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Abstract: This article investigates the boundary value problem for an extended stationary
system of Nernst-Planck—Poisson equations, corresponding to a mathematical model of
the influence of changes in the equilibrium coefficient on the transport of ions of a binary
salt in the diffusion layer. Dimensionless variables were introduced using characteristic
parameter values. As a result, a dimensionless boundary value problem was obtained,
which is singularly perturbed, containing a small parameter in the derivative of the Poisson
equation and, additionally, another regular small parameter. A similarity theory was
developed: trivial and non-trivial similarity criteria and their physical meaning were
determined, which allowed for the identification of general properties of the solutions. A
numerical investigation of the boundary value problem was conducted using the finite
element method. With an increase in the initial solution concentration, the value of the
small parameter entering singularly decreases, reaching values on the order of 10712 and
below, leading to computational difficulties that prevent a comprehensive analysis of the
influence of changes in the equilibrium coefficient on salt ion transport. In this regard, an
analytical solution to the problem was constructed, based on dividing the solution domain
into several subdomains (regions of electroneutrality, extended space charge region, quasi-
equilibrium region, recombination region, intermediate layer), in each of which the problem
is solved differently, followed by matching these solutions. Verification of the analytical
solution was carried out by comparing it with the numerical solution. The advantage of the
obtained analytical solution is the possibility of a comprehensive analysis of the influence
of the dissociation/recombination reaction of water molecules on salt ion transport over a
wide range of real changes in the concentration and composition of the electrolyte solution
and other input parameters. This boundary value problem serves as a benchmark for
constructing asymptotic solutions for other singularly perturbed boundary value problems
in membrane electrochemistry.
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1. Introduction

This article investigates the boundary value problem for an extended system of sta-
tionary Nernst—Planck-Poisson (NPP) equations [1-4], describing the transport of ions of
a binary salt in the diffusion layer, taking into account the influence of space charge on
changes in the equilibrium coefficient. It is known that in strong electric fields the equilib-
rium coefficient of equilibrium/recombination of water molecules can increase many times.
For bipolar ion-exchange membranes, Timashev S.F. and others [5] based on Onsager’s
idea suggested an empirical formula, from which it follows that the equilibrium coefficient
exponentially depends on the stability of the external field of external action. There are
some considerations [3] in favor of using a linear dependence on the space charge density
instead of the exponential dependence of the equilibrium coefficient on the electric field
strength. For bipolar membranes, due to the Boltzmann-Debye equation, this is equivalent
to an exponential dependence on the electric field strength. It is easy to show that the same
is preserved in the quasi-equilibrium region of the space charge in the diffusion layer of
the ion-exchange membrane. However, at overlimiting current densities in the diffusion
layer of monopolar membranes of the extended region of the space charge [6], it can be
shown that in the extended space charge region, the equilibrium coefficient will depend
almost linearly on the electric field strength. A similar solution of the boundary value
problem, obtained by us, in the extended region of space charge, shows that along with
the dependence of the equilibrium coefficient on the voltage, the key role is played by
the dependence on the initial concentration of the electrolyte solution. Namely, at high
solution concentrations of the order of 1 mol/m? and higher, the effect of the change in
the equilibrium coefficient on the transfer of salt ions is not significant and can be ignored,
but at lower concentrations it must be taken into account. This allows for a more accurate
description of ion transport processes in electromembrane systems (EMS) and makes the
model more universal and applicable to a wide range of parameters. Moreover, in previous
studies, numerical methods were generally used to solve boundary value problems in
membrane electrochemistry in diffusion layers, nonlinear processes in porous electrodes,
electrochemical phenomena in microfluidic systems, etc. [7-12]. Numerical methods for
solving boundary value problems for the Nernst-Planck-Poisson system are currently a
pressing and complex problem. For example, in [13], numerical schemes are proposed
that can unconditionally ensure conservation of mass, initial energy dissipation, and the
existence of positive numerical solutions.

The transition to dimensionless variables using characteristic parameter values shows
that the boundary value problem is singularly perturbed, containing two small parame-
ters, one of which is in the derivative of the Poisson equation, leading to computational
difficulties at small parameter values in numerical solutions and the need for special meth-
ods [13-15]. In this regard, obtaining analytical solutions is of great importance. The main
problem of the analytical solution lies in the fact that different physical processes dominate
in different regions of the diffusion layer [16,17]. In this article, we estimate the charac-
teristic quantities used to make the transition to a dimensionless form and obtain trivial
and nontrivial similarity criteria. We have determined their physical meaning, defined
the regions of change, and clarified the main properties of the solution to the boundary
value problem. We have performed a numerical analysis of the boundary value problem
and shown that the diffusion layer has a complex structure; namely, it is divided into six
intervals where different processes dominate, and therefore, in each of them, the solution
to the boundary value problem behaves differently. In this article, to construct an analytical
solution to the boundary value problem, we divide the solution region into a number of
subregions (regions of electroneutrality, region of extended space charge, quasi-equilibrium
region, recombination region, intermediate layer), in each of which the boundary value
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problem is solved in its own way, and then these solutions are merged. The analytical
solution is verified by comparing it with the numerical solution. The advantage of the
analytical solution we obtained is the possibility of a comprehensive analysis of the effect
of the dissociation/recombination reaction of water molecules on the transport of salt ions
over a wide range of real changes in the concentration and composition of the electrolyte so-
lution and other input parameters. Thus, the model we propose and its analytical solution
represent a significant step forward in understanding the processes of ion transport in EMS,
taking into account the effect of the dissociation/recombination reaction of water molecules
and solving boundary value problems for the extended system of NPP equations. The
mathematical model we propose and the analytical method for its study are the standard
for other singularly perturbed boundary value problems in membrane electrochemistry. It
demonstrates how complex physicochemical processes, such as the dissociation and recom-
bination of water molecules [18], can be taken into account within a single mathematical
formulation. This opens up new possibilities for constructing asymptotic solutions for other
problems related to ion transport in EMS, when numerical methods become ineffective.

2. Mathematical Model of the Influence of the Dependence of the
Dissociation Coefficient on the Space Charge Value on the Stationary
Transport of Salt Ions in the Diffusion Layer

The dissociation of water at interphase boundaries and changes in the equilibrium
coefficient are important for understanding the processes occurring in ion transport using
ion-exchange membranes. The increase in the rate coefficient of water molecule dissociation
at interphase boundaries (membrane/solution or membrane/membrane) can have several
causes, as indicated in [19]. In this work, the influence of the electric field on the equilibrium
coefficient of the water molecule dissociation/recombination reaction is investigated.

According to the concepts developed by Timashev S.F. and Sheldeshov N.V. et al. [5,20,21]
for bipolar membranes, the current density of H™ (OH ™) ions generated in the membrane
system is determined by an empirical formula where the equilibrium coefficient depends
exponentially on the external electric field strength [9]. In electrodialysis systems with
monopolar membranes, few studies have been devoted to studying this dependence [22,23].

There are several considerations suggesting that, unlike the studies mentioned above,
in systems with monopolar membranes, changes in the equilibrium coefficient can be
associated not only with the magnitude of the electric field strength but also with the
magnitude of the space charge. For the first time, the dependence of H" (OH ™) ion fluxes
on the magnitude of the space charge was mentioned in the work of Nikonenko V.V.
etal. [23].

Consider the water molecule dissociation/recombination reaction equation:

dj dipy-

where k,, = %C H,0 is the equilibrium constant, and k; and k; are the dissociation and
recombination coefficients, respectively, Cr,0, Cy+, Cop- is the concentration of water in
the solution and H* (OH ™) ions, and jy+, jor- is fluxes of HT, OH ™ ions. Assume that ky,
depends on the space charge p. Expanding k,(p), or, what is the same % = %’ (p),ina
Taylor series with respect to p and limiting ourselves to the first approximation, we obtain

the empirical formula: %’ (p) = II?T((()))) + bp, where b is a constant that must be determined,
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for example, from experimental data, considering it as a fitting parameter. We transform
this formula to a convenient form by multiplying by C,0; then

kuw(p) = %(P)CHZO = (% + bp)Chy,0 or
ko(p) = 18 Crty0 + bChiy0p.

Let us denote ky,, = };‘;’T(g;CHZO and by = bFCy,0 = ACh,0, where A = bF (A is a
dimensionless quantity, and, accordingly, by has the dimension of concentration); then,
we obtain
n
kw (p) = kwo + /\Z z;C;.
i=1

Thus, we obtain only one, dimensionless fitting parameter A, which has a clear and
simple physical meaning, which consists in the influence of the magnitude of the space
charge on the increase in the rate of dissociation of water molecules. In addition, the
function ky (p) depends linearly on the values of the ion concentrations at each point,
which allows us to study its change in different parts of the diffusion layer [24] and find

analytical solutions.

2.1. System of Equations

Stationary transport of salt ions for a 1:1 electrolyte in a diffusion layer at a cation-
exchange membrane (CEM), taking into account the space charge and the dissocia-
tion/recombination reaction, taking into account the dependence of the dissociation coeffi-
cient on the value of the space charge, is described by the following extended system of

NPP equations:
dj; .
—di;JrRi:o,z:l,...,z;, (1)
L Fpcdp o dG
ji= ZIRTchldx D; dx,z_l,...,4 2)
Po _ p
oz ey ©
Ry =Ry =0,R3 = Ry = ky(p)Crp0 — k+C3C4 = ki (ku(p) — C3Cy), “)
z1=1,20=—-1,z3 =1,24 = —1,
4
I=F)  zj, (5)
i=1

Here, (1) is the material balance equations, (2) is the Nernst-Planck equations for the
flows of potassium or sodium ions (i = 1), chlorine (CI~, i = 2), hydrogen (H", i = 3)
and hydroxyl (OH™, i = 4), (3) is the Poisson equation for the electric field potential,
where p = F(z1Cy + 21Cy + 23C3 + 24Cy), (4) is the formula describing the reaction of
dissociation/recombination of water molecules, where ky (p) = kqy, + bp, and (5) is the
current flow equation, which means that the current density I flowing through the cross-
section of the desalination channel is determined by the ion flow, that is, it is the Faraday
current density, ¢, is the permittivity of the solution, F is the Faraday number, R is the
universal gas constant, T is the absolute temperature, ¢ is the potential, E = — ‘;—Z is the
electric field strength, C;, j;, Di—is the concentration, flux, diffusion coefficient of the i-th
ion, k,(0) = 1.1- 108 m3/(s mol) is the recombination rate constant, k;(0) =2-107° sl is
the dissociation rate constant of water molecules, and ky,, = %’ (0)Ch,0 = 108 mol?/m® is
the equilibrium coefficient (ionic product of water).
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Remark 1. As follows from Equations (1), (4) and (5), the relations z1j; + z2j» = I—I_E, Z3f3 + zajs = IT“’
and I = I; + I, are valid, where I, I, are constant unknown partial currents for salt ions and
dissociation products of water molecules.

2.2. Boundary Conditions

Atx =0:
C1(0) =Cyo, (6)
C2(0) = Coo, (7)
C3(0) = Cao, Cz0 >> y/kuwy , ®)
C4(0) = kuw,/Cao, )
¢(0) =d. (10)

The concentration values are considered to be known and given in (6)—(8). Condition
(8) means that the solution away from the cation-exchange membrane is acidified.

Atx =h:

Ci(h) = Cy, (11)

F dQ) dCz -
(szCz i D dx> L0 12

dCs(h)

dx - 0 7 (13)

dC .
< CyDy dq) Dy F ;) B = Jaks (14)
¢(h) =0. (15)

The concentration of cations (11) on the membrane surface is determined by its ex-
change capacity, and the membrane is considered to be ideally selective (12). It is believed
that, in the surface layer of the cation-exchange membrane, there is a less intense genera-
tion of H (OH ™) than in the anion-exchange membrane; therefore, the concentration of
H™ ions is significantly less than the concentration of cations, and they pass through the
membrane freely (13) and no longer participate in the transport processes. In this case,
a flow of OH™ ions is injected into the solution from the surface of the cation-exchange
membrane and this flow is specified by condition (14). In this study, the potential drop (10),
(15) is specified and the current density is found using Formula (5).

3. Trivial and Non-Trivial Similarity Criteria
3.1. Characteristic Quantities and Transition to Dimensionless Form

Let us take the initial concentration Cj of the solution as a characteristic concentration,
and the actual values Cy are in the range 10~3 M—~100 M. Let us consider the thickness of
the diffusion layer /, which has the order of 10~* m [25], as a characteristic length. Let
us denote Dy = 2D11) igi —the diffusion coefficient of the electrolyte, for example, (NaCl),
(Dp = 1.6133 - 10~9m?/s); ¢g = XL —the thermal potential (¢o = 0.026B) [2].

Let us introduce the limiting diffusion current according to the formula [26] I;, =

2D,CF
—n

Let us take Iy = I'% as Ip. Let us estimate the value Iy, which depends on the initial
concentration Iy = [Cp| - 0.649 - 55, for example, at Cy = 1m° we obtain Iy = 0.649 - A
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Let us move on to dimensionless quantities using the following formulas:

_ _29 _ _hdp _ 1 (u) _ D; () _ G
xt =g, o) = 470( )E(”) =g V=% D" =5, G =5
u) _ jh _ _jiF _
i =pc = IO i=1,...,4

Then, we obtain the boundary value problem in dimensionless form:

-(u)
S(u)DZ-(u)dL — a2 (k%) + ‘B(Cgu) B Céu) + C:())u) B Ciu)) . Céll)ciu)),

dx(u)
(u) d*W _ _~w) A (u) _ ~(u)
e PR (e G +G C,),
() _ _ ~(w)de® _ dc)
li =~ C 0

4) = Z ZiD,'u)]l'(u)/

i=1
Is(u) _ Dgu)].gu) . Dgu)].éu)’ Iz(uu) _ Déu)}éu) . ziu)]z(t ).

The boundary conditions are as follows:

Atx =0:
o) =iy,
c(0) = ¢,
(o) =cly), c5) >> \Jku
C§"(0) = kuy/CY,
cly) ~ el + el - el =0, 90 (1) =
Atx =1:

(1) = Cim,
(w) dp) dCé”)
cl = —0,
dx(u) dx(®) —

acy (1)
dx ()

u (u)
(u)d‘i’( : _ G _
D4 <C4 dx(”) dx(“) o - ]4k/

:0,

oM (1) = 0.

3.2. Physical Meaning of Similarity Criteria

The boundary Value problem contains the following parameters
e, Dg”), Diu), a), k), k ﬁ(” b which are trivial similarity criteria. Let us de-
termine the physical meaning of these parameters and estimate their values at characteristic
values of the input parameters of the problem.

(1) Letus consider the parameter HON

Let us find out the physical meaning of this parameter. To do this, we write it in the form
2
S(u) _ RT()Ey —9 Zil
CoF?h? h

where [; = ZRCE;’Z is the Debye length.
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Thus, the parameter e*) is the doubled square of the ratio of the Debye length I; to the
width of the diffusion layer £, i.e., Ve(®) is the dimensionless Debye length (the thickness
of the quasi-equilibrium region of the space charge).

The estimate ¢(*) shows that 1.859 x 1012 < (1) < 1.859 x 10~8. As can be seen
from the value £, it can be taken as a small parameter, and with an increase in the initial
concentration of the solution Cy, its value decreases.

(2) Letus consider the parameter kg’o) = kiCr,0/ k,C(Z).

The estimate k%) shows that it varies within 10~ 4 < kgg) < 107°. So, for example, for
Co = 1 mol/m3, we have kgg) ~ 1078,

It is clear that k%) can be considered a small parameter, independent of £(*), and with
an increase in the initial concentration of the solution Cy, it decreases rapidly.

However, if the width of the diffusion layer is fixed, then there is a relationship

between them (see below).

(8) Consider the parameter al)

a) = kgp;;, = 12.6—a universal constant independent of the initial concentration,
potential jump, etc. To clarify the physical meaning of this parameter, we transform it
as follows:

J(w) _ keRTe, _ 2CokRTe, _ 26k, 15 GG
D()FZ DOZCOFZ Dy 28)01@ l%
where [, = ’/%ookr is the width of the recombination region. For example, for

Co = 1 mol/m3, we have I, = 2.70798 - 108 m.

Thus, the parameter a(*) is the square of the ratio of the Debye length I; to the width
of the recombination region I,. The value of the constant a(*) = 12.6 shows that the
recombination region is approximately 3.5 times smaller than the quasi-equilibrium region
of the space charge.

(4) Let the width of the diffusion layer be fixed; then, we have the following non-trivial
similarity criterion k;,, = Be?, where B(*) = k,;lCHZoFZh‘L/kr(er)z((po)2 =2.86-10"is
a dimensionless parameter.

" 2
In addition, Ry" = R{" = 2 (B (e()” — c{'c{").
With kg, = Be2, it follows that with an increase in the initial concentration of the
solution Cy, the influence of the dissociation/recombination reaction on the transfer of salt

ions rapidly decreases.

4. Analysis of Numerical Solution and Algorithm of Analytical Solution

We have developed a special program “Program for computer modeling of changes
in the rate constant of dissociation and recombination of water molecules in the diffusion
layer” Ne 2024688199 in the Comsol MPh 6.2 environment, with the help of which we carried
out a numerical study of the boundary value problem using the finite element method. This
software product is designed to calculate the mathematical model (1)—(15) and allows to
describe with high accuracy the processes occurring in the diffusion layer of ion-exchange
membranes, taking into account the reactions of dissociation and recombination of water
molecules. This program provides a more adequate idea of the behavior of salt ions
under steady-state transfer conditions, which can be used to develop new materials and
technologies for ion-exchange membranes with improved characteristics, with increased
selectivity, strength and resistance to various effects. The functionality of the program
includes the input of initial data, calculation of the mathematical model and visualization
of the results on graphs, surfaces and video, in comparison with the analytical solution.
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An analysis of the numerical solution shows that the diffusion layer can be con-
ditionally divided into six intervals by five points: x,—the center of the recombination
region (x, — d1, x, + J1); xc—the center of the intermediate region (x. — 2, x; + &) between
the region of electroneutrality (x, + J1, x; — J7) and the region of extended space charge
(xc + 62, x4), where the space charge has a local maximum; x;—the left boundary of the
quasi-equilibrium region of space charge (Figure 1).

YA CEM

Figure 1. Diagram of the structure of the diffusion layer in a cation-exchange membrane (CEM). Not
to scale.

In the region (0, x, — d1), the equilibrium is shifted (the solution is acidified) due to the
generation of H™ ions (see the boundary condition). In this region, there are practically no
OH™ ions (the concentration of these ions is significantly less than the concentration of H™
ions). The concentration of cations and anions is equal with high accuracy, even if they are

artificially set unequal at x = 0; this inequality is compensated for on the artificially arising
boundary layer. In the region [0, x, — J1), the value of the space charge is sufficiently small,
and as a first approximation, it can be assumed that the condition of local electroneutrality
is satisfied in it (Figure 2).

Figure 2. Concentration graphs. Blue—Na™ concentration graph; green—Cl~; red—H™; light
blue—OH: (a) general view; (b) enlargement.

On the segment (x, — &1, x, + J1), there is a recombination of hydrogen ions that come
from the depth of the solution towards the cation-exchange membrane with hydroxyl ions
that arise in the space charge region (SCR) of the cation-exchange membrane. In this region,
the recombination of H* and OH~ ions dominates over the dissociation reaction of water
molecules, so we will call this region the recombination region. On the interval (x. — dy, 1],
the condition of local electroneutrality is violated, that is, this space charge region and
the interval (x; 4 &2, x;) is an extended space charge region that occurs at currents above
the limiting value, (xc — b2, xc + J7) is an intermediate layer between the electroneutrality
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region and the extended SCR, and the interval (x;, 1] is a quasi-equilibrium space charge
region. On each interval, the solution is sought in its own way, and then they are merged,
that is, the constants included in the solution are determined and the boundaries of the
intervals are specified. Let us note some properties of the solutions. From the numerical
analysis (Figure 2) and asymptotic estimates, it follows that the cation concentration C;
changes linearly on the interval [0, x. — J7), then slowly decreases to the point x;, and
then, exponentially increasing, satisfies the boundary condition C;(1) = Cy; at the point
x = 1. The anion concentration C, decreases linearly on the interval [0, x. — d,), and then
becomes practically equal to zero. The ion concentration H' decreases linearly on the
interval [0, x, + 61), and then the concentration value is practically equal to zero up to the
point x, after which it begins to grow, reaching a local maximum at the point x,;, and then
decreases. The ion concentration OH ™~ on the interval [0, x, — 6;) is practically equal to
zero, then this concentration begins to grow, reaching its maximum at some internal point
(xr, xc), and then the concentration on the interval (x4, 1] becomes practically equal to zero.

5. Analytical Solution

For the convenience of the analytical solution, we write a dimensionless boundary
value problem, omitting the index “u” for simplicity of notation:

dji j
eD; d]; = a(kw, +B(Cr — Co+C3 — C4) — C3Cy), i = 3,4 (16)
dZ
€7dx92b = —(Cl — Cz + C3 - C4)1 (17)
, d¢  dC;
ji = —chfﬁ ~ gk T L3 1o

gl

I = ZiDiji/ (19)

I
—

Is = D1j1 — Daja, Iy = D3jz — Dyja.

Atx =0:
C1(0) =1, C(0) =1,

C3(0) = Czo, Czo >> y/kuy, ,
C4(0) = ku,/Cao0,
C3(0) =1,
Cio— Cao +Ca0 — Cg9 =0, ¢(1) = d.

Atx =1:
Cl(l) = Clmr

(2-5)

The system of equations contains two small parameters € and ky,,, and the parameter
¢ enters the equations singularly, i.e., as a coefficient at the derivative, and the parameter
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kw, is regular [27]; therefore, the system of equations is simultaneously singularly and
regularly perturbed.

General idea of the solution.

For the analytical solution, as follows from the results of the numerical solution, it is
necessary to divide the diffusion layer into six sublayers (areas of electroneutrality, area
of extended space charge, quasi-equilibrium area, area of recombination, intermediate
layer), in each of which a certain physical process, different from the others, dominates.
For example, in the recombination area, the recombination of H* and OH™ ions dominates
over the dissociation of water molecules. The extended area of space charge arises from the
overlimit current density and occupies a small but finite part of the diffusion layer, and in
the remaining part, the condition of local electroneutrality is fulfilled. The intermediate
layer is needed to merge the solutions of the area of electroneutrality and the extended area
of space charge.

Thus, we divide the initial segment into six intervals:

[0,1] = [0,x, — &1) U [xy — 61, %7 + 1) U [xy 4 61, xc — 02) U [xc — 02, xc + 02) U [xc + 02, x4) U [xg, 1]

In each interval, the system of equations is simplified in its own way and a general
solution is found. The constants of integration and the boundaries of the intervals are
found from the condition of matching the solutions at the boundaries of the intervals.

In the intervals [0, x, — d1), [x; + J1, X — J2), in the first approximation, the condition
of electroneutrality and equilibrium is satisfied; therefore, we obtain the equations:

kwy, —C3C4=0,i=3,4
C1—C+GC—Cy=0,
, dp .
% = —ziCi£ —Ji,i=1234

where the flows are constant, and in [0, x, — d1), we have j3 ~ ll)ig, ja ~ 0, and in
[xr + 61, Xc — &2), on the contrary, js ~ 71[3%’ j3 = 0.

The general solutions of these equations are found quite simply and therefore omitted
here.

5.1. Analytical Solution in the Recombination Region [x, — 61, x, + 61)

In the recombination region, the equilibrium is disturbed. In the first approxi-
mation, the condition of local electroneutrality is satisfied; however, in this interval
Ci—GCG+CG—-C = O(\ﬁ), unlike C; — C, +C3 — C4 = O(S) in the interval
[xr + 61, xc — &2).

From asymptotic estimates, numerical solution and physical considerations, the fol-
lowing assumptions are valid:

(1) The width of the recombination region is small (i.e., 41 is small), since the recombina-
tion coefficient is quite large;

(2) Recombination prevails over dissociation, i.e., ky, << C3Cy, in (x; — 81, %) C4 = 0,
and in (x,, x, + 81) C3 =~ 0.

Using these assumptions, the system of Equations (16)—(19) is simplified:

eDi% = a(ky, —C3Cyq), i =3,4 (20)
Ci1—C+C3—C4=0, (21)
PR B Y (22)

Tdx dx
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4
I=YzDj, (23)
i=1

Is = Dyj1 — Daja, Iy = D3j3 — Dyja.

From this system, after a number of transformations, we obtain the equation for j3:

eD3Dy d?j ‘
2 ES — (DyCa+ D3Ca)js — Cal (24)
a dx
Remark 2. If we formally put in Equation (24) ¢ = 0, we obtain the equation

(D4Cy + D3C3)j3 — C3ly = 0, whence, taking into account Cq ~ 0, we obtain j3 ~ % and
ja =~ 0. That is, the assumptions used for the solution in the interval [0, x, — 61). Similarly, if
we put C3 ~ 0, we get j3 ~= 0. That is, the assumptions used for the solution in the interval
(xy + 61, xc — 62). This allows us to merge solutions in all three intervals.

(1) Letus find a solution in the interval (x, — 81, x;]

Taking into account Cy(x) ~ 0, since the concentration of hydroxyl ions decreases to
almost zero after recombination with hydrogen ions, we get a linear non-homogeneous
equation of the second order:

£D3D41127]'3 o
a  dx?

After a series of transformations, we get an approximate analytical solution:

. _ Cs(xy) xp — x
]3(x/ 8) - A2 exp(_ a D4 \ﬁ ) + D73,

where Aj is the constant of integration.
Let us find the value j3(x, ¢) at the point x, — é;. The first term, regardless of A,
should be close to zero. If we take x = x, — 61, where 6; = —k+/elne, where k > 0 is an

arbitrary constant, we get that by choosing k we can ensure proximity j3(x, — d1) to Iw

with any degree of . Note that j3(x,, &) = Ay + & I“’

(2) Let us find the solution in the interval [x;, x, + d1)

Similarly to item (1), we find the solution in the interval [x;, x, + &1 ), using the equation

D3D, & .
DsDs T — D,yCy(x)ja:

. _ | Cylxr) x — xr
ja(x,€) = Byexp( Q7D3 7\/5 ),

where B is the constant of integration.

To merge the solutions (x, — 61, x;] and [x;, x, + 1), the condition of continuity and
smoothness of the function j3(x, ¢) at the point x, is used, which gives a system of equations
that uniquely determines Ay, By:

A2+f—B and Ay /a C3 x) C4(xr)
D38

(3) Making calculations similar to (1) and (2), it is easy to find j4(x, ¢) and show that the
relation is satisfied D3j3(x, €) — Dyjy(x, €) = I, in the entire recombination region. In
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addition, from the solutions given above, it follows that the width of the recombination
region is of the order of O(y/¢lne).

5.2. Analytical Solution in the Extended RPR

We present the solution in the extended region of space charge (x + d2; x;). As follows
from the analysis of the numerical solution in this region and the asymptotic estimates [17],
dissociation dominates over recombination, and C; slowly decreases, and is of the order of
C1 =0 (Ve) C; > Cq >> C3, Cy = 0 (Figure 3).

A

9.75 9.8 9.85 9.9 9.95 10°°
X,m
Figure 3. Graphs of concentrations in the extended space charge region: blue is the concentration of
cations, light blue is the concentration of OH ™, green is the concentration of anions, and red is the
concentration of HT ions.

Using these relations, the original system of equations in the extended space charge
region can be simplified:

d2
eg = —(C1—Cy) 25)
dC] o d(P .
- O h 26)
dC4 . dqo .
I~ Cago s (27)
d]l .
e = a(kwy +B(C1—Cy)), i=1...4. (28)
An approximate solution to the system (25)-(28) depends on the relationship ky,

and B/¢, which is determined by the value Cy. For small C, we have ko 1, and for

ﬁ\/
large Co, on the contrary By ‘[ >> 1, and for some Cy, we obtain ﬁ ‘[ =0(1).

(1) Letky,/Be€ >> 1, then discarding the second term on the right—hand side of Equa-
tion (28), we obtain the expression for the flows

i) = jilxe) + W (x yp),

SD,‘
From this formula, it is clear that the effect of changing the equilibrium coefficient at
ka . . . .
708 >> 11in the extended region of space charge on the flows j;(x, €) and, accordingly, the
distribution of the concentration and electric field strength is insignificant, and the flows
themselves increase linearly (see Figure 4).
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A
8
5 0
S
5 -4
i: -8 y
-2 ] 0.002
95 96 97 98 99 10 105 ' e BN 2 P e
X,m
(a) (b)
Figure 4. (a)—graphs of j; (blue line) and j; (green line) calculated numerically (solid line) and
analytically (dashed line); (b)—graphs of space charge for different t. Numerical and analytical data
coincide with 99% accuracy.
For an analytical solution, we derive an equation for the electric field strength inde-
pendent of the remaining unknowns.
The system of equations has a first integral
ot Co= SE2 = 290 (2 2 (i ja(x)) (v — ) +
2 2¢Dy ¢ ¢ ¢ :
From Equations (26) and (27), we have the relation
L d(Cy — Cy)
—ja=(C1 +C)E— ————.
jr—ija=(C1+Cy) I
Substituting into which the first integral and the value j;, we obtain the equation:
d’E e _, aky, ST aky o
e— = (zE° — X —xc)" — xc))(x —x E 9 (x —x¢) — Xc).
= (GE o (= xe)” = G Ja(x0)) (2 = 20)+ 1) E+ T2 (x = x0) — j + (v

Using asymptotic estimates, it can be shown that the left-hand side of the equation in
the extended region of the space charge is small compared to the remaining terms of the
equation. As a result, to find the electric field strength, we obtain the equation

aky,
2¢ D4

aky,

€D4

€ . . ) .
SE? = (5 (x = x)” = (1 +ja()) (x = xe) = 1) E+ 22 (x = xe) — i + ja(xc) = 0,
which has one isolated positive solution, using which, we find the remaining functions

from the solution of linear Equations (26) and (27).
@) Let %5 >> 1,

Using Equations (25) and (28), we obtain the relationship j; and ¢; namely, from one
equation, we express C; — C4 and substitute into the other, and integrating which, we
obtain

Dyjs = —aﬁg—i + 71, where 71 is the integration constant. Let us write this equation
using the electric field E = —Z—f strength as:
. a
Ja= HﬁE +m (29)
4

where we can see the linear dependence of the H™ and OH ™~ flows on the electric field
strength E in the extended space charge region.
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Substitute j4 into Equation (27), and after a series of transformations, we obtain the
first integral of the system

e dp.?  ap 26!
C+C= (5 — - ,
1+ C=5(50) + D¢~ (5 +]1)X+’Yz
where 7, is the integration constant.
Using the first equation and the first integral, we obtain an equation for ¢ that does
not contain other unknown functions:

d34> e dp 2

71 dp  ap dp
i (Z(dx) D4 = dx

—+])x+'yz) x Dydx

Asymptotic evaluation of the terms of this equation shows that the term on the left-
hand side of the equation is small compared to the remaining terms, so the equation can be
used to calculate the potential:

e dg.? ap d¢ m
(505) + <P (7+])x+72+D7)E D7+] =0.
This equation is solved analytically by introducing the parameter [28]. After determin-
ing ¢, the remaining unknown functions are also found analytically from the solution of

the linear Equations (26) and (27).

5.3. Analytical Solution in a Quasi-Equilibrium SCR on the Segment (x4;1]

In the case where the equilibrium coefficient does not depend on the space charge in
this region, the flows of hydrogen and hydroxyl ions increase linearly, i.e., dissociation
occurs with the maximum possible constant rate. However, when it depends on the space
charge, the flows of hydrogen and hydroxyl ions increase with an exponential rate, i.e., the
second Wien effect comes into play and the rate of dissociation of water molecules increases
by many orders of magnitude.

From the analysis of the numerical solution it follows that this region is a quasi-
equilibrium region of space charge, x;(¢) — 0, ¢ = 04 and C;(x,¢), exponentially in-
creases Ca(x, €) =~ 0, C3(x, €), has a local maximum, and C4(x, €) exponentially decreases to
zero, C3 << C1, C4 << Cq, C4C3 << Cy. In addition, j3(x, €) and js(x, €) increase with the
rate of the exponential.

Taking these assumptions into account, we obtain the following system of equations:

T 2 (30)
o o2 ), 61
e%‘: = a(ky, + boC1), (32)

Zi‘f - C. (33)

Integrating (30) from point x, to arbitrary point x, we obtain

P—¢0 d
—h _p, 99
Cl Clqe 0 Ry — C]qe hg Ir — ClqehOE
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where hy = x — x4, and, accordingly, we have
ka(p) & kuy + AC1yye™F. (34)

Thus, in a quasi-equilibrium SCR, the equilibrium coefficient exponentially depends
on the electric field strength E.
It is easy to verify that the system of Equations (30)—(33) has an analytical solution:

bﬁ 2px=1
_ Ve ¢
E(x,e) = ﬁ%r Ci(x,e) = sz')’Z%’
ye Ve 41 (ye VE+1)
) b %(x—l) b 1
3= gkwox+%2bln Yyeve +1‘ —i—ﬁZbW'
')/g\/E +1

From this solution, it follows that the thickness of the quasi-equilibrium region is
of the order of O(y/elne), i.e., the same as the width of the recombination region. This
confirms the conclusions obtained using the similarity theory in Section 2.2.

6. Conclusions

A mathematical model of stationary transfer of a binary electrolyte in electromembrane
systems is constructed taking into account the dissociation/recombination reaction and
changes in the equilibrium coefficient. A similarity theory of the transfer process in the
diffusion layer of a cation-exchange membrane has been developed. Using trivial similarity
criteria, it has been shown that the size of the recombination region is of the same order
of magnitude as the quasi-equilibrium region of the space charge. A non-trivial similarity
criterion has been found and the contribution of the dissociation/recombination reaction
of water molecules to the transfer of salt ions in the diffusion layer has been clarified. It
has been shown that, assuming that the thickness of the diffusion layer remains constant,
the effect of the dissociation/recombination reaction of water molecules decreases with
increasing initial concentration of the solution and, conversely, increases with decreasing
initial concentration at a quadratic rate. The similarity theory constructed above is of
great importance for engineering calculations and for scaling experimental results. With
increasing initial concentration of the solution, the value of the small parameter entering
singularly decreases and reaches values of the order of 10712 or less, which leads to
computational difficulties that do not allow an exhaustive analysis of the effect of changes
in the equilibrium constant on the transport of salt ions. In this regard, an analytical
solution to the problem has been constructed, based on the division of the solution, which
was divided into a number of subregions (electroneutrality regions, extended space charge
region, quasi-equilibrium region, recombination region, intermediate layer), in each of
which the problem was solved in its own way, and then these solutions were merged.
The analytical solution was verified by comparison with the numerical solution, which
shows a match with 99% accuracy. The advantage of the obtained analytical solution is
the possibility of an exhaustive analysis of the effect of the dissociation/recombination
reaction of water molecules on the transfer of salt ions over a wide range of real changes in
the concentration and composition of the electrolyte solution and other input parameters.
For example, it was shown that the dependence of the equilibrium coefficient on the space
charge leads to a linear dependence on the electric field strength in the extended space
charge region and an exponential dependence on the electric field strength in the quasi-
equilibrium space charge region. This is a non-trivial generalization of the assumption
of an exponential dependence of the equilibrium coefficient on the electric field strength
for bipolar ion-exchange membranes to the case of monopolar membranes. The boundary
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value problem solved in this work is a reference for constructing asymptotic solutions for
other singularly perturbed boundary value problems of membrane electrochemistry.
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