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Abstract: This article proposes various new approximate analytical solutions of the boundary value
problem for the non-stationary system of Nernst–Planck–Poisson (NPP) equations in the diffusion
layer of an ideally selective ion-exchange membrane at overlimiting current densities. As is known,
the diffusion layer in the general case consists of a space charge region and a region of local electroneu-
trality. The proposed analytical solutions of the boundary value problems for the non-stationary
system of Nernst–Planck–Poisson equations are based on the derivation of a new singularly per-
turbed nonlinear partial differential equation for the potential in the space charge region (SCR). This
equation can be reduced to a singularly perturbed inhomogeneous Burgers equation, which, by the
Hopf–Cole transformation, is reduced to an inhomogeneous singularly perturbed linear equation of
parabolic type. Inside the extended SCR, there is a sufficiently accurate analytical approximation to
the solution of the original boundary value problem. The electroneutrality region has a curvilinear
boundary with the SCR, and with an unknown boundary condition on it. The article proposes a
solution to this problem. The new analytical solution methods developed in the article can be used to
study non-stationary boundary value problems of salt ion transfer in membrane systems. The new
analytical solution methods developed in the article can be used to study non-stationary boundary
value problems of salt ion transport in membrane systems.

Keywords: electromembrane system; diffusion layer; ion-exchange membrane; space charge region;
Nernst–Planck–Poisson equations; asymptotic solution; singularly perturbed boundary value problems;
galvanodynamic mode

MSC: 35Q92

1. Introduction

Boundary value problems for the Nernst–Planck–Poisson (NPP) system of equations
are used in modelling transfer in electrode and electromembrane systems (EMS) in diffu-
sion layers, desalination channels, microfluidic devices, etc. [1–7]. Numerous works by
Grafov B.M., Chernenko A.A. [8], Nikonenko V.V. [9,10], Rubinstein I., Zaltsman B. [11,12],
Listovnichy A.V., Lebedev K.A. and others [13,14] are devoted to methods of analytical
and numerical solution of these boundary value problems. Few works are devoted to
non-stationary problems, which is explained by mathematical difficulties. Methods of
exact or approximate analytical solutions of non-stationary boundary value problems
have not been developed. At the same time, obtaining exact solutions is an important
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and urgent task, since it makes it possible to study the properties of the solution with
exhaustive completeness.

At the same time, the study of non-stationary transfer of a binary electrolyte in a diffu-
sion layer is interesting in that it allows one to determine the structure of the diffusion layer
and its change over time, which is necessary, for example, for the asymptotic analysis of
problems, the establishment of simple engineering calculation formulas for the dependence
of the distribution of concentration, and the determination of electric field strength on
the parameters of the problem. The studies of non-stationary problems are considered
in [15,16]. In these works, main attention is paid to the over-limit potentiodynamic mode
and the analysis of the settling time depending on the parameters of the problems. The
works [16,17] consider “shock electrodialysis”—a recently developed method of water
desalination in microscale pores near an ion-selective element, in which a deionization
wave propagates through a microchannel or a porous medium with a sharp boundary
between the concentrated and depleted zones. Deionization waves can be compared with a
charge wave, since the deionization region actually coincides with the SCR. In contrast to
“shock electrodialysis”, this work studies the depleted diffusion layer near the ion-exchange
membrane, which has macroscale dimensions of the order of millimeters.

A number of works investigate the use of pulsed current modes [18–27] with currents
of different duration and different shapes: rectangular, triangular, etc.

As is known, the diffusion layer in the general case consists of the SPL and the region
of local electroneutrality [12]. The proposed article presents new analytical solutions of
boundary value problems for a non-stationary system of equations of the NPP, based on the
general idea of obtaining a singularly perturbed nonlinear differential equation with partial
derivatives for the potential in the SCR. This equation is reduced to a singularly perturbed
inhomogeneous Burgers equation, which, unlike the homogeneous Burgers equation,
describes the dynamics of the system, with an “injection” of energy, which actually occurs in
the diffusion layer when an external electric field is applied. By Hopf–Cole transformation,
the singularly perturbed inhomogeneous Burgers equation is reduced to an inhomogeneous
singularly perturbed linear equation of parabolic type. In the electroneutrality region (ENR),
the boundary value problem can be reduced to a diffusion equation by introducing an
equilibrium concentration [28]. The problem is that the ENR has a curvilinear boundary
with the SCR, and with an unknown boundary condition on it. This work proposes a
solution to this problem.

This paper proposes new analytical solutions that are asymptotic in nature. The
specific form of these asymptotic solutions depends on the structure of the diffusion layer,
which is determined by the boundary and initial conditions. In this connection, an analysis
of various boundary and initial conditions was carried out. The obtained new analytical
solutions show that charge waves are possible in the depleted diffusion layer near the
ion-exchange membrane. The new analytical solution methods developed in the article can
be used for the analytical study of “shock electrodialysis” and pulsed current modes.

2. Mathematical Model of Non-Stationary Transport of 1:1 Salt Ions in the Diffusion
Layer of the Ion Exchange Membrane
2.1. Diffusion Layer at the Cation-Exchange Membrane (CEM)

Let us consider the non-stationary transport of salt ions in the diffusion layer of an
ion-exchange membrane (for short, CEM). Let x = 0, corresponding to the depth of the
solution (the outer boundary of the diffusion layer), and let x = h—the conventional
interphase boundary of the electrolyte solution/CEM. For definiteness, we will consider
an aqueous solution of 1:1 electrolyte, for example, NaCl or KCl. It is assumed that the
concentration values are known in the depth of the solution, and the condition of local
electroneutrality is satisfied. A constant value at the interphase boundary is set for cations,
determined by the exchange capacity CEM, and for anions—the impermeability condition,
i.e., CEM is considered ideally selective.
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It is known that EMS are used and studied in two different modes:

(1) In potentiodynamic (potentiostatic) mode, a potential drop ∆φ(t) is set, and the
corresponding current density flowing through the electromembrane system (for
example, a diffusion layer) is determined (in mathematical models, it is calculated
from the found solution). Since it is the potential difference (drop) that matters,
rather than specific values, an arbitrary constant can be set for the potential at one
of the boundaries of the region under consideration, for example, zero at x = h, i.e.,
φ(t, h) = 0. Then, at x = 0 , we assume φ(t, 0) = ∆φ(t), where the function ∆φ(t) is
specified. For example, when calculating the current–voltage characteristic (CVC),
we assume ∆φ(t) = φn + d · t, where φn, d is the initial value (usually φn = 0) and
the potential sweep rate, with the sweep rate being chosen small enough to ensure a
quasi-stationary mode and coincidence with the CVC calculated for the potentiostatic
mode with the required accuracy [29].

(2) For the galvanodynamic (galvanostatic) mode, an external current I(t) (current in
the circuit including the EMS) is set, and the corresponding potential drop is deter-
mined. Below, we consider the galvanodynamic mode, which is determined by the
galvanodynamic boundary condition, for example, at x = 0, which was first proposed
in [30].

The current mode is specified by the function I(t) . When calculating the CVC in the
boundary condition (5), we assume I(t) = In + d · t, where In, d is the initial value (usually
In = 0) and the current density sweep rate, and, as in the potentiodynamic mode, the
sweep rate is chosen to be small enough to ensure a quasi-stationary mode and coincidence
with the CVC calculated for the galvanostatic mode with the required accuracy [30]. A
simpler problem is when a constant external current is supplied, in this case d = 0, and
I0 is the sub-limit or over-limit current. If, in the latter case, the initial state is a sub-limit,
for example, as in [16,17], then we have an analogue of “shock electrodialysis”, when the
charge wave or desalinated solution quickly propagates behind the wave front. In pulse
modes [18–27], the current has a rectangular or triangular shape on a certain time interval
and a zero value the rest of the time. The current mode determines the initial conditions in
the boundary value problem of the mathematical model. The method proposed below can
be used to obtain an analytical solution in all these cases.

Since it is the difference (drop) in potentials that matters, and not the specific values,
an arbitrary constant can be set for the potential at one of the boundaries of the region
under consideration, for example, zero at x = h.

2.2. Mathematical Model

The non-stationary transfer of salt ions in the diffusion layer of an ion-exchange
membrane is described by a system of material balance and Nernst–Planck–Poisson equa-
tions [14,29,30]:

dCi
dt

= −dji
dx

, i = 1, 2 , (1)

j1 = − F
RT

D1C1
dφ

dx
− D1

dC1

dx
, (2)

j2 =
F

RT
D2C2

dφ

dx
− D2

dC2

dx
, (3)

d2 φ

dx2 = − F
εr
(C1 − C2), (4)

where j1, j2, C1, C2 are the flux density and concentration of cations and anions in the
solution, respectively, D1, D2 are the diffusion coefficients of cations and anions, φ is the
electric field potential, εr is the dielectric constant of the solution, F is the Faraday constant,
R is the gas constant, T is the absolute temperature, and t is the time.
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2.3. Boundary Conditions

As noted above, at x = 0, the salt ion concentrations C1(t, 0), C2(t, 0), are assumed to
be known, and the local electroneutrality condition C1(t, 0)− C2(t, 0) = 0 is satisfied in the
depth of the solution, so we assume C1(t, 0) = C0, C2(t, 0) = C0.

We use the galvanodynamic boundary condition [30] for the potential, which is a
generalization of Ohm’s law and relates the potential changes (electric field strength) to
the external current value and the diffusion current determined by the ion concentration
changes and the solution conductivity, which depends on the total salt ion concentration:

∂φ(t, 0)
∂x

= −RT
F2

(
I(t) + F(D1

∂C1(t,0)
∂x − D2

∂C2(t,0)
∂x )

D1C1(t, 0) + D2C2(t, 0)

)
. (5)

At the interphase boundary at x = h, where h is the thickness of the diffusion layer,
we will assume the cation concentration to be known:

C1(t, h) = C1K,

which is determined by the exchange capacity CEM. Let us assume that the membrane is
ideally selective; then, the anion flux will be zero:(

F
RT

D2C2
dφ

dx
− D2

dC2

dx

)∣∣∣∣
x=h

= 0.

For the potential, the condition ϕ(t, h) = 0 is specified (see above). The boundary
conditions at are uniquely determined by the properties of the electrolyte solution, and at
x = h by the properties of the ion-exchange membrane. The boundary conditions given
above are uniquely determined by the properties of the solution and the ion-exchange
membrane and are widely used in modeling transfer processes [13,14], with the exception
of the galvanodynamic boundary condition (5), developed by us.

2.4. Initial Conditions (t = 0)

Initial conditions in the general case having the form:

C1(0, x) = C10(x), C2(0, x) = C20(x), ϕ(0, x) = ϕ0(x),

are selected based on the objectives of a specific study. If, for example, the process of forma-
tion of a space charge and similar problems are studied, then for the initial distributions of
concentrations, potential should be sublimiting, and in other cases, they can be overlimiting.
It is especially necessary to highlight processes with pulsed modes of the electric field.
Initial conditions affect the structure of the diffusion layer, namely, its division into the
ENR and SCR and, accordingly, the solution. As an example, let us assume that at the
initial moment of time there is no external current and no concentration polarization (the
concentrations are distributed uniformly); then, the initial conditions will take the form:

C1(0, x) = C2(0, x) = C0, ϕ(0, x) = 0. (6)

In this case, the boundary value problem depends on the following variable dimen-
sional input parameters: h, C0, C1k, d.

3. Characteristic Quantities and Transition to Dimensionless Form

Let us move on to dimensionless quantities using the following formulas:

x(u) = x
h , t(u) = t

t0
, C(u)

i = Ci
C0

, j(u)i = ji
j0

, D(u)
i = Di

D0
,

φ(u) = φ
φ0

, ε(u) = εr
ε0

, I(u) = I
I0

, d(u) = d
d0
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where (u) is the index of the dimensionless quantity, the subscript (0) indicates the charac-
teristic quantities. If we take the following quantities as characteristic quantities, where
D0 = 2D1·D2

D1+D2
is the diffusion coefficient of the electrolyte, I0 = FD0C0

h =
Inp
2 , Inp where is

the limiting diffusion current, j0 = FI0 is the ion flux corresponding to half the limiting

current, t0 = C0h
j0

= C0h2

D0C0
= h2

D0
is the ion diffusion time through the channel cross-section,

ε0 = h2·F·C0
ϕ0

is the typical value of the ionistor (an ionistor (supercapacitor, ultracapacitor,
double-layer electrochemical capacitor) is an electrochemical device, a capacitor with an
electrolyte, the “plates” of which are a double electric layer at the interface of the electrolyte
solution/ion-exchange membrane; the typical capacity of an ionistor is several farads
at a nominal voltage of 2–10 volts) capacitance (ϕ0 = RT

F is the thermal potential), and

d0 = I0
t0
= FD0C0

t0h =
FD2

0C0
h3 is the characteristic value of the current density sweep rate, then,

as is easy to verify, the dimensionless equations and boundary conditions will take the
simplest form (Section 3).

4. Boundary Value Problem for a One-Dimensional Non-Stationary System of
Equations of the NPP in Dimensionless Form

The boundary value problem for a one-dimensional non-stationary system of equa-
tions of the NPP, taking into account the above replacements, has a dimensionless form
(the index “u” is omitted for simplicity):

dCi
dt

= −dji
dx

, i = 1, 2 , (7)

ji = −ziCiDi
∂φ

∂x
− Di

∂Ci
∂x

, z1 = −z2 = 1, i = 1, 2 (8)

ε
∂2 φ

∂x2 = −(C1 − C2), (9)

with boundary conditions

C1(t, 0, ε) = C2(t, 0, ε) = 1, C1(t, 1, ε) = C1m (10)

∂φ

∂x
(t, 0, ε) = −

(
2I(t) + D1

∂C1
∂x − D2

∂C2
∂x

D1C1 + D2C2

)
(t, 0, ε), φ(t, 1, ε) = 0. (11)

The initial conditions in the general case are:

C1(0, x, ε) = C10(x, ε), C2(0, x, ε) = C20(x, ε), ϕ(0, x, ε) = ϕ0(x, ε),

and are selected, as stated above, based on the objectives of the study.
For the particular case with which we begin the study, we obtain

C1(0, x, ε) = C2(0, x, ε) = 1, ϕ(0, x, ε) = 0.

The boundary value problem (7)–(11) is a singularly perturbed boundary value prob-
lem [13,28–30] and at zero initial current contains two parameters ε and d. Since it contains a
small parameter ε at the highest derivative in the Poisson Equation (9), it is related to “stiff”
problems that are difficult to solve numerically [31]. The parameter ε can be represented as
ε = 2(ld/h)2, where ld =

√
RTεr/(2C0F2) is the width of the quasi-equilibrium region of

the space charge U3 (the Debye length).
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5. The Relationship Between the Currents in the Circuit and in the Diffusion Layer

The current density passed through the diffusion layer depends on time I(t), while in
the diffusion layer, the current density can change depending on the coordinate. Indeed,
from the equations, it follows

∂(C1 − C2)

∂t
= −∂(j1 − j2)

∂x
.

Let us replace the left side using the Poisson equation; then, we obtain

ε
∂3 φ

∂t∂x2 =
∂(j1 − j2)

∂x
.

Let us integrate this equation x once; then,

ε
∂2 φ

∂t∂x
= j1 − j2 + a0(t) or (12)

ε
∂2 φ

∂t∂x
= I(t, x) + a0(t), (13)

where I(t, x) = j1 − j2 is the local current in the diffusion layer, determined by the ion flow.
Let us write relation (13) as

−a0(t) = −ε
∂2 φ

∂t∂x
+ I(t, x).

Then, we transform the expression

−ε
∂2 φ

∂t∂x
= ε

∂

∂t
(−∂φ

∂x
) = ε

∂E
∂t

= Ic(t, x),

where Ic(t, x) is the bias current associated with the formation and change of the SCR:

−a0(t) = Ic(t, x) + I(t, x).

The expression on the right is the total current I(t) and a0(t) = −I(t); therefore, (9)
can be written as:

ε
∂2ϕ

∂t∂x
= j1 − j2 − I(t). (14)

6. Stationary Boundary Value Problem

It is necessary to study the stationary case so we can understand the non-stationary
effects. In [12,31–35], it was shown that the diffusion layer consists of the ENR, the SCR,
and a small intermediate layer between them [36]. It is known that in the ENR, the potential
is described with high accuracy by the formula φ(x) = ln

∣∣Ix − Inp
∣∣+ φ0, where Inp ≈ 2D1

is the dimensionless limiting current [37]. In [37], it was shown that in the space charge
region, the potential satisfies the nonlinear singularly perturbed equation:

εφxx = − ε

2
φ2

x +
1

D1
(Ix − Inp). (15)

By transformation, φ = 2 ln ψ was reduced to a linear differential equation of the
second order

εψxx =
I

2D1
(x −

Inp

I
)ψ,
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By replacing τ = (x − Ilim
I )/

√
2D1ε

I , ψ(x, ε) = u(τ), it was reduced to the well-known
and well-studied Airy equation, uττ = τu, and thus, the potential distribution in the SCR
was investigated with exhaustive completeness. For example, using the asymptotics of the
Airy functions, it was shown that far from the boundary layer at x = 1 and the singular
point x =

Inp
I , i.e., in the interval ( Inp

I , 1), the solution approximately has the form:

φ(x, ε) = a − 2
3I

√
2

εD1
(Ix − Inp)

3
2 ,

where a is the constant of integration.
The same solution can be obtained directly from Equation (15), if in it we neglect,

according to the theory of singularly perturbed problems, the highest derivative with a
small parameter εφxx, but retain the nonlinear term with a small parameter ε

2 φ2
x, i.e., solve

the equation ε
2 φ2

x = 1
D1

(Ix − Inp).
In this article, these results are generalized to the non-stationary case.

7. Algorithm for Solving a Non-Stationary Boundary Value Problem

(1) Analysis of the numerical solution

The boundary value problem (7)–(11) was numerically solved by the finite element
method in the Comsol Multiphysics 6.1 environment for the values of the initial concen-
tration of the electrolyte solution C0 = 1 mol/m3, 10 mol/m3 and the thickness of the
diffusion layer h = 0.1 mm. It was analyzed under different modes: galvanodynamic
(galvanostatic) and potentiodynamic (potentiostatic). In Figures 1–9, all quantities are
given in dimensional form.

(a) Galvanostatic mode

Let us analyze the distribution of concentrations and space charge in the galvanostatic
mode, assuming that the current is constant, i.e., I = 1.5Inp for initial concentrations
C0 = 1 mol/m3 and C0 = 10 mol/m3, obtained by numerically solving the boundary value
problem (7)–(11).

As can be seen from Figures 1 and 2, the nature of the propagation of concentrations
and space charge for different initial concentrations C0 = 1 mol/m3 and C0 = 10 mol/m3

is qualitatively the same. At first, the concentrations decrease nonlinearly, and the mode
is sub-limiting up to a certain point in time τ (usually called the transition time). The
transition time for solution concentrations C0 = 1 mol/m3 and C0 = 10 mol/m3 is τ = 2.23 s
and 2.22 s, respectively. From Figure 2 we obtain that up to the moment of time the space
charge is completely concentrated in the quasi-equilibrium SCR, the thickness of which
is so small that it is not displayed in Figure 2. At t > τ, an extended SCR arises [9], in
which the values of ion concentrations become small (Figure 1 at t = 3, 4 . . . 20 s), and
the space charge has a clearly defined local maximum (Figure 2), i.e., a charge wave is
formed, moving from the membrane deep into the diffusion layer. Note that the maximum
local value of the space charge does not change over time, although it depends on the
concentration of the electrolyte. Over time, the process stabilizes, namely, the distribution
of concentrations in the ENR becomes linear, and the space charge wave stabilizes. Thus,
the ENR, which is in front of the leading edge of the wave, decreases over time to a certain
size and then stabilizes.
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Figure 1. Distributions of cation (solid lines) and anion (dashed lines) concentrations at different 
times t = 0 s, 1 s, …, 20 s, calculated at a constant current density for C0 = 1 mol/m3 (a) and C0 = 10 
mol/m3 (b). 

  

(a) (b) 

Figure 2. Distributions of the space charge density )( 21 CCF −=ρ  at different times t = 0 s, 1 s, …, 
20 s, calculated at a current density 1.5 npI I=  of C0 = 1 mol/m3 (a) and C0 = 10 mol/m3 (b). 
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Figure 1. Distributions of cation (solid lines) and anion (dashed lines) concentrations at different
times t = 0 s, 1 s, . . ., 20 s, calculated at a constant current density for C0 = 1 mol/m3 (a) and
C0 = 10 mol/m3 (b).
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calculated at a current density I = 1.5Inp of C0 = 1 mol/m3 (a) and C0 = 10 mol/m3 (b).
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Figure 3. Distributions of potential (a,c) and electric field strength (b,d) at different times t = 0 s, 1 s, 
…, 20 s, calculated at current density for C0 = 1 mol/m3 (a,b) and C0 = 10 mol/m3 (c,d). 
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Figure 4. Distributions of the space charge density 1 2( )F C Cρ = −  at different times t = 0 s, 1 s, …, 

20 s, calculated at a current density for C0 = 10 mol/m3 (red lines), 1 mol/m3 (green lines), 0.1 mol/m3 
(blue lines) (a), (b)—enlargement of a fragment of (a). 

(b) Galvanodynamic mode 

Let us analyze the distribution of concentrations and space charge in the galvano-
dynamic mode, assuming that the current density changes 0.001 npI I t= , i.e., the current 
sweep rate 0.001 npd I=   is for the initial concentrations of C0 = 1 mol/m3 and C0 = 10 

mol/m3. As can be seen from Figures 3 and 4, the nature of the distribution of concentra-
tions and space charge for different initial concentrations of C0 = 1 mol/m3 and C0 = 10 
mol/m3 is also qualitatively similar. However, there is a significant difference from the 
galvanostatic mode. In the galvanodynamic mode at low sweep rates, regardless of the 
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прtt >  , an extended SCR and, accord-

ingly, a local maximum appear, and the space charge wave begins to move into the solu-
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(b) Galvanodynamic mode

Let us analyze the distribution of concentrations and space charge in the galvano-
dynamic mode, assuming that the current density changes I = 0.001Inp t , i.e., the cur-
rent sweep rate d = 0.001Inp is for the initial concentrations of C0 = 1 mol/m3 and
C0 = 10 mol/m3. As can be seen from Figures 3 and 4, the nature of the distribution of
concentrations and space charge for different initial concentrations of C0 = 1 mol/m3 and
C0 = 10 mol/m3 is also qualitatively similar. However, there is a significant difference from
the galvanostatic mode. In the galvanodynamic mode at low sweep rates, regardless of
the initial concentration, as well as in the galvanostatic mode until the moment of time
tnp ≈ 1000 c, the sub-limit mode is observed. At t > tnp, an extended SCR and, accordingly,
a local maximum appear, and the space charge wave begins to move into the solution. The
thickness of the extended SCR constantly increases, as does the value of the local maximum,
while the concentration distribution continues to remain close to linear in the ENR. The
thickness of the ENR gradually decreases.
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Figure 6. Distributions of the space charge density at different times t = 0 s, 200 s, …, 2000 s, calcu-
lated at a current density of C0 = 1 mol/m3 (a) and C0 = 10 mol/m3 (b). 
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Figure 5. Distributions of cation C1 (solid lines) and anion C2 (dashed lines) concentrations at different
times t = 0 s, 200 s, . . ., 2000 s, calculated at a current density I = 0.001Inp t of C0 = 1 mol/m3 (a) and
C0 = 10 mol/m3 (b).
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at a current density of C0 = 1 mol/m3 (a) and C0 = 10 mol/m3 (b).
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Figure 7. Distributions of potential φ (a,c) and electric field strength E = −∂φ/∂x (b,d) at different
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(c) Potentiostatic mode

Let us consider the propagation of concentrations and space charge in the poten-
tiostatic mode, with a constant potential drop of 0.5 V (Figures 8a,b and 9a,b) and 1 V
(Figures 8c,d and 9c,d) for initial concentrations C0 = 1 mol/m3 (Figures 8a,c and 9a,c) and
C0 = 10 mol/m3 (Figures 8b,d and 9b,d), obtained by numerically solving the boundary
value problem (7)–(10). A similar behavior of the propagation of concentrations and space
charge for different initial concentrations C0 = 1 mol/m3 and C0 = 10 mol/m3 can be
observed in Figures 8 and 9. At first, a nonlinear decrease in concentration is observed up
to a certain pre-limit moment of time tlim. It follows from Figure 8 that the value tlim for a
potential drop of 0.5 V is between 0.03 and 0.05 s, and that for a potential drop of 1 V is
between 0.01 and 0.01 s. Until the time tlim, the space charge is completely concentrated
in the quasi-equilibrium SCR (Figure 9). At t > tlim, an extended SCR [9] occurs, in which
the concentration values become small (Figure 8 at t = 0, 1, . . . 20 s), and the space charge
has a clearly defined local maximum (Figure 9), the values of which decrease with time,
i.e., a charge wave is formed, moving from the membrane deep into the diffusion layer.
Note that the maximum local value of the space charge decreases after some time and
depends on the concentration of the electrolyte. With time, the process stabilizes, namely,
the concentration distribution in the electroneutrality region becomes linear, and the space
charge wave stabilizes. Thus, the electroneutrality region, which is in front of the leading
edge of the wave, decreases over time to a certain size and then stabilizes.

(d) Potentiodynamic mode

Let us consider the distribution of concentrations and space charge in the potentio-
dynamic mode at a potential sweep rate of 0.1 V/s and different initial concentrations
C0 = 1 mol/m3 and C0 = 10 mol/m3 (Figures 10 and 11). As can be seen in Figures 10 and 11,
the nature of the distribution of concentrations and space charge for different initial concen-
trations C0 = 1 mol/m3 and C0 = 10 mol/m3 is also qualitatively similar. However, there is
a significant difference from the potentiostatic mode, in which the maximum local value of
the space charge decreases with time and depends on the concentration of the electrolyte.
At the same time, at low sweep rates, the change in concentrations is nonlinear, regardless
of the initial concentration; however, as in the potentiostatic mode up to a certain point in
time tnp, a sub-limit mode is observed. In Figures 10 and 11 the values tnp are between
3 and 5 s, when the extended SCR and, accordingly, local maxima appear (footnote: At very
low scan rates, local maxima may not exist, but the wave itself is formed and moves into
the solution) and the space charge wave begins to move into the solution. The thickness of
the extended SCR constantly increases, but the value of the local maximum does not, while
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the concentration distribution continues to remain close to linear in the ENR. The thickness
of the ENR gradually decreases.
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mol/m3 and C0 = 10 mol/m3 (Figures 10 and 11). As can be seen in Figures 10 and 11, the 
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Figure 9. Distributions of the space charge density at different times t = 0.01 s, 0.02 s, 0.03 s, 0.05 s,
0.1 s, 0.15 s, 0.2 s, 0.3 s, 0.5 s, 1 s, 2 s, 5 s, 10 s, 15 s, 20 s at a potential drop of 0.5 V for C0 = 1 mol/m3
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Figure 10. Distributions of cation C1 (solid lines) and anion C2 (dashed lines) concentrations at
different times t = 0.01 s, 0.02 s, 0.03 s, 0.05 s, 0.1 s, 0.15 s, 0.1 s, 0.2 s, 0.3 s, 0.5 s, 1 s, 2 s, 3 s, 5 s, 10 s
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Mathematics 2024, 12, 4040 15 of 25 
 

 

Figure 10. Distributions of cation 1C  (solid lines) and anion 2C  (dashed lines) concentrations at 

different times t = 0.01 s, 0.02 s, 0.03 s, 0.05 s, 0.1 s, 0.15 s, 0.1 s, 0.2 s, 0.3 s, 0.5 s, 1 s, 2 s, 3 s, 5 s, 10 s 
calculated at a potential scan rate of 0.1 V/s for C0 = 1 mol/m3 (a) and C0 = 10 mol/m3 (b). 

  
(a) (b) 

Figure 11. Distribution of space charge density at different times t = 0.1 s, 0.2 s, 0.3 s, 0.5 s, 1 … 10 s 
at a potential rate of 0.1 V/s for C0 = 1 mol/m3 (a) and C0 = 10 mol/m3 (b). 

(2) The structure of the diffusion layer in the CEM 

Analysis of the numerical solution (Figures 1–11) shows the complex structure of the 
diffusion layer and the presence of several regions with different asymptotic behavior of 
the solution: 

In Figure 12, the region 1( , )U t x   is the ENR, where the relation 

1 2( , ) ( , ) 0C x C xε ε− ≈  is satisfied with high accuracy. The region 2 ( , )U t x  is the extended 
SCR, it occurs at npt t>  , when 

npItI >)(  . In this region, 1 2( , , ) ( , , )C t x C t xε ε>>  , 

1 2( , , ) ( , , )j t x j t xε ε>>  . The region 3 ( , )U t x   is the region of quasi-equilibrium space 
charge (boundary layer at the CEM). In this region, the equalities 0),,(2 =εxtC  , 

0),,(2 =εxtj  are satisfied with high accuracy. The width 3 ( , )U t x  of the region 0t =  
at is 0 and rapidly increases and over time of the order of 10−5 s to a value qh x− , where 

εε lnhhxq += . Let us denote this curve ql . In many problems, the curvilinear bound-

ary of the region ql   between the regions ),(1 xtU   and ),(3 xtU   for constructing an as-

ymptotic solution can be approximated by the straight line qx x= , which is shown in 

the figure as a dotted line. 

Figure 11. Distribution of space charge density at different times t = 0.1 s, 0.2 s, 0.3 s, 0.5 s, 1 s, . . . 10 s
at a potential rate of 0.1 V/s for C0 = 1 mol/m3 (a) and C0 = 10 mol/m3 (b).
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(2) The structure of the diffusion layer in the CEM

Analysis of the numerical solution (Figures 1–11) shows the complex structure of the
diffusion layer and the presence of several regions with different asymptotic behavior of
the solution:

In Figure 12, the region U1(t, x) is the ENR, where the relation C1(x, ε)− C2 (x, ε) ≈ 0
is satisfied with high accuracy. The region U2(t, x) is the extended SCR, it occurs at t > tnp ,
when I(t) > Inp. In this region, C1(t, x, ε) >> C2 (t, x, ε) , |j1(t, x, ε)| >> |j2 (t, x, ε)| . The
region U3(t, x) is the region of quasi-equilibrium space charge (boundary layer at the CEM).
In this region, the equalities C2 (t, x, ε) = 0, j2 (t, x, ε) = 0 are satisfied with high accuracy.
The width U3(t, x) of the region t = 0 at is 0 and rapidly increases and over time of the
order of 10−5 s to a value h − xq , where xq = h + h

√
ε ln ε. Let us denote this curve lq. In

many problems, the curvilinear boundary of the region lq between the regions U1(t, x) and
U3(t, x) for constructing an asymptotic solution can be approximated by the straight line
x = xq, which is shown in the figure as a dotted line.
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Figure 12. Schematic diagram of the diffusion layer (not to scale).

The region U4(t, x) is an intermediate layer between the ENR and the extended SCR.
The width of this region is small, C1(t, x, ε) > C2 (t, x, ε), but their values are comparable.
This region is a certain neighborhood of the curve lc =

{
(t, x) : t ≥ tnp, x = Inp/I(t)

}
. It

will be shown below Figure 13 that all points of this curve are singular points (turning
points) for the singularly perturbed equation for the potential in the SCR.

Let us denote the curve l = lq∪lc, defining the boundary between the ENR and the
SCR, and assume that there is a function x = xc(t) such that l = {(t, x) : t ≥ 0, x = xc(t)}.

(3) Asymptotic solution algorithm

Due to such a complex structure of the diffusion layer, the method of splicing asymp-
totic expansions, similar to [37], is used for the asymptotic solution.

In each of the regions, the solution is sought in its own way and then they are spliced,
i.e., the boundaries of the regions and arbitrary functions included in the solutions are
determined. First, the entire region is divided into three regions: ENR U1 and SCR U2 ∪U3 ,
as well as an intermediate region U4 between them. In ENR, the solution method has been
known for a long time and is similar to [38], but here, unlike [32], the solution region
is curvilinear and is constructed in a special way (see Section 5). In SCR, equations are
derived for the potential without additional assumptions, which are then transformed to
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a singularly perturbed linear equation of parabolic type, which is much easier to study.
Finding a simplified solution region, an exact solution, and angular boundary layers are
described in detail in [39].

Mathematics 2024, 12, 4040 16 of 25 
 

 

 

Figure 12. Schematic diagram of the diffusion layer (not to scale). 

The region 4 ( , )U t x  is an intermediate layer between the ENR and the extended 
SCR. The width of this region is small, ),,(),,( 21 εε xtCxtC > , but their values are com-
parable. This region is a certain neighborhood of the curve )}(/,:),{( tIIxttxtl npnpc =≥=

. It will be shown below Figure 13 that all points of this curve are singular points (turning 
points) for the singularly perturbed equation for the potential in the SCR. 

Let us denote the curve  cq lll = , defining the boundary between the ENR and the 

SCR, and assume that there is a function )(txx c=   such that 

)}(,0:),{( txxtxtl c=≥= . 

 

Figure 13. Graph of local maxima in the intermediate region ),(4 xtU  at nptt ≥ . Figure 13. Graph of local maxima in the intermediate region U4(t, x) at t ≥ tnp.

Remark 1. The proposed solution algorithm can be used not only in the galvanodynamic mode,
but also in the potentiodynamic mode. The main difference is that in the galvanodynamic mode,
the current is specified, so this function is considered known in all equations and the asymptotic
solution, for example, in lines 518 and 519. Under potentiodynamic conditions, this current still
needs to be calculated using the potential drop, which, along with additional mathematical problems,
also produces cumbersome formulas that are significantly less convenient to use.

8. Solution in the Field of Electroneutrality

The transformations of the Nernst–Planck equations with the electroneutrality condi-
tion and their solution in a rectangular region by introducing the equilibrium concentration,
as noted above, have long been known [38]. However, here, the region is curvilinear and,
in addition, the boundary condition on the curvilinear boundary, which must be consistent
with the solution in the extended SPR, is unknown. In this sense, the boundary value
problem for the equilibrium concentration presented below is formulated and solved for
the first time.

(1) Boundary value problem for the equilibrium concentration.

The condition of local (pointwise) electroneutrality is satisfied for the degenerate
system of equations obtained at from the original system of equations. Thus, in the ENR,
we have a system of equations

∂Ci
∂t

= −
∂ji
∂x

, i = 1, 2

ji = −ziCiDi
∂φ

∂x
− Di

∂Ci
∂x

, i = 1, 2 (16)

C1 − C2 = 0
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The last equation allows us to introduce the equilibrium concentration C1 = C2 = C,
using which we obtain from these equations the well-known diffusion equation:

∂C
∂t

= D
∂2C
∂x2 , (17)

where D = 2D1D2
D1+D2

is the diffusion coefficient of the electrolyte.
Let us define the domain U = {(t, x) : t ≥ 0, x ≤ xc(t)} . Obviously, U ⊃ U1(t, x) .

Let us denote by C(t, x) the solution of the boundary value problem in the domain U:

∂C
∂t

= D
∂2C
∂x2 , C(t, 0) = 1, C(t, x)

∣∣∣(t,x)∈l = 0, C(0, x) = 1.

Then, we take C(t, x) as the restriction C(t, x) to the ENR U1(t, x) , and the right
boundary of the ENR must still be determined. Obviously, we then obtain C(t, x) > 0 of the
ENR. The numerical solution of the boundary value problem (7–10) does not depend on ε,
and is not difficult. Due to the curvilinearity of the domain, it is necessary to use generalized
curvilinear coordinates [40], to find an analytical solution, so that the transformation
ξ = ξ(t, x), η = η(t, x) maps the ENR into a rectangle Π = {(ξ, η) : 0 ≤ ξ, η ≤ 1}.

Remark 2. The current in the ENR does not depend on the spatial coordinate. Indeed,

from ∂Ci
∂t = D1D2

D1+D2

∂2Ci
∂x2 , we have D1D2

D1+D2

∂2Ci
∂x2 = − ∂ji

∂x , i = 1, 2. Therefore, ∂(C1−C2)
∂t = − ∂(ji−j2)

∂x

or ∂(C−
.
C)

∂t = − ∂(ji−j2)
∂x . Whence ∂(C1−C2)

∂t = − ∂(ji−j2)
∂x , ∂(C−

.
C)

∂t = − ∂(ji−j2)
∂x , ∂(ji−j2)

∂x = 0, i.e.,
ji − j2 = I(t). Since the Faraday current flows through the diffusion layer (see above) I(t), then
I(t) = I(t), which obviously agrees with the equality of the bias current to zero in the ENR.

(2) Calculation of potential in ENR

From Equation (16), for i = 1, (16) is subtracted for i = 2; then,

(D1 + D2)
∂

∂x
(C

∂φ

∂x
) + (D1 − D2)

∂2C
∂x2 = 0 ,

∂

∂x
(C

∂φ

∂x
) +

D1 − D2

D1 + D2

∂2C
∂x2 = 0,

C
∂φ

∂x
+

D1 − D2

D1 + D2

∂C
∂x

= q(t).

For calculation q(t), we put in this equation x = 0; then, from the boundary condition
for C, we obtain

∂φ

∂x
(t, 0) = −D1 − D2

D1 + D2

∂C(t, 0)
∂x

+ q(t).

This boundary condition for ε = 0 has the form

∂φ

∂x
(t, 0) = − I(t)

(D1 + D2)
− (D1 − D2)

(D1 + D2)

∂C(t, 0)
∂x

.

Comparing it with the boundary condition for ε = 0, we obtain

q(t) = − I(t)
(D1 + D2)

,

C
∂φ

∂x
+

D1 − D2

D1 + D2

∂C
∂x

= − I(t)
(D1 + D2)

.
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Integrating it by x, we obtain

φ(t, x)− φ(t, 0) = −D1 − D2

D1 + D2
ln C(t, x)− I(t)

(D1 + D2)

x∫
0

dx
C(t, x)

.

9. Derivation of Equation for the Potential in the SCR of the CEM

Directly from the selective properties of the CEM and the definition of the SPR,
it follows that the relations C1 >> C2 , j1 >> j2 are fulfilled; therefore, the Poisson

Equation (4) and ε
∂2 φ
∂t∂x = j1 − j2 − I(t) can be simplified in the SCR of the CEM:

ε
∂2 φ

∂x2 = −C1, (18)

ε
∂2 φ

∂t∂x
= j1 − I(t). (19)

Considering the flow

j1 = −C1D1
∂φ

∂x
− D1

∂C1

∂x
.

We write Equation (19) in the form

ε
∂2 φ

∂t∂x
= −C1D1

∂φ

∂x
− D1

∂C1

∂x
− I(t).

We replace C1 in the right-hand side using (18); then, we obtain an equation for the
potential in the SCR:

ε
∂2 φ

∂t∂x
= εD1

∂2 φ

∂x2
∂φ

∂x
+ εD1

∂

∂x
∂2 φ

∂x2 − I(t).

Since functions with lower indices are no longer encountered below, for clarity of
writing, it is convenient to use a simpler notation for derivatives as indices, in which the
previous equation is written in the form:

εφtx = εD1 φxx φx + εD1 φxxx − I(t)

Integrating this equation with respect to the previous equation, we obtain a singularly
perturbed quasilinear parabolic equation for the potential

εφt = εD1 φxx + ε
D1

2
φ2

x − I(t)x + b(t, ε). (20)

From the splicing condition in the presence of a stationary regime, b(t, ε) → Inp, t → +∞ .
Equation (20) can be easily reduced to the non-homogeneous Burgers equation [41,42],

which is one of the standard non-linear equations of mathematical physics, and therefore
the Hopf–Cole transformation is applicable to it. Thus, in this work, a connection between
the dynamics of the space charge, and, accordingly, all other characteristics of the transfer
of salt ions in membrane systems with a powerful mathematical apparatus was established
for the first time. It allows us to implement an accurate analytical solution of a number
of non-linear partial differential equations. As is known [39–42], the theory of solitons,
nonlinear acoustics, nonlinear optics, nonlinear wave processes in plasma, radiophysics,
and electronics saw rapid development in their time due to the establishment of a deep
mathematical commonality between the phenomena observed in systems of the most
diverse nature and the interpenetration of various methods in different areas. And non-
linear standard equations played an extremely important role in this.

At the overlimit current density I(t), we have I(t)x − b(t, ε) > 0 in the SCR and
I(t)x − b(t, ε) < 0 in the ENR. Consequently, the boundary of the ENR and the SCR is
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the curve {I(t)x − b(t, ε) = 0}, and the intermediate layer is some small neighborhood
of this curve. The form of the curve obviously depends on the current mode I(t) and is
analyzed below.

10. Analytical Solution of the Equation for φ Inside the Region U2(t, x)

Equation (20) can be solved in a simplified manner, similar to Remark 3 from [37].

(1) Simplified analytical solution of the equation for ϕ inside the region U2(t, x)

In this equation, one cannot formally assume ε = 0 to find a solution to the degenerate
equation. An approximate solution can be obtained by discarding the higher derivatives
with a small factor, but keeping the nonlinear term of the equation with a small factor on
the right-hand side. Then, we obtain the equation

ε
D1

2
φ2

x − I(t)x + b(t, ε) = 0.

Whence we obtain

ε D1
2 φ2

x = I(t)x − b(t, ε),

φ2
x = 2

εD1
(I(t)x − b(t, ε)),

φx = ±
√

2
εD1

(I(t)x − b(t, ε))
1
2 ,

φ(t, x, ε) = − 2
3I(t)

√
2

εD1
(I(t)x − b(t, ε))

3
2 + a(t, ε).

The functions b(t, ε), a(t, ε) are determined from the condition of splicing of this
solution in the extended SCR with solutions in neighboring regions of the quasi-equilibrium
SCR and the intermediate layer.

Taking into account the formula ε
∂2 φ

∂x2 = −C1, we obtain

C1(t, x, ε) =

√
ε

2D1

I(t)√
I(t)x − b(t, ε)

. (21)

In dimensional form, the formulas for the potential and concentration are written
as follows:

φx = ±
√

2RT
εr D1F [I(t)x − b(t, ε)FD0C0];

φ(t, x, ε) = − 2
3I(t)

√
2RT

εr D1F (I(t)x − b(t, ε)FD0C0)
3
2 + a(t, ε) RT

F ;

C1(t, x) =
√

εr RT
2F3D1

I(t)√
I(t)x−b(t,ε)FD0C0

.

As can be seen from Equation (21), the obtained solutions of Equation (20) can be valid
only far from the points where −I(t)x + b(t, ε) = 0, i.e., to the right of the curve l. At the
points of the curve, the solutions have a singularity, i.e., the points of the curve are turning
points, and Equation (20) itself is a bisingular equation according to the classification [40].

(2) Comparison of the obtained analytical solution with the numerical solution inside the do-
main U2(t, x)

To assess the accuracy of the obtained analytical solution, we will compare it with the
numerical solution obtained by the finite element method in Comsol Multiphysics 6.1. As
an example, we will use solutions for the galvanostatic mode at a constant current density
I = 1, 5Inp and a solution concentration of 1 mol/m3 and 10 mol/m3.

From Figure 14 it is evident that there is a fairly good qualitative and quantitative
agreement between the numerical and analytical solutions. The approximation becomes
worse as we approach the singular points, i.e., in the vicinity of the curve, which is, of
course, natural, since C1(t, x, ε) → +∞ at x → b(t,ε)FD0C0

I(t) + according to Equation (20),
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while the numerical solution remains limited. To refine the solution in the vicinity of the
curve, it is necessary to use the asymptotics of the solution of a singularly perturbed linear
inhomogeneous equation (see Section 11).
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Figure 14. Distributions of cation concentrations in the extended SCR calculated numerically (solid
lines) and using the asymptotic solution (20) (dashed lines) at a current density I = 1.5Inp at time
moments: 3 s, 4 s, 5 s, 6 s, 20 s for the initial concentration of the electrolyte solution C0 = 1 mol/m3

(a) and C0 = 10 mol/m3 (b).

11. Reduction of Equation for φ in the SCR to an Auxiliary Linear Differential Equation
of Parabolic Type

As noted above, Equation (20) can be applied to the inhomogeneous Burgers equation,
and therefore, we apply Hopf–Cole transformation to it: setting φ = 2 ln ψ, we obtain the
equation ψ.

2ε
ψt

ψ
= −2εD1(

ψx

ψ
)

2
+ 2εD1

ψxx

ψ
+ 2εD1(

ψx

ψ
)

2
− I(t)x + b(t, ε).

The terms containing 2εD1(
ψx
ψ )

2
cancel each other out, and the equation becomes a

linear equation of parabolic type:

2ε
ψt
ψ = 2εD1

ψxx
ψ − I(t)x + b(t, ε) or

εψt = εD1ψxx +
1
2 (−I(t)x + b(t, ε))ψ.

Thus, for the electric field potential in the SCR, we obtain [34], a bisingularly perturbed
equation of parabolic type

ε(ψt − D1ψxx) =
1
2
(−I(t)x + b(t, ε))ψ.

For special cases of the function I(t), for example, for direct current, this equation is
reduced to a homogeneous equation, i.e., it admits an exact solution.

The Darboux transformation method has proven its effectiveness for solving the
inhomogeneous heat conduction equation in general [37]. The application of the Darboux
transformation in recent years has made it possible to obtain new solvable models of
quantum mechanics. The connections of the Darboux transformation with the inverse
scattering method and soliton theory are also interesting [38–45].
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12. Diffusion Layer of an Anion Exchange Membrane (AEM)—Derivation of Equation
for the Potential in the SCR at the AEM

Let us consider the diffusion layer at the AEM, where x = 0 corresponds to the con-
ditional boundary of the AEM/solution, and x = 1 to the right boundary of the diffu-
sion layer. In the SCR at the AEM, the relation is satisfied; therefore, Equation (4) and

ε
∂2 φ
∂t∂x = j1 − j2 − I(t) can be simplified:

ε
∂2ϕ

∂x2 = C2,

ε
∂2 φ
∂t∂x = −j2 − I(t).

Let us rewrite the flow j2 = C2D2
∂φ
∂x − D2

∂C2
∂x using ε

∂2 φ

∂x2 = C2; then,

j2 = εD2
∂φ

∂x
∂2 φ

∂x2 − εD2
∂3 φ

∂x3 .

Substituting the flow into the equation

ε
∂2 φ
∂t∂x = −εD2

∂φ
∂x

∂2 φ

∂x2 + εD2
∂3 φ

∂x3 − I(t) we obtain

ε
∂φ
∂t = −ε D2

2 ( ∂φ
∂x )

2
+ εD2

∂2 φ

∂x2 − I(t)x + a(t, ε) or

εφt = −ε D2
2 (φx)

2 + εD2 φxx − I(t)x + a(t, ε).

Let us write this equation, similar to (20), as:

ε(φt − D2 φxx) = −ε
D2

2
φ2

x − I(t)x + a(t, ε).

This equation differs from Equation (20) by the sign of the nonlinear term. The change
of variables φ = −2 ln ψ also leads this equation, as in item 8, to a linear equation of
parabolic type.

13. Discussion

Boundary value problems for the Nernst–Planck–Poisson system of equations are of
great importance in studying ion transport in EMS. At the same time, boundary value
problems for stationary equations of the Nernst–Planck–Poisson systems have been studied
much better than non-stationary ones, which is explained by significant mathematical
difficulties. In the current article, new asymptotic solutions are given based on the general
idea of obtaining a singularly perturbed nonlinear partial differential equation for the
potential in the SCR and its transformation to a well-studied singularly perturbed linear
parabolic equation. Approximate Equation (21) near the boundaries has a discrepancy with
the numerical solution, which can be corrected using the exact solution of Equation (20). It
is supposed to use new analytical solutions to study non-stationary processes of salt ion
transport with exhaustive completeness and to identify effective desalination modes using
ion-exchange membranes with structured surfaces in future works.
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