— My, = El [My,—M, ] = E[_[df X% g)]
A2 g1 71[ [Af + % JXIOM gy di + diffusive ]
= {Af + %}(X;E’j",zk_l)dt + E/_ [diffusive]
= {Af + %}dt + 0 (A.44)

That is, the expectation f(x,t) = EtT[ g(X ’T’x) ] has to satisfy the second order PDE

E+A =0 (A.45)
ot f= ’

We summarize in the following
Theorem A3 a) Let X; be an Ito diffusion given by
dX; =a(X;,t)dt + b(X;,t)dx; (A.46)
and for some initial values (t, x) define the Wiener expectation
[0 =E[[g(X7")] (A47)

Then f can be obtained as the solution of the parabolic second order PDE

s Af =0 (A.48)
o TA = '

with final condition f(x,T) = g(x) and A given by (A.37) above.
b) Let X, be a time-homogenous Ito diffusion given by

dX[ = Cl(X[)dt + b(X,)dxt (A49)

with coefficients a = a(X;) and b = b(X;) which do not explicitely depend on time. Then
there is the identity

E/ [g(X7)1 = Ef "Ta(X3")] (A.50)
In particular, the expectation

fx,0) = Eplg(X) ] (A51)
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now considered as a function of the end time t (start time is 0), is a solution of the PDE

af _
—E-FAf—O (A.52)
with initial condition f(x,0) = g(x) and A given by
3 b(x) 9*
(Af)(x,1) :=a(x) —f(x,l) + ) —Jg x,1) . (A.53)
ax 2 ox

Equation (A.52) is then usually refered to as Kolmogorov’s backward equation, see for
example Theorem 8.1.1 in the book of Oeksendal [42]. By a slight variation of the above
argument one also obtains a PDE representation for the quantity

w(e, 1) = Ejfe o r(X3ds g(x0xy] (A.54)

which is then the Wiener measure version of the Feynman-Kac formula, this is Theorem
8.2.1 in Oeksendal [42], and it reads

ou
— — 4+ Au —ru=20 (A.55)

ot
u(x,0) = g(x)
In this paper we do not use it, neither the Wiener nor the Fresnel version, we only use the
Fresnel version of part (b) of the theorem above and this version we write down in the next
section.
A.4 Stochastic Calculus with Respect to Fresnel Measure

Fresnel Brownian Motion and Fresnel Measure

A Fresnel Brownian motion or Fresnel BM in discretized time ¢t = 1, = kAt we define as
the combination of integration variables

X, = VAL lezlm (A.56)

where the ¢, are to be integrated against Fresnel measure which is given by

¢? gy )?
dF = f1ef T A0 N it A (A57)
(=1 2mi (=1 V2mi At

Let’s consider again the discretized version of the quantity fOT f@® (dx;)?* which is
. N 2 N 2
Ine(f) = 00 Gy =2 )" =AY (0067 (A.58)
Then the Fresnel analog of (A.12) is
lim E[ einAr(f) ] —e 4 foT f(dt (A59)
At—0

which then leads to the following basic calculation rule for Fresnel Brownian motions:

(dx)*> = idt (A.60)
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and dx; dt = dtdt = 0. The proof of (A.59) is as follows:

E[ (D] = / N a1+ 2000000 ) d;f’k.
RN k=1 V2

IIYI 1
k=1 /1 + 2qAtf(tx)

e"p[ ‘% Z,L log[ 1 + 2qAtf (1) ] }

1
exp - Ziv 20A1f (@) + 0 |
A0 exp| / f(odr } (A.61)

and this coincides with (A.59).

The Fresnel Version of the Ito Formula

As in Section A.2, we can write for some arbitrary function f = f(x) and x; now being a
Fresnel BM

far) = foo) = Y0 [ Flu) — ) ) (A.62)

with

1
df(xtk) = f(xtk) - f(xtk,l) = f/(xtkfl)dxtk + E f//(xfkfl) (dxtk)z
B e dy + 3 f el )d (A63)

Summing this up,

Far = o) = Y e+ f ) dr )

=20, / flayds + = / £ dt (A.64)
where the first integral again has the property that its expectation value always vanishes,
T
E[ / f(x,)dx,] =0 (A.65)
0
since as in the Wiener case the quantities f (x;,_,) and dx;, are independent and we obtain
E[ fxy_ ) dxy | =E[ fxy_ )] x Vdit Elgx] = 0 (A.66)
Concerning the last equality, one probably should make the definition
+00 02 d +R d
E[q)]:/ pei 9% im s 90 _ o (a6
0 2mi R—oo J_R 2mi
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Fresnel Version of Kolmogorov's Backward Equation

We proceed as in Section A.3 and define a Fresnel diffusion X, as a stochastic quantity which
is given by the recursion

th = th,1 + a(thfla [k,l)dl‘ + b(thfls tk*l) v dt ¢k (A68)
where the {¢;} ]](V:l are to be integrated against Fresnel measure. In continuous time, we write
dX; = a(X;,t)dt + b(X;,t)dx; (A.69)

To each Fresnel diffusion, we assign the second order operator A through (f again denotes
an arbitrary function of two variables)

of L2f o, A
df (X;,t) = —dX — (dX —dt
f (X, 1) ax 4 28x2( ) +3t
of 0% f of
= a[adt—{—bdx,] 5—[adt+bdx,] Edl‘
3 b 32 3
= —f[adt + bdx;] + l——fdt + idt
2 9x2 ot
af b? 92 f 9 f af
= {a— — —= 4+ —}dt b—d
e Tig a1 g 1+ by dx
af S
= {Af + E}dt + diffusive (A.70)
That is,
CbE(x,t
(Af)(x,t) :=a(x,1) f(x t) + i (2 )a—f( 1) (A.71)
and we still have
E[ diffusive] = 0 (A.72)
We consider the Fresnel expectation
fon) = E [g(X7")] (A73)
which in discrete time t = #;y = kdt and T = ty = Ndt is given by
— e, X o Ikx N iﬁ d(ﬁ[
ren = BT )= [ s(X el ) 1 et e aT)
For some fixed initial values (7o, xo), we define the stochastic quantity
10,X0 T tk’xftl?"m T 10, X0
My = fXO%,5) =€ g(X,N ) - E,k[g(XtN’ )] (A75)

which again is a martingale since for t; < #

E;[M,k]=E,C|:E£[g(X§2]’X°)]] = [s(x*)] = M, (A7)
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In particular, we have Eg_ [ My 1= M, _, which means that we have to have
1
0 = El [M]— M, = E [M,—M,_ ] = E_[df(X2" )]
3
CVE | (ar + a—{}(xfgfj‘),rk,l)dz + diffusive |

9
{Af + 87]; }(X’O"‘O te_1) dt + g’ [ diffusive |

k-1 Tk—1

af

= {Af + E}dt + 0 (A7)
That is, the Fresnel expectation f(x,?) = EIT [g(X ?X )] has to satisfy the PDE
af
o + Af =0 (A.78)

with final condition f(x, T) = g(x) and second order operator A given by (A.71).
The time-homogenous case, the analog of part (b) of Theorem A3, then reads as follows:
Let X, be a time-homogenous Fresnel diffusion given by

dX; =a(X;)dt + b(X;)dx; (A.79)

with coefficients a = a(X;) and b = b(X;) which do not explicitely depend on time and let
g = g(x) be an arbitrary function of one variable. Then the Fresnel expectation

fOe ) = Eplg(XP™)] (A.80)
is a solution of the PDE
af af b2(x) IS
=L Af = =L —L A.81
ot f=a gy iy a2 (A81)
with initial condition
f(x,0) =gkx) . (A.82)

Finally, let us recall that in general Wiener or Fresnel expectations can be calculated through
the following

Theorem A4 Consider m times 0 <t <tp < -+ < t, < T and let X be a standard or
Fresnel BM observed at time t;. Let

F=F(xy, - .,x,) (A.83)

be an arbitrary function of m variables and let E[F] = Eg[F] denote its Wiener or Fresnel
expectation value. Then, with to :== 0 and xo := 0,

m
E[F] :/ F(-xtlv"' »-xlm) l-[ ptjflj_l(-xlj_lvxlj)d-xlj (A84)
RrRm J:1

with Gaussian or Fresnel kernels given by

G . .
\/217 e~ = for Wiener expectations
T

pe(x,y) = ey? (A.85)
\/ﬁ e' 72 for Fresnel expectations .
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